Supplemental Materials Molecular Biology of the Cell

Mizuno and Sloboda

Supplementary Information

Figure S1. Phylogenetic analysis of PRMTs.

A neighbor-joining phylogenetic tree of PRMTs from various organisms. PRMT genes from Chlamydomonas reinhardtii, human, sea urchin (Strongylocentrotus purpuratus), Arabidopsis thaliana, rice (Oryza sativa, Japonica group), and yeast (Saccharomyces cerevisiae) were aligned. The numbers on the nodes indicate the bootstrap values (1000 replicates). Protein sequences used in the alignments were as follows. Chlamydomonas: Cr-PRMT1 (Cre03.g172550), Cr-PRMT2 (Cre12.g558100), Cr-PRMT3 (Cre16.g685900), Cr-PRMT4 (Cre15.g635350), Cr-PRMT5 (Cre03.g176550), Cr-PRMT7 (Cre02.g141626). Human: Hs-PRMT1 (uniprotkb: Q99873), Hs-PRMT2 (uniprotkb: P55345), Hs-PRMT3 (uniprotkb: O60678), Hs-PRMT4/CARM1 (uniprotkb: Q86X55), Hs-PRMT5 (uniprotkb: O14744), Hs-PRMT6 (uniprotkb: Q96LA8), Hs-PRMT7 (uniprotkb: Q9NVM4), Hs-PRMT8 (uniprotkb: Q9NR22), Hs-PRMT9 (uniprotkb: Q6P2P2), Hs-PCMT1 (uniprotkb: P22061). Sea urchin: Sp-PRMT1 (genbank: XP 011662730), Sp-PRMT2 (genbank: XP 786231), Sp-PRMT3 (genbank: XP 011663239), Sp-PRMT4/CARM1 (genbank: XP 011673927), Sp-PRMT5 (genbank: XP 011660739), Sp-PRMT6 (genbank: XP 011679081), Sp-PRMT7 (genbank: XP 780353), Sp-PRMT8 (genbank: XP 011662730), Sp-PRMT9 (genbank: XP 011672088). Arabidopsis: At-PRMT 1 (genbank: NP 179557), At-PRMT 3 (uniprotkb: Q0WVD6), At-PRMT6 (uniprotkb: Q08A71), At-PRMT 10 (uniprotkb: Q9MAT5), At-PRMT11/1b (uniprotkb: O9SU94), At-PRMT12/1a (uniprotkb: O82210), At-PRMT13/4b (uniprotkb: Q84W92), At-PRMT14/4a (uniprotkb: A3KPF2), At-PRMT15 (uniprotkb: Q8GWT4), At-PRMT16 (uniprotkb: Q944R7). Rice: Os-PRMT 1 (uniprotkb: Q0J2C6), Os-PRMT 3 (uniprotkb: A3BMN9), Os-PRMT4/CARM1 (uniprotkb: Q7XI75), Os-PRMT 5 (uniprotkb: Q6YXZ7), Os-PRMT6a (uniprotkb: Q7XKC0), Os-PRMT6b (uniprotkb: Q75G68), Os-PRMT7 (uniprotkb: Q5VS72), Os-PRMT 10 (uniprotkb: Q9SNQ2). Yeast: ScHMT1 (uniprotkb: P38074), ScHSL7 (uniprotkb: P38274), ScRMT2 (uniprotkb: Q03305). ID for Chlamydomonas sequences are from JGI ver5.5 database. Positions for Chlamydomonas PRMTs are shown in red on the tree, rice and Arabidopsis in blue, yeast in green, sea urchin and human in brown.

Figure S2. Immunoblot analysis of PRMT1 and PRMT10 affinity purified antibodies.

A. Analysis of affinity purified antibodies to PRMT1 and 10, using a gel sample of whole, intact flagella. B. Analysis of affinity purified antibodies to PRMT1 and PRMT10 using flagellar samples from *fla10-1* cells from at the permissive temperature (23 C). The flagella were fractionated as indicated (see Methods for further details on the fractionation). At increased exposure times, as shown here, the PRMT1 antibodies also appear to bind non-specifically to a high molecular weight doublet that is a component of the axoneme. A BLAST search of the *Chlamydomonas* genome identified five residues of the 15-mer peptide used as antigen in a hypothetical protein having a calculated mass of 265kDa, similar in size, but larger than the bands identified by the PRMT1 antibodies at long exposure times.

