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The Supplementary Text is divided into four subsections providing additional details on the

neoSBM.

• Subsection I describes the neoSBM (I.a) and the inference methods used in this paper

(I.b).

• Subsection II describes the generation of the synthetic network used in the main text,

Fig. 3.

• Subsection III describes how the neoSBM can be extended to other models including the

degree corrected neoSBM.

• Subsection IV provides additional examples of results of the neoSBM applied to the

Lazega Lawyers networks (IV.a) and the Malaria networks (IV.b).

For convenience, we provide a reference table of notation used in derivations in the   Sup-

plementary Text.

Variable Definition
G a network, G = (V,E)

N the number of nodes |V |
Aij the number of edges between nodes i and j, Aij 2 {0, 1}
ki the degree of node i.
!rs the probability of an edge between nodes in groups r and s
⇡ a partition of nodes into groups
M a set of metadata labels
C an inferred optimal community assignment
z neo-state indicator variable, zi 2 {b, r}
✓ Bernoulli prior probability parameter

LX log likelihood L of model X
q the number of free nodes, q =

P
i �zi,r

�a,b the Kronecker delta: �a,b = 1 for a = b; �a,b = 0 for a 6= b

t  a   b  l e S1.    No  t   a   t    i  o   n  u   s  e    d in  t    h   e       S  u   p  p   l  e  m    e   n   t    a  r    yText
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.



A.1 neoSBM model description and inference

A.1.1 Model description

The neoSBM extends the SBM, allowing metadata to influence the inferred partitions by con-

trolling the number of nodes that are assigned to groups according to their metadata labels. The

task of the neoSBM is to perform community detection under a constraint in which each node

is assigned a latent state variable zi, which can take one of two states, which we call blue or

red. If a node is blue zi = b, its community is fixed as its metadata label ⇡i = Mi. However, if

it is red zi = r, its community is free to be chosen by the model. We adjust the number of free

nodes q by varying the Bernoulli prior probability ✓ that a node will be free (red state). We can

then write down the likelihood L
neo

of a network G given a community assignment ⇡ under the

neoSBM as

L
neo

(G; ⇡, z) =
Y

ij

!Aij
⇡i⇡j

(1� !⇡i⇡j)
(1�Aij)

Y

i

✓�zi,r(1� ✓)�zi,b (5)

The first product in Eq. (5) corresponds to the standard SBM likelihood L
sbm

, while the second

product corresponds to the probability of the states P (z = r|✓) and acts as a penalty function to

control the number of free nodes. While it is possible to find communities by optimizing Eq. (5)

directly, instead we work with the more practical log likelihood

L
neo

(G; ⇡, z) =
X

ij

Aij log!⇡i⇡j + (1� Aij) log(1� !⇡i⇡j)

+

X

i

�zi,r log ✓ + �zi,b log(1� ✓) (6)

since maximizing Eq. (5) is equivalent to maximizing Eq. (6). We can then rearrange the second

sum logP (z = r|✓), to give

logP (z = r|✓) =
X

i

�zi,r

✓
log

✓

1� ✓

◆
+N log(1� ✓)

= q (✓) +N log(1� ✓) (7)



dropping the constant term, we can rewrite the neoSBM log likelihood in terms of the SBM log

likelihood and a function of the number of free nodes q

L
neo

(G; ⇡, z) = L
sbm

(G; ⇡) + q (✓) (8)

We emphasize that in the equation above, ✓ is a fixed parameter, and q is selected automat-

ically during inference as part of the likelihood maximization. Optimization of L
sbm

yields the

SBM optimal communities C

C = argmax

⇡
L

sbm

(G; ⇡) (9)

and so the SBM likelihood given the metadata partition M will always be less than or equal

to the likelihood of the inferred partition C. That is L
sbm

(G;M)  L
sbm

(G;C), where the

inequality is saturated if and only if the metadata is equal to the optimal SBM partition. So the

minimum number of free nodes q̂ required to maximize the SBM likelihood is

q̂ =
X

i

1� �Mi,Ci (10)

for which the label permutations of M and C are maximally aligned. Whenever q > q̂ there

will be no further improvement in L
sbm

. To interpolate between M and C we vary the prior

probability of each node to take the red state P (z = r|✓). For values of ✓ < 0.5 we can interpret

the log probability, or  (✓), as the cost of freeing a node because the log likelihood L
neo

will

incur a penalty for setting each zi = r. Maximizing L
neo

is therefore a trade-off between freeing

nodes to maximize L
sbm

and fixing nodes to metadata labels to maximize logP (z|✓). When the

SBM likelihood of both partitions is equal (i.e., M = C) then Lneo(G; ⇡, z) will be maximized

when q = 0 unless ✓ � 0.5. However, when Lsbm(G;M) < Lsbm(G;C), q can be greater than 0

if the resulting partition ⇡ provides a sufficient increase in log likelihood. Specifically, if

Lsbm(G; ⇡)� Lsbm(G;M) > q (✓) (11)



then it indicates that the cost of freeing q nodes is outweighed by its contribution to improving

the likelihood.

Here we have discussed the extension of the SBM to the neoSBM, but this extension can

be easily generalized to any probabilistic generative network model that specifies the likelihood

of a graph given a partition of the network. We present one such generalization, the degree-

corrected neoSBM, in subsection III of the     Supplementary Text.

A.1.2 Inference

Inference of the parameters of the neoSBM was performed using a Markov chain Monte Carlo

(MCMC) approach. The community labels of the free nodes were inferred in the same way as

the standard SBM ( ). However, to infer the values of zi that determined whether or not each

node was free, we used a uniform Bernoulli (i.e., a fair coin) as a proposal distribution. Since

this distribution is symmetric we can simply accept each proposal with probability a

a = min {�L
neo

, 1} (12)

To avoid getting trapped in local optima of the likelihood, we initialize the neoSBM with

the labels set to the inferred SBM partition, ⇡ = C, and all nodes initialized to be free, zi = r

for all i.

A.2 Extensions

The neoSBM can easily be extended to any probabilistic model for which we identify com-

munities by maximizing the model likelihood. As an example, consider the degree-corrected

SBM, which allows for nodes with heterogenous degrees to belong to the same community (see

Supplementary Text B for more details). We can create a degree-corrected neoSBM in much

the same way as we created the neoSBM, by penalizing the likelihood according to the number

53



of free nodes using a Bernoulli prior. This treatment gives the log likelihood

L
dcneo

(G; ⇡, z) = L
dcsbm

(G; ⇡) + q (✓) (13)

where q (✓) = q logP (z = r|✓) +N log(1� ✓) as before. We present results from this model

in subsection IV of th Supplementary Text.

We can also easily extend the neoSBM to other, non-probabilistic, community detection

methods provided they explicitly optimize a global objective function. Then we can similarly

create a penalized version of this objective function. That is, for some community detection

model X , we can create a neo-objective function UneoX

UneoX = UX + q (✓) (14)

where  (✓) could either represent the Bernoulli prior as before or any other cost function, e.g.,

 (✓) = ✓, for ✓  0.

A.3 IV. Results on real-world networks

In order to further demonstrate the neoSBM and the neoDCSBM described above, we present

and discuss the application of the neoSBM to malaria var gene networks and the application of

the neoDCSBM to the Karate Club network. Full details about these data sets are presented in

Supplementary Text D.

