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ABSTRACT A minimal set of generators of the ring of
invariants for four linear subspaces of dimension n in a vector
space of dimension 2n is computed, using the symbolic method
introduced by Grosshans et al. [Grosshans, F., Rota, G.-C. &
Stein, J. A. (1987) Invariant Theory and Superalgebras (Am.
Math. Soc., Providence, RI)].

Section 1. Introduction

The notation ofGrosshans et al. (1) is used. Let V be a vector
space of dimension n over a field K of characteristic zero. A
decomposable skew-symmetric tensor in A(V) defines a
subspace ofV or, equivalently, a linear variety in a projective
space of dimension n - 1. By combining the straightening
algorithm, the exchange identity, and the Grassmannian
condition for decomposable skew symmetric tensors (1), a
complete set of invariants for four linear subspaces of di-
mension n in a vector space of dimension 2n is computed.
This problem was left open by Turnbull in 1941 (2), who had
attained some partial results. A related problem has also been
studied by Gelfand and his school in the 1970s (3).
A complete set of invariants for five linear subspaces of

dimension 3 in a vector space of dimension 6 has also been
determined, but the full computation is at present 102 type-
written pages long. This result will be announced in a
subsequent note.

Section 2. The Bracket Algebra

Let L be a positively signed alphabet. Assign each letter x E
L a positive integer arity(x), called the arity of x. Let [L] be
the alphabet whose members are all monomials w in Su-
per[L]. A letter in [L] is denoted by [w]. The bracket algebra
Bracket[L] of dimension n is the quotient of the free asso-
ciative algebra Tens[[L]] generated by the alphabet [L],
subject to the congruence relations below, where w, w', and
W" are monomials in Super[L]:

(i) [w] = 0 if Length(w) # n;
(ii) [w][w'] = (-1)¶[w'][w]; and
(iii) the exchange identity

E [WW'1)][W(2)w"] = > (_ 1)Length(w(2))[W W(l)][W(2)W ].
WI w

An element p in Tens[[L]] will be identified with its image in
Bracket[L]. Let D = (w1, w2, . . ., Wk) be a Young diagram
with wi E Mon(L). The Young tableau of D is the bracket
monomial

Young(D) = [stand(wl)][stand(w2)]... [stand(wk)].
If wi = xi1x12... x1,,, the word xljxz ... Xkj is called the jth
column of D. The Young diagram D is called standard (1) if
it has weakly increasing rows and strictly increasing columns.
Such a Young tableau Young(D) in Bracket[L] does not

vanish only if each of the words w1, W2, . . . , Wk iS of length
n. This condition will be tacitly assumed below.
PROPOSITION 1 [standard basis theorem for bracket algebra

(4)]. Given a Young diagram D, there exist unique standard
Young diagrams Di with the same content as D and unique
nonzero integer coefficients ri such that

Young(D) = ri Young(Di).
We will denote [D] as Young(D) when no confusion arises.

Section 3. Symbolic Representation of Invariants for
Linear Varieties

Let V be a vector space of dimension n over the field K. A
set of decomposable skew symmetric tensors So = {ta, tb, tc9

.} in A(V) is associated with a set of subspaces S = {a, b,
c, . . } of V or, equivalently, with a set of linear varieties S
= {a, b, c, . . .} in a projective space of dimension n - 1,
where each subspace a in S is spanned by the vector factors
of ta.
For each a E S, let La be an infinite set of positively signed

letters

La = {a,, a2, a3, .*}

Define arity(a1) to be the dimension of a as the subspace of
V. Letters in La are also called a-letters. Define the alphabet
L to be

L = La U Lb U Lc u ....

Two letters in L are said to be equivalent if they are both in
La for some a E S. Two Young diagrams D and D' are said
to be equivalent if D = (x11. .. xlnl, . . ., Xk1 * - xknk) and
D' = (ir(x11) * * * Ir(Xln,), * . . , Vr(xkl) . . . r(xkn,)) for some
permutation ir ofL such that x and 7r(x) are equivalent for all
x E L. We say a monomial p in Bracket[L] has right content
if cont(p; x) equals to either zero or arity(x) for all x in L. A
Young diagram D is said to have right content if [D] does.
Let Bracket[L]0 be the K-subspace of Bracket[L] gener-

ated by monomials with right contents. It also has an algebra
structure such that, for two monomials p and q with right
contents, we have

pq =0

if the monomial pq does not have a right content.
Definition 1: Define the algebra Linear[L] to be the quo-

tient of the algebra Bracket[L]0 by the ideal I that is generated
by the following monomials p in Bracket[L]0:

(i) p E I if >2XeLa cont(w; x) > k for some equivalence class
La with arity(a1) = k and for some bracket factor [w] of p.