Figure S3. Antigen information relative to the antibodies used in this study.

Sequence comparisons of the commercial antibodies for PRMT3 and PRMT5 used in this study. The sequences of each antigenic peptide are proprietary information not disclosed by the vendor.

Figure S4. Sample of control immunofluorescence, second antibody alone.

Top: Immunofluorescence of wt cells using acetylated tubulin antibodies (red). Middle: Control cells, second antibody alone. Non-specific binding of the second antibody alone occurs in the cell body. However, no signal is observed in the flagella. Bottom: Merged image of A and B. Scale bar, 5 μm.

Figure S5. Immunofluorescence microscopy of *fla10-1* cells at the permissive temperature (23°C)

Cells were probed with anti-IFT172 (red, left column) and anti PRMTs (middle, green) as indicated. Flagella outlined with a dashed line box are shown enlarged (4x) in the right-hand column. The localization of IFT172 and PRMTs are sometimes, but not always, identical. Scale bar, 5 μ m.

Figure S6. The intensity of Asym24 puncta in the central region of flagella increases during flagellar resorption.

Intensities of each punctate spot were plotted as a function of flagellar length. Note that intensities of spots in the central region are greatly increased in resorbing flagella. (B) Boxplot comparison of Asym24 signal intensities in the central region (positions 0.1-0.9 in relative flagella length) are significantly increased in resorbing flagella, as determined by the Steel-Dwass test.

Table S1. Raw data of PRMT 1 and PRMT 3 intensities for basal puncta during flagellar resorption and regeneration.

Mean \pm SEM values from three independent experiments, the numbers of puncta counted, and total flagellar numbers are summarized.

Table S2. Raw data for flagellar PRMTs 1, 3, 5 and 10 puncta intensities from *fla10-1* cells.

(A) Summary of the PRMT 1 and PRMT 3 spot intensities at the flagellar tip and the base. Mean \pm SEM values from three independent experiments, the numbers of puncta counted, and total flagellar numbers are summarized.

(B) Summary of PRMT 1, 3, 5, and 10 spots measured along the flagella length from base to tip. Mean \pm SEM values from three independent experiments, the numbers of puncta counted, and total flagellar numbers are summarized.

Table S3. Summary of intensities from the base and the tip of resorbing and regenerating flagellalabeled with Asym24 antibodies.

Mean \pm SEM values from three independent experiments, the numbers of puncta counted, and total flagellar numbers are summarized.

Α.

Figure S3

Similarity of the *Chlamydomonas* PRMT3 sequence (top row) with the sequence containing the antigen (bottom row) used to produce Abcam antibody ab91430. The synthetic antigenic peptide used was derived from the N-terminal 50 amino acids of human PRMT3 (accession number NP_005779.1).

²⁶GREEEWDEWNGDAEDAD G E W+ D +DAD ²⁸GDEAAWE----DEDDAD

and

¹³²DVSPWADDRYLVPVLEDDALL D + W+D EDDA L ²⁸DEAAWED-----EDDADL

Similarity of the *Chlamydomonas* PRMT5 sequence (top row) with the sequence containing the antigen (bottom) used to produce Abcam antibody ab31751. The synthetic antigenic peptide used was derived from within residues 600 to the C-terminus of human PRMT5 (accession number XM 017020927).

⁵⁴⁵NTVLHGFAGYFETVLYQDITLSIRPETHSPGMFSWFPILFPIKQPITVREGQTICVRFWR VLHGFAGYFE LY+D+ LSI P +HS MFSWFPI FP+++P+ V G + V+ WR ⁶¹³AAVLHGFAGYFECALYKDVLLSIHPPSHSVNMFSWFPIFFPLREPVYVPAGGEVGVQVWR

⁶⁰⁵CSNSKKVWYEWAVTAPVCSAIHNPTGRSYTIGL

C KVWYEWA++APV IHN GRSY +GL ⁶⁷³CCAPHKVWYEWALSAPVAGPIHNVNGRSYWVGL

Figure S4

(2nd antibody only)