A.3.1 neoDCSBM and the Karate Club network

The likelihood surface for both models contains two local optima that correspond two the same

two partitions, each being globally optimal for one of the models. Using the faction each mem-

ber joined after the club split as metadata fig. S1 compares the output from the neoSBM and the

neoDCSBM. Both models initially change just a single node to reach a local optimum. For the

DCSBM this is the global optimum and so we see no further change. However, for the neoSBM
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ig S1 The results of the neoSBM and the degree-corrected neoSBM on the arate lub

network. The SBM and DCSBM log likelihood surfaces (A and C respectively) show distinct
two peaks that correspond to the same two partitions of the network: the two social factions and
the leader-follower partition. When we use the faction partition as metadata, we from the output
(B and D) that both models change a single node in order to reach the locally optimal partition.
For the neoDCSBM (D), this is the global optimum and no further change is observed. For the
neoSBM, the leader-follower partition is globally optimal, so once theta is large enough we see
the model jump to this partition.

this is not the global optimum (see Fig. 1) and so once ✓ is large enough we see a discontinuous

jump as it switches to the globally optimal high-degree/low-degree partition.

A.3.2 neoSBM and the Malaria var gene networks

The metadata corresponding to upstream promoter sequence (UPS) are known to correlate with

community structure in the malaria var gene networks, particularly at loci one and six (21, 41).

We provided the neoSBM with UPS metadata (K = 4) and investigated the path of partitions

between the metadata partition and the globally optimal partitions for each of the two networks.

f .. K C



Figures S3 (locus one) and S4 (locus six) show likelihood surfaces, block density diagrams, and

the neoSBM’s outputs q (free nodes) and SBM log likelihood.

Comparison of the neoSBM results for the same metadata on two different network layers

reveals not only that the intermediate paths of locally optimal partitions differ but that the UPS

metadata are more locally stable for the locus six network. This is indicated by the substan-

tially larger value of ✓ at which the neoSBM switches from the metadata partition to the first

intermediate local optimum. These transitions 1 ! 2 involve different numbers of free nodes,

however, indicating that the switch from optimum 1 to optimum 2 was accompanied by a much

larger change in node mobility for the locus six network. Note that the neoSBM provides a

more nuanced view of the relationship between UPS metadata and malaria layers one and six

than the BESTest did, which found that UPS metadata were significantly correlated with the

structures of both networks.
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var gene network at locus one (“malaria 1”)

using UPS metadata. (A) The SBM likelihood surface shows two peaks, one subtle 2 and one
prominent 3, corresponding to a locally optimal partition near the metadata and the globally
optimal partition, respectively. There is no peak at the metadata partition 1, however. (B)
Block density diagrams depict community structure for metadata and locally optimal partitions,
where darker color indicates higher probability of interaction. (C) The neoSBM, beginning
from UPS metadata, interpolates between metadata 1 and the globally optimal SBM partition 3.
The number of free nodes q and SBM log likelihood as a function of ✓ shows two discontinuous
jumps as the neoSBM traverses from the metadata to the locally optimal partition (1 ! 2) and
then from that partition to the global optimum (2 ! 3).

fig.  S . Results of the neoSBM on the malaria2
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var gene network at locus six (“malaria 6”)
using UPS metadata. (A) The SBM likelihood surface shows one prominent peak at the globally
optimal partition. (B) Block density diagrams depict community structure for metadata and
locally optimal partitions where darker color indicates higher probability of interaction. (C)
The neoSBM, beginning from UPS metadata, interpolates between metadata 1 and the globally
optimal SBM partition, traversing a local optimum during its path. The number of free nodes
q and SBM log likelihood as a function of ✓ shows two discontinuous jumps as the neoSBM
traverses from the metadata to the locally optimal partition (1 ! 2), from that partition to
another the global optimum (2 ! 3).

A.4 Synthetic network generation for the neoSBM

The test that demonstrated the function of the neoSBM on synthetic data, depicted in Fig. 3 of

the main text, required networks with multiple local optima under the SBM: one corresponding

to the inferred partition (global optimum) and at least one other to represent a relevant metadata

partition. To create such a network, we divided vertices into 2K groups to create K assortative

communities, each of which was subdivided to contain a core and a periphery group. For

K = 4, fig.  S5 shows the 8-block interaction matrix used to create the synthetic networks.

By subsequently varying the mean degree within each block, we obtained two uncorrelated

partitions when K = 4, both of which are relevant to the network structure. Finally, we assigned

as metadata the core-periphery structure containing one periphery group ({2, 4, 5, 7} in fig. S5)

and three core groups ({1,3},{6},{8} in fig. S5). The partition inferred by the SBM in the

absence of the neoSBM’s likelihood penalty corresponds to the assortative group structure.

fig. S . Results of the neoSBM on the malaria3



C
M

ored rows and columns indicate the partition used as metadata (M) and the maximum likelihood
partition under the SBM (C).

fig.      S .    The block interaction matrix used to generate synthetic networks. The external col-4



B Blockmodel Entropy Significance Test

The Supplementary Text is divided into six subsections providing additional details on the

blockmodel entropy significance test.

• Subsection B.1 describes maximum likelihood parameter estimation for the SBM (I.a)

and degree-corrected SBM (I.b).

• Subsection B.2 describes rapid computation of the entropy H(G;M) for the Bernoulli

SBM and Multinomial degree-corrected SBM (DCSBM).

• Subsection B.3 demonstrates the mathematical link between our formulation of the SBM

entropy and the SBM log likelihood which has been derived elsewhere (20, 54).

• Subsection B.3 discusses the use of non-generative models like modularity.

• Subsection B.5 provides details on the generation of synthetic networks for the tests

shown in Fig. 2.

• Subsection B.6 provides additional examples of results of the blockmodel entropy signif-

icance test using multiple different network data and metadata sets (see Supplementary

Text D) as well as three additional generative network models beyond the SBM.

For convenience, we provide a reference table of notation used in derivations in the  Sup-

plementary Text.

B.1 Estimation of SBM parameters

B.1.1 Bernoulli SBM parameters

Let the N nodes of a network G be partitioned into K groups, with the group assignment of

node i given by ⇡i. In the SBM, the probability of a link existing between any two nodes i and



able S2

Variable Definition
G a network, G = (V,E)

N the number of nodes |V |
⇡ a partition of nodes into groups
K the total number of groups
⇡i the group assignment of node i
nr the number of nodes in group r
mrs the number of edges between groups r and s
r the total degrees of group r, r =

P
s mrs

ki the degree of node i.
HX(G|⇡) entropy H of model X estimated for graph G using partition ⇡

â maximum likelihood estimate of model parameter a
pij the probability that an edge exists between nodes i and j

j depends only on the group assignments ⇡i and ⇡j . This means that the entire model can be

parameterized by a K ⇥K matrix of block-to-block edge probabilities, !. Accordingly, let !

be a matrix such that pij = !⇡i⇡j is the probability of a link existing between i and j. Letting

the number of nodes in group r be nr, then between two groups r and s there are nrns possible

links, each of which has the same probability of existence, !rs. This implies that the existence

of the nrns edges between groups r and s will be determined by nrns independent Bernoulli

trials, each with parameter !rs.

We must now estimate the value of !rs for a network G whose nodes have been divided

according to their assignments in partition ⇡. Of course, any ! whose entries are positive will

have some non-zero probability of having generated the observed links in G. However, here we

choose the values of ! to be those that maximize the likelihood of observing G. Specifically,

observe that of the nrns Bernoulli trials, there are mrs actual edges in the graph, i.e., mrs trial

successes. Therefore, the maximum likelihood estimate of !rs is simply !̂rs = mrs/nrns.