(ii) p = [aVl)bV k)] E I for all a, E Lag b, E Lb, where La
and Lb are two equivalence classes with arity(a1) = kg
arity(bl) = n - k.
The motivation for condition i is the fact that any k + 1

vectors in a linear subspace of dimension k are linearly
dependent. Condition ii is a technical one to facilitate the
computation of invariants.
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If a monomial p has right content, it is identified with its
image in Linear[L]. In particular, we keep the notation [D] for
the image of [D] in Linear[L] if [D] has the right content.
The following proposition is a corollary of the first funda-

mental theorem (1).
PROPOSITION 2. Let J be the ideal generated by monomials

p in Bracket[L]o that satisfy Condition ii ofDefinition 1. Let
the algebra linear[L] be the quotient of Bracket[L]o by the
ideal J. Then there is a surjective linear mapping 1' from
linear[L] to the ring ofjoint invariants of the set of decom-
posable skew-symmetric tensors ta in SO.
Moreover 'D([D]) = ±'([D']) if D and D' are equivalent

Young diagrams and the sign can be determined (4).
Elements in Linear[L] are called a symbolic representation

of the invariants or simply invariants. The straightening
algorithm and the exchange identity can be carried over to
Linear[L], although the uniqueness of the coefficients ri in
Proposition I no longer holds.
A position occupied by a letter x in a Young diagram D is

a triple (i, j, x) when the letter x occurs in the ith row and the
jth column of D. Such a position is sometimes written as ,
when i andj need not to be referred. LetX = (i,j, XJ)(ij)e be
a set of positions in D occupied by a multiset X = {Xj}(ij)E1.
Given a permutation ir ofX, denote by -rD the Young diagram
obtained from D by replacing each position (i, j, xi>) ofX by
(i, j, 7r(xij)). Suppose D has k rows, let

X= X1 U X2 U ... U Xk,

where each Xi is a set of positions in the ith row ofD (with
the possibility to be an empty set), occupied by a multiset Xi.
We may write Xi as a word in Mon(L). A permutation i ofX
induces the words rXi in a natural way. Two permutations r
and ir' are called row distinct if

TX1 l VX2 0 ...* 07rXk =

r'X1 1r'X2 0 ... * Ir'Xk

in Super[L] 0 ... 0 Super[L] (k-times).
A set of positions X in D can be shuffled if in Linear[L],

> [irD] = 0,
where ir ranges over all row distinct permutations of X.
PROPOSITION 3. Given a Young diagram D and one of its

row w, let X1 be the set of all positions in w occupied by
a-letters for some equivalence class La. Suppose X1 is not
empty. Let a, E X1, and let X2 be the set of all positions in
D but not in w occupied by t7e letter a,. Then in Linear[L],

[D] = > r,[rD],
where the sum ranges over the set of row distinct permuta-
tions ir of X1 U X2 such that irX1 contains only the letter a,
and where r, are integers.
The proof is carried out by induction on the multiplicity of

a, in X,.
PROPOSITION 4. Let w be a row in a Young diagram D. If

w contains k equivalent letters of arity k as well as n - k
equivalent letters of arity n - k, then [D] vanishes in
Linear[L].

This is a corollary of Proposition 3.
PROPOSITION 5. Given a Young diagram D, a set of

positions X in D can be shuffled ifone ofthe following holds
for the multiset X:

(i) X consists of k + 1 equivalent letters of arity k;
(ii) X consists ofk equivalent letters ofarity k as well as n

- k equivalent letters of arity n - k;
(iii) X consists of any n + 1 letters.

The proof of this proposition follows from the exchange
identity and from Proposition 3.

