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Figure	1.	Brg1/Brm	 double	mutants	 undergo	 arrhythmias	 and	heart	 failure.	 (A)	 Echocardiogram-based	measurements	of	 ejec<on	 frac<on	%	
(black	histograms)	and	frac<onal	shortening	%	(gray	histograms)	in	Brg1/Brm	double	mutants	(Group	4)	and	control	groups	at	baseline	(prior	to	
loss	 of	 Brg1	 via	 tamoxifen)	 and	 at	 1-day	 pre-mortem	 (histograms	 enclosed	 by	 gray	 box	 at	 right).	 See	 key	 below	 for	 descrip<on	 of	 each	
numbered	 control	 group.	 (B)	 Six	panels	 show	 leG-ventricle	morphometrics	 and	heart	 rate,	 as	 indicated,	with	first	5	histograms	 represen<ng	
baseline	measurements	and	 last	2	histograms	enclosed	by	gray	box	represen<ng	1-day	pre-mortem	measurements.	Data	represent	means	±	
SEM	with	the	number	of	mice	per	group	indicated	in	each	histogram.	One-Way	Analysis	of	Variance	was	performed	followed	by	an	all	pair-wise	
mul<ple	comparison	procedure	(Holm-Sidak	method)	with	significant	differences	indicated	(§,	p<0.001	vs.	all	other	groups).		



Figure	2.	Two	subphenotypes	in	Brg1/Brm	double	mutants.	(A)	The	ejec<on	frac<on	%	and	frac<onal	shortening	%	data	at	1-day	pre-mortem	
from	 Fig.	 1A	 are	 reproduced	 at	 the	 leG.	 The	 double-mutant	 values	 are	 enclosed	 by	 a	 gray	 box.	 These	 data	 are	 juxtaposed	with	 1-day	 pre-
mortem	data	from	the	double	mutants	separated	out	into	two	subsets	(highlighted	by	arrows	and	histograms	labeled	Subset	1	and	Subset	2)	
where	the	phenotypes	differed	with	respect	to	wall	thickening,	LV	dila<on,	and	systolic	dysfunc<on,	but	not	heart	rate	(HR).	(B)	Six	panels	show	
leG-ventricle	morphometrics	and	heart	rate	that	are	the	same	as	Fig.	1B	except	only	1-day	pre-mortem	data	are	shown	and	the	double	mutant	
data	are	shown	combined	and	separated	out	into	the	two	subgroups	as	indicated.	Data	represent	means	±	SEM	with	the	number	of	mice	per	
group	indicated	in	each	histogram.	One-Way	Analysis	of	Variance	was	performed	followed	by	an	all	pair-wise	mul<ple	comparison	procedure	
(Holm-Sidak	method)	with	significant	differences	indicated	(*p<0.001	vs.	all	other	groups;	**p<0.05	vs.	Column	1;	†p<0.01	vs.	Column	4).		
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Figure	3.	Brg1/Brm	double	mutants	have	conduc<on	defects	
and	die	because	of	atrioventricular	blockage.	ECG	data	 from	
double	mutant	and	control	mice	at	baseline	and	at	13	and	17	
days	 following	 tamoxifen	 (TAM)-induced	 loss	 of	 Brg1	 that	
includes	measurements	in	the	hours	preceding	death.	