Thus, p̂ij = !̂⇡i⇡j .

t .  .   Notation used in the    Supplementary Text
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Distributions of permuted partition entropies are negatively skewed. Proba-
bility density functions (top) and cumulative distribution functions (bottom) are shown for the
entropies of partitions of the Karate Club network and its faction metadata. The red broken
line indicates the point entropy of the metadata partition while the black solid line shows the
distribution of entropies for 104 independent permutations of the metadata partition. Note that
these permutation entropies are far from normal; a normal distribution with equivalent mean µ
and variance �2 is shown in blue for contrast.

B.1.2 Poisson degree-corrected SBM parameters

In the degree-corrected Poisson SBM (20), it is still assumed that each link exists independently

of the others, with some specified probability given by a block connectivity matrix !. However,

this model differs in two key ways from the Bernoulli SBM. First, rather than each edge existing

with probability pij , Poisson SBMs state that the expected number of edges between nodes

i and j is given by a parameter qij , with the actual number of edges drawn from a Poisson

distribution with identical mean. For very small values of q, the probability of an edge existing

is approximately q, and thus if the graph is sufficiently sparse, Poisson SBMs behave similarly

to Bernoulli SBMs, despite the fact that they could, in principle, generate multigraphs.

The second way in which this degree-corrected Poisson SBM differs from the Bernoulli

SBM is that the parameters qij are no longer identical across the set of all i in group r and all

j in group s, as they are in the uncorrected SBM. Now, each node has a degree affinity ✓i so

fig. S .5



that qij = ✓i✓je⇡i⇡j , where ers is the K ⇥ K block structure matrix, controlling the numbers

of links between groups, similar in principle to !rs above. The new parameters, ✓i, properly

chosen (20), can be used to specify the expected degree of each node.

As above, since we are given a network G and a fixed partition ⇡, we must estimate the

entries of e, as well as the values of ✓. The parameters can again be chosen to maximize the

likelihood of observing G, which are derived in (20) but we do not derive here. First, êrs = mrs,

where mrs =

P
ij Aij�r,⇡i�s,⇡j is the number of links between groups r and s (or twice the

number of links if r = s). Then, ˆ✓i = ki/⇡i , where r is the number of degrees connecting to

group r, r =
P

s mrs. Thus, q̂ij = kikjm⇡i⇡j/⇡i⇡j . We note that this maximum likelihood

estimate is only valid in the regime that kikjm⇡i⇡j ⌧ ⇡i⇡j .

B.2 Rapidly computing entropy

B.2.1 Rapid Bernoulli SBM entropy

Under either a Bernoulli-type SBM, a link exists between nodes i and j with probability pij ,

independently of all other links. This amounts to a Bernoulli trial or flip of a biased coin, and

the entropy of this Bernoulli trial with parameter pij is simply

h(pij) ⌘ �pij log
2

pij � (1� pij) log
2

(1� pij) (15)

Hereafter, we will write simply log in place of log
2

. Because the Bernoulli trial on each link

is conditionally independent of other links, the entropy of the network is the sum of all valid

h(pij). For an undirected network this is

HSBM(G) =
X

ij

h(pij) =
1

2

"
X

ij

h(pij) +
X

i

h(pii)

#
(16)

Under the SBM, the probabilities within each block are identical so we may group them and

change to an index over groups, rewriting Eq. (16) as

HSBM(G) = 1

2

"
X

rs

nrnsh(!rs) +

X

r

nrh(!rr)

#
(17)



which may be simplified by plugging in the maximum likelihood estimate of !̂rs and the defi-

nition of Bernoulli entropy h Eq. (15), yielding

HSBM(G) = . . .

� 1

2

"
X

rs

mrs log !̂rs + (nrns �mrs) log(1� !̂rs)

#
+O(n�1

) (18)

where we have noted that the diagonal terms are O(n�1

) whenever nr = cn for some constant

c.

Eq. (18) allows for a O(K2

) computation, rather than O(N2

) of Eq. (16). For degree-

corrected Bernoulli SBMs, entropies may be summed as in Eq. (16), even though the rapid

computation of Eq. (18) will not be valid. However, in what follows, we show the connection

between model entropy H and model log likelihood L.

B.2.2 Rapid Multinomial DCSBM entropy

The degree-corrected SBM, introduced as a Poisson DCSBM by Karrer and Newman (20),

can also be written in a “Multinomial” form in which each of the m edges is placed sequentially,

according to the multinomial probabilities pij (55). The values of pij are defined as

pij = ✓ir!rs✓js =
kikjers
2meres

(19)

where ✓ir = ki/er if node i is in group r, and 0 otherwise, and !rs = ers/2m. Note that

by definition,
P

ij pij = 1. When constructing a network, m edges are placed among the

possible edge locations, with each one independently according to a categorical distribution

with probabilities pij (55).

Since it is possible that multiple edges are formed between pairs of vertices, the entropy

of this ensemble is not the entropy of m categorical distributions with parameters p, but rather



the entropy of the multinomial distribution with m draws and b “bins” with parameters p. Note

that if there is a nonzero possibility of an edge between each pair of vertices, then b =
�
N
2

�
[or

b = N2 in the directed case]. (There may be fewer than
�
N
2

�
bins in the undirected case if some

values of ers are equal to 0, and similarly, there may be fewer than N2 bins in the directed case

if some values of ers, kout
i , or kin

i are equal to 0.) There is no closed-form expression for the

entropy of a multinomial distribution but an accurate approximation has been derived in (56),

into which we substitute the parameters of the multinomial DSCBM, yielding

H =

1

2

log

2

4
(2⇡me)b�1

Y

ij;pij 6=0

pij

3

5
+

1

12m

2

4
3b� 2�

X

ij;pij 6=0

1

pij

3

5
+O

✓
1

m2

◆
(20)

Thus, computing the entropy of this degree-corrected model ( ) amounts to the rapid estima-

tion of the parameters p from Eq. (19) followed by computation of the entropy from Eq. (20).

B.3 Connecting entropy and log likelihood

The connection between model entropy H and model log likelihood L enables the blockmodel

entropy significance test to be expanded beyond the simple Bernoulli SBM to degree-corrected

SBMs, Poisson SBMs, mixed-membership models, and other generative models with com-

putable log likelihoods.

We begin from Eq. (18) and use the Taylor series

(1� x) ln(1� x) = �x+

1X

`=2

x`

`(`� 1)

(21)

in which we substitute x = !̂rs = mrs/nrns to write Eq. (18) to leading order as

HSBM(G) ⇡� 1

2

X

rs


mrs ln

✓
mrs

nrns

◆
�mrs . . .

+ nrns

1X

`=2

1

`(`� 1)

✓
mrs

nrns

◆` �
(22)
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Finally, we note that 1

2

P
rs mrs is simply |E|, the total number of links in the network and

therefore

HSBM(G) ⇡|E|� 1

2

X

rs


mrs ln

✓
mrs

nrns

◆
. . .

