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ABSTRACT A minimal set of generators of the ring of
invariants for four linear subspaces of dimension » in a vector
space of dimension 2n is computed, using the symbolic method
introduced by Grosshans ef al. [Grosshans, F., Rota, G.-C. &
Stein, J. A. (1987) Invariant Theory and Superalgebras (Am.
Math. Soc., Providence, RI)].

Section 1. Introduction

The notation of Grosshans et al. (1) is used. Let V be a vector
space of dimension n over a field K of characteristic zero. A
decomposable skew-symmetric tensor in A(V) defines a
subspace of V or, equivalently, a linear variety in a projective
space of dimension » — 1. By combining the straightening
algorithm, the exchange identity, and the Grassmannian
condition for decomposable skew symmetric tensors (1), a
complete set of invariants for four linear subspaces of di-
mension 7 in a vector space of dimension 2n is computed.
This problem was left open by Turnbull in 1941 (2), who had
attained some partial results. A related problem has also been
studied by Gelfand and his school in the 1970s (3).

A complete set of invariants for five linear subspaces of
dimension 3 in a vector space of dimension 6 has also been
determined, but the full computation is at present 102 type-
written pages long. This result will be announced in a
subsequent note.

Section 2. The Bracket Algebra

Let L be a positively signed alphabet. Assign each letter x €
L a positive integer arity(x), called the arity of x. Let [L] be
the alphabet whose members are all monomials w in Su-
per[L]. A letter in [L] is denoted by [w]. The bracket algebra
Bracket[L] of dimension n is the quotient of the free asso-
ciative algebra Tens[[L]] generated by the alphabet [L],
subject to the congruence relations below, where w, w', and
w" are monomials in Super{L]:

(i) [w] = 0 if Length(w) # n;

(i) (wllw'] = (-D)"[w'][w]; and

(iii) the exchange identity

2 [wwinliwiyw'] = %: (=Dterethadly g ww'].

W

An element p in Tens[[L]] will be identified with its image in
Bracket[L]. Let D = (wy, w,, . . ., wy) be a Young diagram
with w; € Mon(L). The Young tableau of D is the bracket
monomial

Young(D) = [stand(w;)][stand(w,)] . . . [stand(wy)].

If w; = xnxp . . . Xin, the word xqxz; . . . xi;is called the jth
column of D. The Young diagram D is called standard (1) if
it has weakly increasing rows and strictly increasing columns.
Such a Young tableau Young(D) in Bracket[L] does not
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vanish only if each of the words wy, w,, . . . , wy is of length
n. This condition will be tacitly assumed below.

ProPosITION 1 [standard basis theorem for bracket algebra
(4)]. Given a Young diagram D, there exist unique standard
Younyg diagrams D; with the same content as D and unique
nonzero integer coefficients r; such that

Young(D) = 2 1; Young(D;).
We will denote [D] as Young(D) when no confusion arises.

Section 3. Symbolic Representation of Invariants for
Linear Varieties

Let V be a vector space of dimension n over the field K. A
set of decomposable skew symmetric tensors So = {t,, t5, tc,
.. .}in A(V) is associated with a set of subspaces S = {a, b,
¢, ...} of Vor, equivalently, with a set of linear varieties §
= {a, b, c, . . .} in a projective space of dimension n — 1,
where each subspace a in § is spanned by the vector factors
of t,.

Foreacha € §, let L, be an infinite set of positively signed
letters

S

Define arity(a;) to be the dimension of a as the subspace of
V. Letters in L, are also called a-letters. Define the alphabet
L to be

L,={ay, a3, a3, . .

L=L,UL,UL.U..

Two letters in L are said to be equivalent if they are both in
L, for some a € S. Two Young diagrams D and D' are said
to be equivalent if D = (xy1 . . . X1n; . - - » Xk1 - - - Xin,) and
D' = (w(xy) . . . wlxrn), - - ., Txia) - . . w(xys)) for some
permutation 7 of L such that x and 7 (x) are equivalent for all
x € L. We say a monomial p in Bracket[L] has right content
if cont(p; x) equals to either zero or arity(x) for all x in L. A
Young diagram D is said to have right content if [D] does.