Figure	4.	BRG1/BRM	transcrip<onal	 targets	 including	c-Myc.	 (A)	Principal	 component	 (PC)	analysis	of	 controls	and	Brg1/Brm	double	mutants	
based	on	their	transcriptome	profiles.	(B)	Significantly	enriched	pathways	among	the	genes	differen<ally	expressed	between	Brg1/Brm	double	
mutants	 and	 controls.	 All	 of	 the	 listed	 pathways	 have	 an	 FDR	 <	 0.05,	 and	 the	 gene	 set	 sta<s<c	 on	 the	 x-axis	 represents	 the	 z	 score	
transforma<on	of	the	mean	of	all	genes	in	a	set.	(C)	RT-qPCR	analysis	of	c-Myc	mRNA	levels	normalized	to	Gapdh	in	control	and	double-mutant	
hearts.	Data	are	presented	as	means	±	SEM	based	on	5	independent	experiments	with	significant	differences	indicated	(*p<0.05).	(D)	Western	
blot	 analysis	 of	 heart	 protein	 lysates	 from	 controls	 and	 double	mutants	 probed	with	 an<bodies	 specific	 for	 c-MYC	 and	GAPDH	 as	 a	 loading	
control.	(E)	Quan<ta<ve	ChIP	assays	demonstra<ng	BRG1/BRM	occupancy	at	the	c-Myc	promoter	in	wild-type	mouse	heart.	Histograms	show	
the	rela<ve	enrichment	by	comparing	each	ChIP	sample	to	input	by	qPCR	(means	±	SEM	for	three	independent	samples,	(*p<0.05).		
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Figure	5.	c-MYC	gain-of-func<on	 in	cardiomyocytes	 results	 in	 cardiac	conduc<on	defects	 that	phenocopy	BRG1/BRM	 loss-of-func<on.	 (A)	RT-
qPCR	analysis	of	c-MYC	mRNA	levels	in	the	heart	of	an	inducible	transgenic	mouse	line	prior	to	induc<on	(MYC-OFF)	and	24-48	hours	aGer	DOX-
mediated	induc<on	to	overexpress	c-Myc	(MYC-ON,	Day	1	and	Day	2).	Data	are	normalized	to	Gapdh	and	presented	as	means	±	SEM	based	on	5	
independent	 experiments	 with	 significant	 differences	 indicated	 (*p<0.05).	 (B)	 RT-qPCR	 analysis	 of	 Cx43	 mRNA	 levels	 in	 heart	 of	 the	 same	
transgenic	mouse	 line.	Data	 are	normalized	 to	Gapdh	 and	presented	 as	means	 ±	 SEM	based	on	5	 independent	 experiments	with	 significant	
differences	indicated	(*p<0.05).	(C)	Representa<ve	western	blot	of	CX43	protein	levels	in	heart	of	same	transgenic	mouse	line	prior	to	induc<on	
(MYC-OFF)	and	aGer	DOX-mediated	induc<on	(MYC-ON,	Day	3).	Ac<n	serves	as	a	loading	control.	3	independent	samples	for	MYC-OFF	and	MYC-
ON	are	shown.	(D)	ECG	sample	trace	readings	from	3	MYC-OFF	controls	and	4	MYC-ON	mice	showing	Wenckebach	second-degree	heart	block	by	
3	days	of	DOX-induced	c-MYC	induc<on	and	a	complete	heart	block	by	day	6.	(E)	Four	panels	showing	ECG-based	measurements	from	3	MYC-
OFF	controls	and	4	MYC-ON	mice	at	three	<me	points	rela<ve	to	DOX-mediated	induc<on.	The	plots	show	significant	differences	(*p<0.05)	in	
heart	rate,	PR	interval,	QRS	dura<on,	and	QTc.		
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demonstra<ng	BRG1/BRM	occupancy	at	 the	Cx40,	Cx43,	 and	Scn5a	 promoters	 in	wild-type	mouse	heart	<ssues	 (B)	
and	 at	 the	 α-globin	 locus	 in	 wild-type	 heart	 and	 fetal	 liver	 (FL)	 <ssues	 (C).	 IgG	 immunoprecipita<ons	 serve	 as	 a	
nega<ve	control.	Histograms	show	the	rela<ve	enrichment	by	comparing	each	ChIP	sample	to	input	by	qPCR	(means	±	
SEM	for	three	independent	samples,	(*p<0.05).	(D)	Working	model.	The	BRG1	and	BRM	cataly<c	subunits	of	SWI/SNF	
complexes	 directly	 and	 indirectly	 ac<vate	 the	 expression	 of	 Cx40,	 Cx43,	 and	 Scn5a	 to	 facilitate	 conduc<on	 in	
cardiomyocytes.	 The	 direct	 regula<on	 is	 based	 on	 ChIP	 assays	 demonstra<ng	 occupancy	 at	 each	 promoter.	 The	
indirect	 regula<on	 is	 mediated	 by	 inhibi<on	 of	 an	 inhibitor	 (c-Myc)	 and	 ac<va<on	 of	 an	 ac<vator	 (cardiogenic	
transcrip<on	factors	Tbx,	Nkx2-5,	Mef2c).		
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c-Myc	

direct	
cardiogenic	TFs	

SWI/SNF	 Conduc<on	
D	 Figure	 6.	 BRG1/BRM	 regula<on	 of	 conduc<on	 genes.	

(A)	 RT-qPCR	 analysis	 of	 mRNA	 levels	 of	 cardiac	
connexins	(Cx40,	Cx43)	and	ion	channels	(Scn5a,	Trpm7)	
normalized	 to	 Gapdh	 in	 control	 and	 double-mutant	
hearts.	Data	are	presented	as	means	±	SEM	based	on	5	
independent	 experiments	 with	 significant	 differences	
indicated	(*p<0.05).	(B,	C,)	Quan<ta<ve	ChIP	assays		



Figure	7.	BRG1/BRM	occupancy	and	expression	of	conduc<on	genes	is	anenuated	in	human	heart	failure	cases,	
while	c-MYC	is	overexpressed.	(A-C)	RT-qPCR	analysis	of	mRNA	levels	for	human	BRG1	and	BRM	(A),	c-MYC	(B),	
and	CX43	and	SCN5A	(C)	normalized	to	GAPDH	mRNA	levels.	Data	are	presented	as	means	±	SEM	based	on	5	
controls	(white),	10	heart	failure	cases	(black),	and	a	subset	of	heart	failure	cases	with	elevated	c-MYC	mRNA	
levels	(gray,	n=7)	(as	opposed	to	the	other	3	heart	failure	cases	that	did	not	have	elevated	c-MYC)	with	p-values	
indicated.	 (D)	 Quan<ta<ve	 ChIP	 assays	 measuring	 BRG1/BRM	 occupancy	 at	 the	 human	 CX43	 and	 SCN5A	
promoters	in	cardiac	<ssue	from	5	controls	and	10	heart	failure	cases.	Each	ChIP	qPCR	was	normalized	to	input,	
and	the	rela<ve	enrichments	are	shown	as	means	±	SEM	with	significant	differences	indicated	(*p<0.05).		
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