Figure S5

Table S1

Basal PRMT1	intensity							
	time	0	15	30	45	60	90	120
Regenerating	Mean \pm SEM	455±54	286±55	199±25	344±62	717±89	379±57	NA
	Spot number	113	22	32	52	68	97	NA
	Flagella number	170	100	112	122	101	139	NA
Resorbing	$Mean \pm SEM$	455±54	539±103	224±28	182±23	544±70	439±56	461±71
	Spot number	113	44	68	62	58	90	66
	Flagella number	170	90	125	163	104	145	73
Basal PRMT3	³ intensity							
	time	0	15	30	45	60	90	120
Regenerating	Mean \pm SEM	2042±133	1038±185	891±168	1137±215	921±77	870±92	NA
	Spot number	127	21	26	28	72	76	NA
	Flagella number	148	31	51	70	100	108	NA
Resorbing	Mean \pm SEM	2042±133	1176±98	1230±153	663±56	1095±111	858±71	1175±84
	Spot number	127	90	65	81	25	68	77
	Flagella number	148	104	97	114	29	78	100
Tip PRMT1 in	ntensity							
	time	0	15	30	45	60	90	120
Regenerating	Mean \pm SEM	180±17	182±51	208±26	452±41	419±100	246±28	NA
	Spot number	80	12	36	60	53	62	NA
	Flagella number	170	96	112	121	101	139	NA
Resorbing	Mean \pm SEM	180±17	142±14	101±15	94±22	233±23	269±36	122±18
	Spot number	80	45	47	44	52	52	29
	Flagella number	170	90	125	163	104	145	73
Tip PRMT3 in	ntensity							
	time	0	15	30	45	60	90	120
Regenerating	Mean \pm SEM	1075±76	1307±277	813±83	1113±235	846±73	988±82	NA
	Spot number	123	11	32	44	73	101	NA
	Flagella number	158	29	51	70	100	108	NA
Resorbing	Mean \pm SEM	1075±76	697±66	862±78	523±38	930±119	706±70	868±78
-	Spot number	123	83	73	88	18	62	57
	Flagella number	158	104	97	114	29	78	100

Spot counts and flagella counts are combined values from three independent experiments.

A. Tip and basal intensity of PRMT1 and PRMT3 in fla10-1

Tip intensities								
	PRMT1							
temperature	23°C	32°C	23°C	32°C				
$Mean \pm SEM$	182 ± 38	158 ± 42	643 ± 37	437 ± 40				
Spot number	23	14	100	54				
Flagella number	94	79	124	75				

Base intensities								
	PRMT1	PRMT3						
temperature	23°C	32°C	23°C	32°C				
Mean \pm SEM	947 ± 116	197 ± 28	1584 ± 99	724 ± 94				
Spot number	74	34	114	54				
Flagella number	94	79	124	75				

Spot counts and flagella counts are combined values from three independent experiments.

B. Intensities of PRMT spots along the flagellar length

Intensities								
	PRMT1		PRMT3					
temperature	23°C	23°C 32°C		32°C				
Mean \pm SEM	492 ± 55	172 ± 17	353 ± 29	306 ± 28				
Spot number	180	98	458	233				
Flagella number	94	79 124		75				
	PRMT5	PRMT5 PRMT10						
temperature	23°C	32°C	23°C	32°C				
Mean \pm SEM	811 ± 22	472 ± 23	311 ± 12	173 ± 12				
Spot number	819	339	320	186				
Flagella number	67	58 98		71				

Table S3

•								
	time	0	15	30	45	60	90	120
Regenerating	Mean \pm SEM	971 ± 55	903 ± 94	966 ± 194	684 ± 159	2403 ± 313	1973 ± 247	NA
	Spot number	120	36	16	16	31	57	NA
	Flagella number	172	84	103	107	107	111	NA
Resorbing	Mean \pm SEM	971 ± 55	1301 ± 117	1797 ± 98	2803 ± 344	2085 ± 184	1586 ± 164	1186 ± 109
	Spot number	120	74	153	34	118	102	38
	Flagella number	172	113	176	73	140	119	56
Tip Asym24 in	itensity							
	time	0	15	30	45	60	90	120
Regenerating	Mean \pm SEM	278 ± 14	260 ± 29	268 ± 19	382 ± 25	500 ± 65	655 ± 85	NA
	Spot number	153	52	92	95	103	109	NA
	Flagella number	172	84	103	107	107	111	NA
Resorbing	Mean ± SEM	278 ± 14	377 ± 30	405 ± 27	501 ± 64	502 ± 43	450 ± 37	345 ± 39
	Spot number	153	105	163	67	124	106	54
	Flagella number	172	113	176	73	140	119	56

Basal Asym24 intensity

Spot counts and flagella counts are combined values from three independent experiments.