Definition 2: A Young diagram Da = (w1, w2,... , Wk) is
called a block (or an a-block when the space a is relevant)
relative to a space a E S when for 1 - i c k, we have wi =
aia... a, ui, where k = arity(a1) and ui E Mon(L). A block

k times

product is defined as

[D] = [Da][Db] . . . [Dc]
for some a, b, . . . , c E S, where Da, Db,.. . , Dc are blocks
relative to spaces a, b, and .. ., c, respectively.
PROPOSITION 6. For a Young tableau [DI in Linear[L] we

have
(i) [DI is a sum of block products in Linear[L], that is

[DI = > ri[Dia[Dib] . . . [Dic],

where ri are integers.
(ii) Ifwefix any two equivalence classes La and Lb with the

property arity(al) + arity(bl) 2 n, then in each term of the
sum above only the a-block contains a-letters and only the
b-block contains b-letters.
The proof of part i follows from the exchange identity, and

the proof of part ii follows from the straightening algorithm.
PROPOSITION 7. For a block product [Da[DbI . . [Dc] in

Linear[L], each block can be straightened separately in the
following sense:

[D5J[DbI * * . [DcJ = ri[Dia][Dib] . . . [Dijc],

where for each block Da with arity(al) = k, the Young
diagrams Dia are a-blocks and their rightmost n - k columns
are standard in some ordering ofL that may varyfor different
blocks Da, Db, . . . , Dc, and where ri are integers.
The proof depends on the fact that the exchange identity

can be applied within each block in the following sense:

[a(l )ww',)][a(k)wI2w"I

1(-1) th(W'2))[a(k)W'w(,)][a(k)W(2)W'fl]
w

PROPOSITION 8. In a blockproduct [DI = [DJ[DbI* [DcI,
let a block Da have arity(al) = n - k. Then a set ofpositions
X in the rightmost k columns ofDa can be shuffled ifone of
the following holds for the multiset X:

(i) X consists of any k + 1 letters;
(ii) X consists of any k equivalent letters of arity k.
The proof follows from the above exchange identity within

the a-block Da.
PROPOSITION 9. In a block product [DI = [DJ[Db] ... [DcJ,

let a block Da have arity(al) = n - k, and let cont(Da; x) =
arity(x) = k for some x E L\La. Then [DI vanishes in
Linear[L].

This is a corollary of part ii of Proposition 8.

Section 4. Invariants of Four Medials

Let V be a vector space of dimension 2n over K. An
n-dimensional subspace a of V is called a medial. We can
identify a medial with a projective linear variety ofdimension
n - 1 in a projective space of dimension 2n - 1. Our problem
is to determine the algebraic generators of the ring of invari-
ants of four medials.

Let

tc =Y1V2 . . . Yn,
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be four decomposable skew-symmetric tensors in A(V),
where a,, Pi3, yi, and Si are vectors of V. Let a, b, c, and d be
the corresponding four medials; i.e., a = span {al, a2,.
a"}, etc.
THEOREM 1. For the ring ofinvariants offour medials, the

following n + 4 invariants form a minimum set ofalgebraic
generators:

(i) six single determinants such as [aja2 ... a3l132 ...
/3j, etc.;

(ii) any n - 2 out of the n - 1 shuffle products:

[a, *.*.* angi ...el~ vi~X.. .**n1**n

x [.Pi .Pn~i+l . . . S~~l*A i

= E sign(ou)sign(T)[aj .. . anYo(l) . ..Y*r(i)8T(i+l)*... $(n)]
O,T

x [X31 * *1n^Yc(i+l) * Yan)STMl . . . 8T(i)]s
where Cr and T range over permutations ofthe set {1, 2, ...
n} and 1 c i c n - 1.
The symbolic version of Theorem 1 can be stated as

follows.
THEOREM 2. Let each of La, Lb, L,, Ld contain infinite

many positive letters ofarity n, and let L = La U Lb U L, U
Ld. Then any n - 2 ofthefollowing n - 1 equivalence classes
Qj ofinvariants form a minimum set ofalgebraic generators
of the algebra Linear[L]:

Qi = {[a( n)C(I)dI(n-i)][b(n)c(n-')d(')]
a, E Lag bl E Lb, cl E L, dl E Ld},

where i = 1,29 ... , n - 1.
The proof is subdivided into five steps, as follows:
Step 1. Prove that the block products [D] = [Da][Db]

generate the algebra Linear[L]. By part i ofProposition 6 the
block products

[D] = [Da][Db][Dc][Dd]
generate the algebra Linear[L], with the possibility that the
c-block D, and the d-block Dd may be void. I claim that [D]
vanishes unless D, and Dd are void. By part ii of Proposition
6, we may assume that the Young diagrams D, and Dd contain
only c-letters and d-letters. If D, = (W1, W2, . .. , Wk) is not
a void c-block, then w1 = c1c . .. cl u, where u is a word of

n times

length n in Mon(Ld). Thus [D] vanishes by Proposition 4.
Similarly [D] vanishes ifthe d-block Dd is not void. Hence the
generators of the algebra Linear[L] are block products [D] =
[DaI[Db].