+ nrns

1X

`=2

1

`(`� 1)

✓
mrs

nrns

◆` �
(23)

If all blocks of links are sparse, then mrs ⌧ nrns and the terms in the infinite sum decay

rapidly, leading to the first order approximation

HSBM(G) ⇡ |E|� 1

2

X

rs

mrs ln

✓
mrs

nrns

◆
(24)

Here we derived Eq. (23) and Eq. (24) by considering the conditionally independent en-

tropies associated with every link of the network. However, the same equations can also be

derived by calculating the size ⌦ of the ensemble of networks associated with the same SBM,

and then taking a logarithm, H = log ⌦. The log likelihood is the logarithm of the probabil-

ity of observing an individual network realization from the ensemble, L = logP , and under

the assumption that each graph in the ensemble occurs with the same probability, P = 1/⌦.

Therefore, the entropy H and the log likelihood L are related simply by L = �H (54).

The relationship between the “microcanonical” entropy and log likelihood allows for the

Blockmodel Entropy Significance test to be expanded easily to any generative model for net-

works for which a likelihood is easily computed,

p-value = Pr [L(G; ⇡̃) � L(G;M)] (25)

The Bernoulli SBM entropy Eq. (18) or its approximation for sparse networks Eq. (24) are

convenient because they are fast to compute—one need only to count links between groups,

sizes of groups, and compute O(K2

) terms. By contrast, Eq. (16), which is exact, requires

O(N2

) computations. Depending on the assumptions involved, computing a log likelihood L
may be more or less rapid, or more or less exact.



In the additional tests in th Supplementary Text, we employ the Likelihood equations to

apply the BESTest using the Poisson SBM and degree-corrected SBM, and use the rapid entropy

equations for the Bernoulli SBM and Multinomial DCSBM.

Finally, we note that an alternative version of entropy that is not based on the blockmodel but

instead by the size of the ensemble of networks with identical degree sequence and communities

is discussed in Ref. (40).

B.4 Application of the significance test approach to non-generative mod-

els for community structure

The blockmodel entropy significance test provides an estimate of how often a given partition

provides a lower-entropy explanation of the data, as viewed through a particular model. While

we have, so far, derived expressions for this test in terms of the entropy of a model Eq. (4) or

its likelihood Eq. (25), there exist many other approaches to community detection that are not

generative, and therefore have neither a likelihood or an entropy. These models rely on a quality

function or Hamiltonian which is optimized over partitions. Supposing that optimization of the

Hamiltonian Q involves maximization, the test statistic is

p-value = Pr [Q(G; ⇡̃) � Q(G;M)] (26)

If optimization involves minimization of Q, the direction of the inequality above should be

reversed.

Modularity (9), one of the most popular quality functions used for community detection,

serves as an instructive example of the blockmodel entropy significance test in two ways. First,

it is a measure of the strength of the assortment of links into communities, but has no generative

model. Indeed, sampling from the space of networks with a particular modularity NP-hard (57).

Second, the modularity score itself defines community structure narrowly as assortative, and

e    



therefore networks with disassortative structures, which have significant p-values using any

SBM as the test model, are likely to be found to have non-significant p-values when Eq. (26) is

used. This emphasizes both the versatility of the test statistic, as well as the differences between

definitions of community structure—spanning generative and non-generative models alike.

It is worth noting that the value of modularity is asymptotically zero whenever assortative

communities are uncorrelated with the partition at which it is being evaluated—indeed, the

premise of modularity maximization is to find communities whose internal edges defy expecta-

tion based on this uncorrelated null model. Thus, if metadata provide a partition of the network,

and modularity is found to be exactly zero, then from the perspective of the particular type

of assortative structure defined by modularity, there is not a significant relationship between

metadata and community structure. On the other hand, simply finding that modularity under a

particular metadata partition Q(G,M) is non-zero need not imply that the relationship is or is

not statistically significant in the sense of Eq. (26); the test must be performed.
B.5 Generation of synthetic networks for blockmodel entropy significance

test

The tests described in the main text, and detailed in the Supplementary Text, will yield a p-

value which indicates the extent to which a set of metadata (and a generative model) describes

a network better than a random partition. In order to understand the sensitivity of the BESTest,

we generated sets of synthetic networks and synthetic metadata, applied the BESTest to them,

and produced Fig. 2. Here we describe the process used to generated those synthetic networks.

We generated networks of N = 1000 nodes and two planted communities r and s using the

(Bernoulli) SBM. Each node was assigned to one of the communities (Ti = r or Ti = s) with

equal probability. We then generated a network with a given community strength ✏ = !rs/!rr

such that low values of ✏ generate strongly assortative communities with few connecting edges

between them and as ✏ grows, the generated communities become weaker, producing a random



Attribute
Network Status Gender Office Practice Law School

SBM
Friendship < 10

�6

0.034 < 10

�6

0.033 0.134
Cowork < 10

�3

0.094 < 10

�6 < 10

�6

0.922
Advice < 10

�6

0.010 < 10

�6 < 10

�6

0.205
DCSBM

Friendship < 10

�6

0.001 < 10

�6

0.002 0.094
Cowork < 10

�6

0.842 < 10

�6 < 10

�6

0.938
Advice < 10

�6

0.205 < 10

�6 < 10

�6

0.328
Poisson SBM

Friendship < 10

�6

0.046 < 10

�6

0.044 0.167
Cowork < 10

�3

0.099 < 10

�6 < 10

�6

0.977
Advice < 10

�6

0.013 < 10

�6 < 10

�6

0.316
Poisson DCSBM

Friendship < 10

�6 < 10

�3 < 10

�6 < 10

�3

0.014
Cowork < 10

�4

0.969 < 10

�6 < 10

�6

0.781
Advice < 10

�5

0.018 < 10

�6 < 10

�6

0.046

graph with no communities when ✏ = 1. For each node i, with probability ` we assigned its

metadata label to be its community label (Mi = Ti), otherwise we assigned it a uniformly

random label. Thus, as ` increases from 0 to 1 the metadata labels correlate more with the

planted communities, and the probability that any individual node’s metadata label matches its

community label is `(1) + (1� `)(1/2) = (1 + `)/2.

B.6 Additional applications of the BESTest to real data

We now present and discuss the results of applying the BESTest to the Lazega Lawyers and

Malaria data sets (see Supplementary Text D).

table S3   .    Lazega Lawyers: BESTest P  values.



B.6.1 Lazega Lawyers

We applied the BESTest to all three Lazega Lawyers networks (Friendship, Cowork, Advice)

which share the same set of nodes but have different sets of edges, representing different rela-

tionships between individuals. There were five sets of node metadata (Status, Gender, Office,

Practice, and Law School). We applied the BESTest to each combination of network and meta-

data, using four generative models (SBM, degree-corrected SBM, Poisson SBM, and Poisson

degree-corrected SBM). These results are shown in table S3.

First, note that values between Bernoulli and Poisson models are not identical, though they

are similar, implying that the models are not entirely interchangeable. More importantly, how-

ever, the results for degree-corrected and degree-uncorrected models are substantially more

different, with relationships varying from significant under one model to insignificant under an-

other. This highlights the fact that metadata can explain patterns of group structure in a network

only through the lens of a particular network generative model; a change in the model may

impact the metadata’s ability to explain patterns in network community structure.

Second, note that under all models, for each network there exist multiple sets of metadata

that are significant. Similarly, there exist multiple networks for which any individual set of

metadata is significant. This fundamentally undermines the notion that one should expect a

single set of metadata to function as ground truth, given that multiple sets of metadata explain

multiple networks.

B.6.2 Malaria

We applied the BESTest to nine layers of a network of malaria parasite genes (Malaria 1-9)

using four generative models (SBM, degree-corrected SBM, Poisson SBM, and Poisson degree-

corrected SBM). Three sets of metadata exist for these networks, (parasite origin, CP group, and

UPS), described in detail in Supplementary Text D.