Let Bracket[L], be the K-subspace of Bracket[L] gener-
ated by monomials with right contents. It also has an algebra
structure such that, for two monomials p and g with right
contents, we have

pPq=0

if the monomial pg does not have a right content.

Definition 1: Define the algebra Linear[L] to be the quo-
tient of the algebra Bracket[L], by the ideal 7 that is generated
by the following monomials p in Bracket[L],:

(i) p EIif 2., cont(w; x) > k for some equivalence class
L, with arity(a;) = k and for some bracket factor [w] of p.

(i) p = [aPb"~0] € I for all @, € L,, b; € L;, where L,
and L, are two equivalence classes with arity(a,) = k,
arity(b,) = n — k.

The motivation for condition i is the fact that any k + 1
vectors in a linear subspace of dimension k are linearly
dependent. Condition ii is a technical one to facilitate the
computation of invariants.
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If a monomial p has right content, it is identified with its
image in Linear[L]. In particular, we keep the notation [D] for
the image of [D] in Linear[L] if [D] has the right content.

The following proposition is a corollary of the first funda-
mental theorem (1).

PROPOSITION 2. Let J be the ideal generated by monomials
p in Bracket[L), that satisfy Condition ii of Definition 1. Let
the algebra linear[L] be the quotient of Bracket[L]y by the
ideal J. Then there is a surjective linear mapping ® from
linear[L] to the ring of joint invariants of the set of decom-
posable skew-symmetric tensors t, in Sy.

Moreover ®(D]) = =®([D']) if D and D' are equivalent
Young diagrams and the sign can be determined (4).

Elements in Linear[L] are called a symbolic representation
of the invariants or simply invariants. The straightening
algorithm and the exchange identity can be carried over to
Linear[L], although the uniqueness of the coefficients r; in
Proposition 1 no longer holds.

A position occupied by a letter x in a Young diagram D is
atriple (i, j, x) when the letter x occurs in the ith row and the
Jth column of D. Such a position is sometimes written as x
when i and j need not to be referred. Let X = (i, j, x;).»er be
a set of positions in D occupied by a multiset X = {x;}; e
Given a permutation 7 of X, denote by 7D the Young diagram
obtained from D by replacing each position (i, j, x;) of X by
(i, j, w(x;)). Suppose D has k rows, let

X=X, UX U...UJX,
where each X; is a set of positions in the ith row of D (with
the possibility to be an empty set), occupied by a multiset X;.
We may write X; as a word in Mon(L). A permutation 7 of X
induces the words 7X; in a natural way. Two permutations =
and =’ are called row distinct if

X @ 7Xp ® ... Q wXy #
X ® 7'Xo ® ... Q w'X;

in Super[L] ® . . . ® Super|[L] (k-times).
A set of positions X in D can be shuffled if in Linear[L],

2 [#D] = 0,

where 7 ranges over all row distinct permutations of X.
PROPOSITION 3. Given a Young diagram D and one of its
row w, let X, be the set of all positions in w occupied by
a-letters for some equivalence class L,. Suppose X, is not
empty. Let a; € X, and let X, be the set of all positions in
D but not in w occupied by the letter a). Then in Linear[L],

[D] = 2 r,[#D],

where the sum ranges over the set of row distinct permuta-
tions  of X1 U X, such that wX, contains only the letter a
and where 1, are integers.

The proof is carried out by induction on the multiplicity of
ay in Xl.

PROPOSITION 4. Let w be a row in a Young diagram D. If
w contains k equivalent letters of arity k as well as n — k
equivalent letters of arity n — Kk, then [D] vanishes in
Linear[L].

This is a corollary of Proposition 3.