Model
Network SBM DCSBM Poi. SBM Poi. DCSBM
Malaria 1 0.566 0.096 0.606 0.086
Malaria 2 0.064 0.148 0.066 0.143
Malaria 3 0.536 0.389 0.532 0.501
Malaria 4 0.588 0.617 0.604 0.644
Malaria 5 0.382 0.077 0.369 0.087
Malaria 6 0.275 0.923 0.293 0.751
Malaria 7 0.020 0.388 0.019 0.501
Malaria 8 0.464 0.176 0.468 0.172
Malaria 9 0.115 0.067 0.108 0.200

The parasite origin results are shown in table S4, and none of the p-values listed is sig-

nificant. This result indicates that when the nodes of each layer are divided into groups based

on parasite origin, the entropy of the resulting model is no better than assigning the nodes to

groups at random. This implies, in turn, that the malaria parasite antigen genes do not group by

the parasite from which they came, confirming previous observations (41). However, as shown

in Fig. 2 the BESTest is sensitive to even small levels of explanatory power provided by meta-

data, indicating that parasite origin has truly no bearing on the community structure of malaria

parasite antigen genes, for all four generative models tested.

On the other hand, it is known that the genes represented by the nodes of the malaria parasite

networks are correlated with CP group and UPS metadata. As shown in ables S5 and S6

the BESTest indeed finds that this is the case, with a handful of exceptions, again confirming

previous results that used less sophisticated techniques (41).

table S4.  Malaria: BESTest P values for parasite origin metadata.

t



Model
Network SBM DCSBM Poi. SBM Poi. DCSBM
Malaria 1 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 2 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 3 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 4 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 5 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 6 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 7 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 8 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 9 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Model
Network SBM DCSBM Poi. SBM Poi. DCSBM
Malaria 1 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 2 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 3 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 4 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 5 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 6 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 7 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 8 < 10

�5 < 10

�5 < 10

�5 < 10

�5

Malaria 9 < 10

�5 < 10

�5 < 10

�5 < 10

�5

table S5. Malaria: BESTest P values for CP group metadata.

table S6. Malaria: BESTest P values for UPS metadata.



C No optimal community detection algorithm

In the main text we argue that that the goal of recovering ground truth communities is ill posed

because it lacks a unique solution and we also claim a “No Free Lunch” theorem for community

detection. In the Supplementary Text, we describe and expound those claims using technical

arguments.

For convenience, we provide a reference table of notation used in derivations in the  Sup-

plementary Text.

Variable Definition
G a network, G = (V,E)

N the number of nodes |V |
T ground truth (planted) partition
C detected communities partition
g generative model, maps a partition to a network. G = g(T )

f comm. detection method, maps G to a partition C = f(G)
`(·, ·) an error or loss function, returns a scalar
X the space of possible inputs, i.e., all possible graphs G
Y the space of possible outputs, i.e., all possible partitions
� the true relationship between X and Y
h the hypothesis about the relationship between X and Y
�X probability density over X
⇤(`) total loss across all possible inputs for loss function `
u, v two partitions of N objects
⌦ the set of all possible partitions of N objects.
BN the N th Bell number, the number of possible ways

that N objects can be partitioned. B = |⌦|

C.1 Ground-truth community detection is an ill-posed inverse problem

A problem that is well posed satisfies three properties: (i) a solution exists, (ii) the solution is

unique, and (iii) the solution’s behavior changes continuously with the problem’s initial condi-

tions. The classic example of an ill-posed problem is the inverse heat equation, which violates

condition (iii) because its solution (the distribution of temperature in the past) is highly sensi-

tive to changes in the distribution of temperatures at the present. The problem of reproducing

ground truth communities T from a network G by formulating the correct community detection

table S7. Notation used in the Supplementary Text.



algorithm f ⇤ is ill posed because it fails condition (ii), i.e., community detection has no unique

solution.

Definition: The ground truth community detection problem: given a fixed net-

work G in which there has been hidden some ground truth partition T , find the

true communities that were planted in, embedded in, or used to generate the

network. In other words, given G, find the T such that G = g(T ).

We now argue that the ground truth community detection problem is ill posed because its

solution is not unique. The intuition behind this argument is that any network G could have been

created using many different planted partitions via different generative processes. Therefore,

searching for the ground truth partition without knowing the exact generative mechanism is an

impossible task; there is no ground truth.

Theorem 1: For a fixed network G, the solution to the ground truth community

detection problem is not unique.

Proof: We first show that the graph G can be produced by using two different planted parti-

tions, T
1

and T
2

with T
1

6= T
2

. Let T
1

be the trivial 1-partition in which all vertices are in the

same group, and let g
1

be the generative model of Erdős-Rényi random graphs with probability

p 2 (0, 1). Then the model and partition g
1

(T
1

) create G with non-zero probability. Let T
2

be the trivial N -partition in which each vertex is in its own group, and let g
2

be a generative

model that specifies the exact number of edges between all groups, such that g
2

(T
2

) produces

G with probability one. We therefore have two partitions T
1

6= T
2

and both g
1

(T
1

) and g
2

(T
2

)

can create G. Since two different planted partitions may be responsible for G, both are potential

solutions of the community detection problem. Therefore, the solution to the community detec-

tion problem is not unique for the network G. To complete the proof, note that the 1-partition

and N -partition argument above applies equally well to any network G.



The theorem above relies on two trivial partitions, the 1-partition and the N -partition in its

proof, but other examples exist as well: consider the generative model gG⇤ which maps any

partition that it is given to some fixed network G⇤, essentially ignoring the information provided

by the partition [similar to case (i) in the main text]. These models, while sufficient for the

proof, are not particularly interesting for practictioners, yet non-trivial models and partitions

also exist for any network. For instance, the Karate Club network may have plausibly been

produced by the SBM with a core-periphery partition or by the degree-corrected SBM with a

social faction partition (20).

Belief in ground truth T necessitates a belief in a specific generative mechanism g which

together produced the network G. For real-world networks, which may arise through more com-

plex processes than those described here, we do not know the generative mechanism. Theorem

1 means that, in these cases, it is impossible to recover the true partition because any partition

may plausibly have been used to generate the network. Therefore the ground truth community

detection problem is ill-posed for any network for which the generative process is unknown

because there is no unique solution. Put differently, it is impossible to uniquely solve an inverse

problem when the function to be inverted is not a bijection.

C.2 No Free Lunch for community detection

The “no free lunch” (NFL) theorem (32) for machine learning states that for supervised learning

problems, the expected misclassification rate, summed over all possible data sets, is independent

of the algorithm used. In other words, averaged over all problems, every algorithm has the same

performance. Therefore, if algorithm f
1

outperforms algorithm f
2

for one set of problems, then

there exists some other set of problems for which algorithm f
2

outperforms algorithm f
1

. In

other words, it is impossible to get overall better performance without some cost; there is no

free lunch.



The NFL theorem holds for community detection, and clustering problems in general.

Demonstrating this requires that we first translate the community detection problem into the

language and notation of the Extended Bayesian Framework (EBF) used in the NFL theorems

for supervised learning. Then, under an appropriate choice of error (or “loss”) function `, the

performance of any community detection method f , summed over all problems {g, T }, is iden-

tical
X

g,T

`
�T , f (g(T ))

�
= ⇤ (̀ ) 8f (27)

where ⇤(`) depends on the particular error function ` but is otherwise a constant, representing

the total error.