PROPOSITION 5. Given a Young diagram D, a set of
positions X in D can be shuffled if one of the following holds
for the multiset X:

(i) X consists of kK + 1 equivalent letters of arity k;

(i) X consists of k equivalent letters of arity k as well as n
— Kk equivalent letters of arity n — k;

(iii) X consists of any n + 1 letters.
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The proof of this proposition follows from the exchange
identity and from Proposition 3.

Definition 2: A Young diagram D, = (wy, wy, . . . , wp) is
called a block (or an a-block when the space a is relevant)
relative to a space a € § when for 1 < i < k, we have w; =
aa; . . . a; u;, where k = arity(a;) and 4; € Mon(L). A block

k times
product is defined as

[D] = [Da][Db] L [Dc]

forsomea,b,...,c € S,where D,,D,, . . ., D.areblocks
relative to spaces a, b, and . . . , c, respectively.
PROPOSITION 6. For a Young tableau [D] in Linear[L] we
have
(i) [D] is a sum of block products in Linear[L], that is

(D] = % G(DilDys] . . - Dicl,

where t; are integers.

(ii) If we fix any two equivalence classes L, and Ly, with the
property arity(a;) + arity(by) = n, then in each term of the
sum above only the a-block contains a-letters and only the
b-block contains b-letters.

The proof of part i follows from the exchange identity, and
the proof of part ii follows from the straightening algorithm.

PRrOPOSITION 7. For a block product [D,][Dy] . . . [D¢] in
Linear[L], each block can be straightened separately in the
Jfollowing sense:

[DolDp] . . . [De] = ; Ii[Dia)[Dip] - - . [Dicl,

where for each block D, with arity(a;) = k, the Young
diagrams D;, are a-blocks and their rightmost n — k columns
are standard in some ordering of L that may vary for different
blocks D,, Dy, . . . , D., and where t; are integers.

The proof depends on the fact that the exchange identity
can be applied within each block in the following sense:

K.
; laPwwiylaPwiw'] =

2 (- l)Lenslh(Wm)[a(lk)w' W(l)][a(zk) w(z)w"].
w

PROPOSITION 8. In a block product [D] = [D,][Dy] . . . [Dcl,
let a block D, have arity(a;) = n — K. Then a set of positions
X in the rightmost k columns of D, can be shuffled if one of
the following holds for the multiset X:

(i) X consists of any k + 1 letters;

(ii) X consists of any k equivalent letters of arity k.

The proof follows from the above exchange identity within
the a-block D,,.

PROPOSITION 9. In a block product [D] = [Da][Dy] - . . [Dcl,
let a block D, have arity(a;) = n — k, and let cont(D,; X) =
arity(x) = k for some x € L\L,. Then [D] vanishes in
Linear([L].

This is a corollary of part ii of Proposition 8.

Section 4. Invariants of Four Medials

Let V be a vector space of dimension 2n over K. An
n-dimensional subspace a of V is called a medial. We can
identify a medial with a projective linear variety of dimension
n — 1in a projective space of dimension 2n — 1. Our problem
is to determine the algebraic generators of the ring of invari-
ants of four medials.

Let

t,=P1B2 - - - Bn
=68 ...6,

,=aay . .. ay,

tk=m72---Yn
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be four decomposable skew-symmetric tensors in A(V),
where a;, B;, v;, and §; are vectors of V. Let a, b, ¢, and d be
the corresponding four medials; i.e., a = span {a;, a3, . . . ,
a,}, etc.

THEOREM 1. For the ring of invariants of four medials, the
following n + 4 invariants form a minimum set of algebraic
generators:

(i) six single determinants such as [ayja; . . . apBiB2 - - .
Bul, etc.;

(ii) any n — 2 out of the n — 1 shuffle products:

[al...an'yl...y.&ﬂ...sn]
x[ﬁl---Bn:YHl--':Ynsl-'-si]

= 021 sign(a)sign(t)[ay . . . an¥oq) - - - Yo@Ori+1)- - - Orm)

X[B1. .. BuYoii+1) - - - Yo@drq) - - - rd)>

where o and 7 range over permutations of the set{1,2, . . .,
nfandl=i=n-1.

The symbolic version of Theorem I can be stated as
follows.

THEOREM 2. Let each of L., Ly, L, Lq contain infinite
many positive letters of arityn, and let L =L, UL, UL U
Lg. Then any n — 2 of the following n — 1 equivalence classes
Q; of invariants form a minimum set of algebraic generators
of the algebra Linear[L]:

Q = {fa"ePd bV V] |

a) €E L, b; € Ly, ¢ €L, d; € Ly},
wherei=1,2,...,n—-1.

The proof is subdivided into five steps, as follows:

Step 1. Prove that the block products [D] = [D,][D,]
generate the algebra Linear[L]. By part i of Proposition 6 the

block products

[D] = [Da]Dp)DcIDJ)

generate the algebra Linear[L], with the possibility that the
c-block D, and the d-block D, may be void. I claim that [D]
vanishes unless D and D, are void. By part ii of Proposition
6, we may assume that the Young diagrams D and D, contain
only c-letters and d-letters. If D. = (w1, wa, . . ., wy) is not
a void c-block, then w; = cy¢; . . . ¢1 u, where u is a word of
n times

length n in Mon(L,). Thus [D] vanishes by Proposition 4.
Similarly [D] vanishes if the d-block D is not void. Hence the
generators of the algebra Linear[L] are block products [D] =
[D,][Ds).

Step 2. Apply Proposition 7 to straighten separately the
rightmost n columns of D, and D,, by giving the alphabet L an
order such that ¢; < d; forall c; € L., d;, € L,. We obtain four
subdiagrams D, D4, D, and D, of D with shapes A, Agq,
Apc, and Apg, Where D, is the subdiagram of D, consisting of
all c-letters occurring in D, and where A,c = (Age15 Age.2s - « - »
Aac ) With Age 1 = Age2 = . . . = Ay, etc. In this step we will
prove that [Agql = |Ap| and [Age| = [Apdl.

Since D, is standard, its first column must be c¢;c; . . . ¢,
where c; are different c-letters. I claim that these are the only
c-letters occurring in D. To prove this, we apply k times
Proposition 3, respectively, to the first, the second, . . . , the
kth rows of D,. and thereby obtain

[D1=2 rm, . wlmmct - . . mD]= 2 r,[#D],

where m; are permutations of c-letters and r, are integers
and where in each term [#D] the subdiagram #D,.
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is of the form

”Da(‘:(clcl- e €1y €€ v o €2y v v vy CkC .Ck).
M—’_s e —
Agc, times Age2 times Age k times

Therefore if there is a (k + 1)th c-letter cx+; occurring in D,
then in each term [#D] this letter c;,; must occur n times in
the b-block wD,. Thus [D] vanishes by Proposition 9, and we
may assume that c¢;, ¢, ..., c; are the only c-letters
occurring in D. Similarly if the rightmost column of D, is d1d>
. . . di, then we may assume that dy, d,, . . . , d; are the only
k of d-letters occurring in D. In conclusion, we obtain

k
|Aad| = 1=El Aad,i

k
= Z:l cont(D,; d;)

taad

= 2, (n — cont(Dy; dy))

-
)
—

k
=kn — 21 cont(Dy; d;)
=

Similarly we have |Aq| = [Apd.

Step 3. Use induction on max(A,q4, Apc) in the dominance
order to prove that [D] is a polynomial in the set of invariants
Ust Q.

Suppose that

Aad = max{Aag, Apct = (Aad,1> Aad2s + + + > Aad,k)

is the largest among shapes A = (A1, Az, ..., Ap) in the
dominance order such that |A| = |A.4l, A; = n. Then Aggy = n;
i.e., the kth row of D, will contain n letters in L, as well as
n letters in L;. We can infer that [D] vanishes by virtue of
Proposition 4.