In the following, we map community detection notation to EBF notation, provide a guiding

example, and then resolve a subtle issue related to the loss function `. We then discuss the

implications of this result for future studies of community detection. The proofs of the NFL

theorems are not recapitulated here, but are fully detailed in (32) and discussed extensively

elsewhere.

C.2.1 Community detection in the Extended Bayesian Framework

The Extended Bayesian Framework (EBF) is a framework—a set of variables, definitions, and

assumptions—for supervised learning that provides a clear and precise description of the prob-

lem. It is important in both the proof and implications of the NFL theorem, and was formalized

at length in (32). In what follows, random variables will be denoted by capital letters, e.g.

X , while instances of random variables will be denoted by the corresponding lowercase letters,

e.g. x. In the EBF, we suppose that there exists an input space X , an output space Y , and that

each of these has a countable (but possibly infinite) number of elements, |X| = n and |Y | = r.

The fundamental relationship to be learned is how X and Y are related, and to that end, let �

be the true or target relationship between X and Y , i.e., � is the conditional distribution of Y ,



given X . The points in the space X need not be distributed uniformly either, so we also specify

�, the probability density function of points x in the input space X , i.e., P (x|�) = �X . In the

nomenclature of community detection, the input x 2 X is simply the observed graph G, and the

output y 2 Y is the true partition into communities T for the nodes described by x. To solve a

community detection problem, we hope to predict the true communities y from the input graph

x; a community detection method will be successful when its hypothesized relationship h is an

accurate representation of the true relationship � between X and Y .

In supervised learning, for which the NFL theorems were originally proved, we aim to learn

the relationship between X and Y from a training set d which consists of m ordered pairs

of samples from X and Y , {dX(i), dY (i)}mi=1

. In response to the training data, the learning

algorithm produces a hypothesis h in the form of an x-conditioned probability distribution over

values y. The way in which the learning algorithm produces a hypothesis from training sets is

described by P (h|d), the distribution over hypotheses conditioned on the observed data. Note

that the algorithm learns from the data alone and is independent of �, i.e., P (h|d, f) = P (h|d).
If the algorithm performs well the hypothesis h will have high correspondence with the true

relationship �. Therefore, in supervised learning, algorithms are evaluated by their ability to

make sufficient use of a limited training set to provide good predictions of y given x not in the

training set. On the other hand, in unsupervised learning—a category which includes clustering

and community detection—the training set d is empty (m = 0), so the prediction h is based

solely on the prior beliefs encoded in the model P (h). We note that in the NFL theorems for

supervised learning, the independence of training data d from � and � is important to establish,

but for unsupervised tasks, the set d is empty so it is trivially independent of � and �.

To better understand the EBF for community detection, an example is helpful. Consider

the problem of finding two planted communities in a network G. The true relationship � be-

tween the network and its partition is hidden. Given only G—which is a point in the space of



graphs X—fitting the parameters of an SBM, maximizing modularity, or using another method

of our choice, produces a hypothesis h, which is a prediction about which nodes belong to

which groups. If these communities are found correctly by the algorithm, then h will be highly

correlated with the true communities mapped by �. (This is equally true for both hard parti-

tions, where each node belongs to only one group, and soft partitions, where each node may be

distributed over multiple groups.) In other words, h estimates � based on a point in X called

G. Because the estimate h is based only on G and the assumptions of the algorithm P (h), it

reproduces � with possibly limited accuracy, and therefore its community assignments may or

may not be highly correlated with the true assignments T 2 Y . Increasing the size of the input

data set may help with accuracy as well: by generating a larger graph using the same generative

model, G supplies a different point in X providing more information to the community detection

method. This may allow the estimate h to produce better predictions of �, thereby producing a

more accurate partitioning of nodes into their true communities, but only if the model P (h) is

sufficiently aligned to reality P (�).

All learning algorithms make some prior assumptions, in the form of P (h), about the pos-

sible relationships between inputs and outputs. For unsupervised methods such as community

detection, there is a much greater importance associated with these assumptions because they

do not have access to training data. For instance, a supervised algorithm could supposedly start

from a uniformly ignorant prior P (h) and rely on having a sufficiently large training set that

P (h|d) is informative. When there is no training data it is necessary that P (h) is informative of

the possible input-output relationship. Thus, community detection algorithms encode beliefs or

definitions of community structure, and these beliefs constitute a prior over the kinds of prob-

lems that we expect to see. Some methods, for example, search only for assortative (9, 37) or

disassortative (38) community structures, while other are more flexible and can find mixtures

of assortative, disassortative, and core-periphery structures (15, 16, 20, 39) and allow for nodes



to belong to multiple communities (36, 37).

C.2.2 Loss functions and a priori superiority

So far, we have discussed the phrasing of community detection in the language of EBF but

have not described the way in which error (also called loss or cost) is measured. The error

function quantifies the accuracy of predictions, and the EBF introduces a random variable C

which represents the error associated with a particular � and h, i.e., the error associated with

using a particular algorithm for a particular problem. Conceptually, this is what the community

detection literature attempts to estimate when algorithms are compared based on their ability to

recover planted communities in synthetic data. More formally, C is measured by the distribu-

tion P (c|h,�, d ), which incorporates the relationships between the test set and the generating

process, as well as the way in which the hypothesis is related to the training data. Therefore,

the quantity of interest to those developing algorithms is the expected error, E(C|h,�, d ). For

example, in the context of supervised learning, choosing the loss function ` to be the average

misclassification rate is common. For the purposes of community detection, misclassification

rate is not of interest for a pedantic but important reason: for community detection and other

related unsupervised tasks such as clustering, permutations of the group labels are inconsequen-

tial because the partition is the desired outcome; labeling two groups a and b is equivalent to

labeling them b and a. As a result, many of the loss functions typically used to compare parti-

tions have a “geometric” structure that implies an a priori superiority of some algorithms, which

would appear to contradict the NFL theorem. We now discuss one such loss function frequently

used to evaluate community detection algorithms, the normalized mutual information, and the

structure that it imposes on the space of partitions.

Normalized mutual information is an information-theoretic measurement of similarity be-

tween two partitions that treats both partitions as statistical objects. For a partition u of N



1 2 3 4 5

adjusted mutual information between each pair of partitions are presented in ables S8 and S9,
respectively.

objects into Ku groups, the probability that an object chosen uniformly at random falls into

group ui is pi = |ui|/N , i = 1 . . . Ku. The entropy associate with a partition u is then the

entropy of its corresponding distribution p

H(u) = �
KuX

i=1

pi log (pi)

When comparing two partitions u and v of the same set of objects, each object belongs to some

group ui in the first partitions and some other group vj , j = 1 . . . Kv in the second partition,

with the corresponding probability pij . The mutual information between the two partitions is

therefore

I(u, v) =

KuX

i=1

KvX

j=1

pij log

✓
pij
pipj

◆

which can be normalized to define normalized mutual information as

NMI(u, v) =
I(u, v)p
H(u)H(v)

(28)

Other normalizing factors in the denominator are possible, including 1

2

[H(u) + H(v)] and

max{H(u), H(v)}; see (52). NMI maps partitions to the unit interval, with 0 indicating that

two partitions are uncorrelated and 1 indicating that they are identical (even if the groups labels

differ).

fig.  S6.  The five distinct ways to partition three nodes. Normalized mutual information and
t



To understand how an error function imposes a geometric structure, consider a simple prob-

lem (unrelated to community detection) of predicting, based on some inputs X , a point in the

unit circle in Y =

�
y
�� kyk  1, y 2 R2

 
. If all points in Y are equally likely, then an al-

gorithm that guesses the center of the circle h = 0 will outperform an algorithm that guesses a

point on the boundary h 2 @Y , simply due to the fact that the center of the circle is, on average,

closer to the other points of the circle than any boundary point. Normalized mutual information

imposes a geometric structure on the space of partitions in a similar way.