Suppose next that [D] is a polynomial in the set of invari-
ants U2 Q; whenever max{A,4, Ao} is larger than a shape A,
where |A| = [A,4 and A; = n. We can prove that [D] will also
be a polynomial in those invariants when max{A,g, Apc} = A.
Assume that A,; = A. Apply 2k times Proposition 3, respec-
tively, to the first, the second, . . . , the kth rows of D, and
then to the kth, the (k — 1)th, . . . , the first rows of D,, and
thereby obtain

[D]=2 rrl...‘rkﬂk...ﬂl[Tl e o TKTK - - . ”lD]
=z r,,,['r‘er],

where ; and 7; are permutations of L. and L, respectively,
and c,, are integers; in each term [rwD] the subdiagrams
77D, and TwD,, are of the form

TﬂDac= (clcl e €1y, CC2 00 0 CYy oo vy CkCk v o Ck),
. J \\ J \— J
Y Y Y
Agc,) times Age2 times Age.k times
TﬂDad'—‘ (dldl e dl, d2d2 P dz, ceey dkdk . e dk)
- 7 \ J \ y)
v ¥ ¥
Agq,) times Agq.2 times Aqd.x times
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Changing notation, we write [D] instead of [r#D] from now
on. We straighten the rightmost n columns of D, after giving
letters ¢y, ¢2, . . . , Ck, dv, da, . . ., di the following order:

G< 1< ... <a<d<dp1< ... <d.
We then obtain

(D] = 2 rDID3),

where in each term the b-block D, is standard in the above
order. Let A;. be the shape of the subdiagram D;,. of Dy,
containing all the c-letters occurring in D;,. Then we have

Aipe = (cont(Dip; ci),cont(Dyp; 1), . - - » cont(Dy; cy)
= (cont(Dy; cp), cont(Dyp; cx—-1), - . . , cont(Dy; c1))
= (n — cont(Dg; cx), n — cont(Dg; ck-1), - - -

n— cont(D,; c1))
= (cont(D,; dy),cont(D,; dy—1), . . . , cont(D,; dy))
= Aad
=A.

By the induction hypothesis we need consider only the term
[Dgl[D1p), where

Ae = A
= (cont(D1; i), cont(Dyp; ck-1)s - - - , cont(Dyp; ¢1)).

This term can be factored into
k
[D D] = Hl[alﬂn) c?"') dl(n-ui)][ b§") an—m) d‘(#s)],
i=

where (,"l’ M2s o o o I-"k) = (n — A= Ag-1, - - o, 1 Al)~
This completes the proof that the set of invariants U Q;
generate the algebra Linear[L].
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Step4.Letje{1,2,...,n—1,and I ={1,2,...,n
— 1){j}. Prove that any invariants in Q; can be expressed by
invariants in U;e;Q;.

Consider the following n + 2 bracket monomials in the
bracket algebra Bracket[L]:

ar= L,

Gns1 = (a6 cd )

i=0,1,...,n,

Applying the exchange identity we obtain that in Bracket[L]

Gn+1=(—1)" ZO qi. [1]

Since qo, g,, g.+1 vanish in Linear[L], we obtain

q;= —2 qi

as desired.

Step 5. Prove the minimality of a set of generators U;c; Q.
If such a set of generators were not minimal, then one could
prove that there is a linear relation in Bracket[L] among the
n + 1 bracket monomials {g|i € I U {0, n, n + 1}}. Together
with Eq. 1 we can obtain a linear relation in Bracket[L] among
the n + 1 bracket monomials {gji = 0, 1, ..., n} by
eliminating g, from the two linear relations. But qo, g1,

., qn are standard Young tableaux in the order a; < ¢; <
d, < by, and therefore they are linearly independent in
Bracket[L]. This contradiction proves the minimality of the
set of generators. q.e.d.
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