Consider a loss function based on normalized mutual information (NMI) and imagine a

community detection algorithm that entirely ignores the network and simply returns a fixed

partition of the vertices. As in the example above, NMI provides a geometrical structure on

the space of partitions, an algorithm that always returns a partition toward the middle of the

space of partitions will outperform an algorithm that always returns a partition on the boundary

of that space. To demonstrate this point, fig. S6 shows all five possible partitions of three

vertices, and table S8 shows their NMI for all pairwise comparisons. Averaged over all possible

correct answers, an algorithm that consistently predicts partition 5 will outperform all others,

and an algorithm that consistently predicts partition 1 will underperform all others. However,

this structure is a known issue of NMI, and so other error functions and corrections have been

proposed such as the adjusted mutual information (AMI), which accounts for the geometry of

the space (52). Table S9 shows the AMI for the same set of partitions, and the expected AMI

is zero except for the partition that contains only a single group and the partition of each node

into separate groups. In the case of these partitions, the 1-partition and the N -partition, the

expected AMI is the reciprocal of the Bell number BN—the Bell number is the total number

of distinct ways that N objects can be partitioned, and it grows superexponentially with N—

so as the number of vertices N increases, so AMI approaches 0 superexponentially; for even

small networks, 1/BN ⇡ 0. In this way, AMI provides a “geometry-free” space in which no



S6.

Partition 2
Partition 1 1 2 3 4 5

1 1 0 0 0 0
2 0 1 0.27 0.27 0.76
3 0 0.27 1 0.27 0.76
4 0 0.27 0.27 1 0.76
5 0 0.76 0.76 0.76 1

E[NMI] 0.20 0.46 0.46 0.46 0.66

Partition 2
Partition 1 1 2 3 4 5

1 1 0 0 0 0
2 0 1 -0.5 -0.5 0
3 0 -0.5 1 -0.5 0
4 0 -0.5 -0.5 1 0
5 0 0 0 0 1

E[AMI] 0.20 0 0 0 0.20

one partition is a priori closer to all others. This key property of AMI, called homogeneity, is

proved in a Lemma in the next section.

C.2.3 Lemma and theorems

We now prove a lemma about adjusted mutual information, and then formally state the NFL

theorem for supervised learning and prove the no free lunch theorem for community detection.

Lemma 1: Adjusted mutual information (AMI) is a homogenous loss function

over the interior of the space of partitions of N objects. Including the boundary

partitions, i.e., the 1-partition and the N -partition, AMI is homogenous within

B�1

N .

table S8. Normalized mutual information for partitions in fig.

table S9. Adjusted mutual information for partitions in fig. S6.



Proof: Showing that AMI is a homogenous loss function requires that we show

L(u) =
X

v2⌦

AMI(u, v) (29)

is independent of u, where ⌦ is the space of all partitions of N objects. Stated plainly, if L(u)

is independent of u, it means that the total AMI between partition u and all possible partitions

will be the same, no matter which partition u is chosen. The definition of AMI is

AMI(u, v) =
I(u, v)� E[I(u, v)]p
H(u)H(v)� E[I(u, v)]

where I is mutual information and H is entropy (52). The AMI takes on a value of 1 when

two partitions are identical and a value of 0 when they are only correlated to the extent that

one would expect by chance. In particular, the expectation E is taken over all possible pairs of

partitions u0 and v0 such that every u0 has the same number of groups and the same number of

objects belonging to each group as does u, and likewise for v0 and v. In this way, the expectation

E is taken over all pairs of divisions that preserve the group sizes of the two partitions being

compared. For convenience of notation, let � be a subset of all partitions ⌦ such that every

partition v 2 � has the same number of groups and same number of objects in each group. The

set of all partitions ⌦ may be subdivided into non-overlapping subsets {�i}, such that [i�i = ⌦

and �i \ �j = ? for any i 6= j. (For example, in fig. S6, partition 1 belongs to �
1

, partitions

2, 3, and 4 belong to �
2

, and partition 5 belongs to �
3

.) Let the particular subset �i to which a

partition u belongs be denoted by �(u).

Prior to proceeding, we note that there are two special boundary partitions, the 1-partition

in which all objects are in a single group and the N -partition in which each object is in its

own group. These will be denoted by ¯

1 and ¯N respectively. Note that ¯1 = �(¯1) so that

|�(¯1)| = 1, and that �( ¯N) is equivalent to the set of all possible relabelings of the N ob-

jects, so that |�( ¯N)| = N ! . Because there is only one element of �(¯1), it is necessarily



true that I(¯1, ¯1) = E[I(¯1, ¯1)] = H(

¯

1). Thus, for this special case, the numerator and de-

nominator of AMI are identical, and AMI(¯1, ¯1) = 1. Similarly, because the set �( ¯N) con-

tains every possible permutation of the labels of the objects, yet all partitions are identical,

I( ¯N, ¯N) = E[I( ¯N, ¯N)] = H(

¯N), and so AMI( ¯N, ¯N) = 1.

In order to prove Eq. (29), we will show that L(u) = 0 for all u except ¯1 and ¯N by demon-

strating that the numerator of the definition of AMI is 0, specifically

X

v2⌦

[I(u, v)� E[I(u, v)]] = 0 8 u 6= ¯

1 or ¯N (30)

In fact, we will show that Eq. (30) holds by breaking the entire sum over all partitions ⌦ into

sums over each of its disjoint subsets {�i}, and proving that

X

v02�(v)

[I(u, v0)� E[I(u, v0)]] = 0

8 u and 8 v except u = v =

¯

1 or u = v =

¯N (31)

In other words, we will show that the numerator of the definition of AMI is equal to zero when

summed over any subset �(v) for any fixed partition u, except the boundary cases that both u

and v are equal to ¯

1 or both are equal to ¯N . We first examine the expectation term in Eq. (31).

Recall that the expectation is taken over all pairs of members of the subsets �(u) and �(v),

respectively

E[I(u, v)] =
1

|�(u)||�(v)|
X

u02�(u)

X

v02�(v)

I(u0, v0) (32)

In fact, because the sums above are taken over the subsets �(u) and �(v) that contain u and v,

the expected mutual information is equal to a constant ⇣ for any pair of partitions drawn from

�(u) and �(v)

E[I(u, v)] = ⇣ 8 u 2 �(u) and 8 v 2 �(v) (33)

Note then that we may rewrite the sum over expectations in Eq. (31) as
P

v02�(v) E[I(u, v0)] =

|�(v)| ⇣ . Therefore, it remains to be shown that the sum over mutual informations in Eq. (31)



is also equal to |�(v)| ⇣
X

v02�(v)

I(u, v0) = |�(v)| ⇣ (34)

To see that this is true, despite the fact that u is fixed (and not averaged over all u0 2 �(u) as in

E[I(u, v)]), note that Eq. (34) nevertheless sums over every v0 2 �(v) which is the set of every

randomization of the partition v, provided group sizes are held constant. Because this includes

all relabelings (or reindexings) of the N objects being partitioned, it must be true that

X

v02�(v)

I(u
1

, v0) =
X

v02�(v)

I(u
2

, v0) whenever u
1

2 �(u
2

) (35)

In other words, the sum of mutual information between a fixed partition u
1

and all members

of a subset �(v) must be equal to the sum of mutual information between a different fixed

partition u
2

and the same subset �(v), but only if u
1

and u
2

both belong to the same subset as

each other. Therefore, Eq. (34) is true, meaning that the sum over the two terms in Eq. (31)

is zero, independent of u. This first implies that the AMI between any boundary partition and

any interior partition is 0, AMI(u, ¯1) = 0 for any u 6= ¯

1 and AMI(u, ¯N) = 0 for any u 6= ¯N .

This, in turn, implies Eq. (30) is true. This completes the proof of the first statement, that

Eq. (29) is true, and in particular, L(u) = 0, for any u 6= ¯

1, ¯N and AMI is homogeneous over

all non-boundary partitions.

In the special cases of u = v =

¯

1 and u = v =

¯N , note that we have already shown that

AMI(¯1, ¯1) = 1, AMI( ¯N, ¯N) = 1, and AMI(u, ¯1) = 0 for any u 6= ¯

1 and AMI(u, ¯N) = 0 for

any u 6= ¯N . Therefore

L(¯1) =
X

v2⌦

AMI(¯1, v) = B�1

N

L( ¯N) =

X

v2⌦

AMI( ¯N, v) = B�1

N (36)

completing the proof of the second statement: including the boundary points, AMI is homoge-

nous within an additive constant B�1

N .



Theorem 2 (Wolpert 1996): For homogeneous loss `, the uniform average over

all � of P (c|�, d) equals ⇤(c)/r.

Proof: See (32).

Theorem 3 (No free lunch for community detection): For the community de-

tection problem with a loss function of adjusted mutual information, the uniform

average over all � of P (c|�) equals ⇤(c)/r.

Proof: Lemma 1 proves that adjusted mutual information is homogeneous and applying Theo-

rem 2 with d = ? completes the proof.

C.2.4 Implications

No free lunch for community detection means that, uniformly averaged over all community de-

tection problems, and evaluated by AMI, all algorithms have equivalent performance. Phrased

more usefully, it means that any subset of problems for which an algorithm outperforms others

is balanced by another subset for which the algorithm underperforms others. Thus, there is no

single community detection algorithm that is best overall.

On the other hand, if the set of problems of interest is a non-uniform subset of all prob-

lems, then one algorithm may outperform another on this subset. In other words, the bias of

an algorithm to solving a particular type of community detection problem may be its strength,

accepting the fact that such an advantage must be balanced by disadvantages elsewhere. For

instance, algorithms like the unconstrained SBM (which can find both assortative and disas-

sortative communities and mixtures and gradations thereof) are not universally superior to ver-

sions of the SBM constrained to find only assortative or disassortative communities (38)—if

the particular subset of problems is believed to contain only disassortative communities, then

the unconstrained SBM will not perform as well as a constrained one. In other words, no free

lunch for community detection means that matching the assumptions in the model to the under-



lying generative process can lead to better, more accurate results, but only in the cases when

the beliefs about the underlying generative process are accurate; in the other cases, the same

model assumptions that improved performance on some problems will diminish it for others.

To some extent we expect the distribution of problems to be non-uniform in general. Out of all

the possible ways of constructing a graph there may be some types of graph we are less likely

to observe. For each graph we can also expect that of all the possible partitions, many will cor-

respond to random assignments of nodes that are not useful in any application. Put differently,

there may be some problems we do not wish to solve—but, unless we know which problems

they are, it offers us little or no benefit in practice. We note that relatively little is known about

which algorithms perform better than others within particular domains or on particular classes

of networks. A valuable line of future research on community detection will be developing such

an understanding ( ).49, 50



D Datasets and additional methodology

D.1 Lazega Lawyers networks

The Lazega Lawyers network is a multilayer network consisting of 71 attorneys of a law firm

with three different sets of links, corresponding to friendships, exchange of professional advice,

and shared cases ( ). The original study also collected five sets of categorical node metadata,

corresponding to status (partner or associate), gender, office location, type of practice (corporate

or litigation), and law school (Harvard, Yale, UConn, other). The relationships and dynamics

within the law firm were studied extensively in the initial publication of these data sets, but they

were not primarily analyzed as complex networks.

D.2 Malaria var gene networks

The Malaria data set consists of 307 var gene sequences from the malaria parasite P. falciparum

(41). Each var gene encodes a protein that the parasite uses to evade the human immune system,

and therefore this family of genes is under intense evolutionary pressures from the human host.

The original study focused on uncovering the functional and evolutionary constraints on var

gene evolution by identifying community structure in var gene networks.

These sequences were independently analyzed at 9 loci (locations within the genes), pro-

ducing 9 different genetic-substring-sharing networks with the same node set. In other words,

there are 9 layers in this multilayer network. Each parasite genome contains around 60 var

genes, and the 307 genes in this data set represent seven parasite genomes. The original study

included three sets of categorical node metadata, corresponding to the upstream promoter se-

quence classification (UPS, K = 3), CysPoLV groups (CP K = 6), and the parasite genome

from which sequence was generated (parasite origin K = 7).

51



D.3 Karate Club network

The Zachary Karate Club represents the observed social interactions of 34 members of a karate

club (14). At the time of study, the club fell into a political dispute and split into two factions,

which are treated as metadata. The Karate Club has been analyzed exhaustively in studies

of community detection, and its faction metadata have often been used as ground truth for

community detection, due to the network’s small size and easily interpretable social narrative.

D.4 Generation of log-likelihood surface plots

The log-likelihood surface plots in Figs. 1, 3, 4, S1, S3, and S4 illustrate the changes in log

likelihood as the partition of network nodes is varied. In the figures, we show surfaces that

appear to be continuous over that two dimensional space, in spite of the fact that the true space

of partitions is high dimensional and discretized, and so here we explain the methods used to

produce visually meaningful plots.

Plots were generated in three steps: partition sampling, data projection and surface interpo-

lation. For most networks it is infeasible to calculate the log likelihood of all possible partitions,

so we instead sampled a subset of partitions. We began with the set of partitions along the path

of the neoSBM (e.g., Fig. 3) and sampled partitions around the local neighborhood of this initial

set. Specifically, we did so by selecting two partitions uniformly at random from the initial set

and created each new partition by assigning q nodes (chosen randomly and uniformly) to the

group assignment of the first partition and the remaining N � q nodes to that of the second

partition.

Next, we projected the KN -dimensional partition data down to two dimensions using Multi-

dimensional Scaling (MDS) ( ) and variation of information ( ) as a similarity measure. The

outcome of this projection was a two-dimensional representation of the partition space that

preserves the variation of information between partitions.

5 609



Finally, we used MATLAB’s scatteredInterpolant function with natural interpolation to

fit an interpolated surface to the data, which we evaluated over a grid of domain points and

smoothed using a Gaussian kernel to improve legibility. The processes of embedding, interpo-

lating, and smoothing are not particularly sensitive to changes in parameters or grid resolutions.

In the special case of Fig. 4, we also plotted the partitions of the neoSBM in addition to the

interpolated log-likelihood surface to illustrate the neoSBM’s path in the broader context of the

surface. There were no modifications or smoothing of the points of the neoSBM’s path beyond

the embedding process described above.
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