Step 2. Apply Proposition 7 to straighten separately the
rightmost n columns ofDa and Db by giving the alphabet L an
order such that cl < d, for all cl E L,, d, E Ld. We obtain four
subdiagrams Dac, Dad, Db~, and Dbd ofD with shapes Aac, Aad,
Abc, and Abd, where Dac is the subdiagram of Da consisting of
all c-letters occurring in Da and where A0c = (Aaci, Aac,2, . . . 9

Aac,k) with Aac 1 2Aac. ,2 . . . Aac k etc. In this step we will
prove that IAadI = IAbcl and IAacI = !Abdl.

Since Dac is standard, its first column must be C1C2 . . . Ck,
where ci are different c-letters. I claim that these are the only
c-letters occurring in D. To prove this, we apply k times
Proposition 3, respectively, to the first, the second, ... , the
kth rows of Dac and thereby obtain

[D] = > r,,kl. . f[fkrk-.* ..* ,D] = rrD,

where iri are permutations of c-letters and r, are integers
and where in each term [irD] the subdiagram rDac

is of the form

lTDac = ( hcc... Ci,C2C2 . . . C2, C,c . . . CO)
As,,, times Aac.2 times Aack times

Therefore if there is a (k + 1)th c-letter Ck+1 occurring in D,
then in each term [brD] this letter ck+l must occur n times in
the b-block 7rDb. Thus [D] vanishes by Proposition 9, and we
may assume that cl, c2, . . . , ck are the only c-letters
occurring in D. Similarly ifthe rightmost column ofDad is djd2
... dk, then we may assume that dl, d2, . . . , dk are the only
k of d-letters occurring in D. In conclusion, we obtain

k

IAadI = E adJ

= E cont(Da; di)
i= 1

k
= > (n - cont(Db; dd))

i=l

k
= kn - cont(Db; di)

k
= kn - Abd>

i=1

k

= > bs

= lAbci

Similarly we have IAacI = jAbdI.
Step 3. Use induction on max(Aad, Abc) in the dominance

order to prove that [D] is a polynomial in the set of invariants
U7_=j Q,.
Suppose that

Aad = max{Aad, Abc} = (Aad,1, Aad,2, * * * Aad,k)

is the largest among shapes A = (Al, A2, ... , Ak) in the
dominance order such that IAl = IAadI, Ai C n. Then Aadj = n;
i.e., the kth row of Da will contain n letters in La as well as
n letters in Ld. We can infer that [D] vanishes by virtue of
Proposition 4.
Suppose next that [D] is a polynomial in the set of invari-

ants U. -11 Q, whenever max{Aad, Aac} is larger than a shape A,
where |Al = 1AadI and Ai ' n. We can prove that [D] will also
be a polynomial in those invariants when max{Aad, Abc} = A.
Assume that Aad = A. Apply 2k times Proposition 3, respec-
tively, to the first, the second, . . . , the kth rows of Dac and
then to the kth, the (k - 1)th, . . . , the first rows of Dad and
thereby obtain

[D] = rr ... Tklk ... .1[r * * * Tk1k * * * 1D]
= E r4r[TrD],

where iri and r, are permutations of Lc and Ld, respectively,
and cf are integers; in each term [TrD] the subdiagrams
TirDac and T1rDad are of the form

T7rDac = (clCl .. C1, C2C2 .. . C2,

Aac.1 times Aac.2 times

a,CkCk . .tCis

Aac,.k times

TIrDad = (didl ... di, d2d2 ... d2, . .. , dkdk *. .* dk).

AadX times Aad.2 times Aad.A times

Mathematics: Huang
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Changing notation, we write [D] instead of [rirD] from now
on. We straighten the rightmost n columns ofDb after giving
letters cl, c2, . . . , Ck, dj, d2, . . . , dk the following order:

Ck < Ck-1 < . . . < Cl < dk < dk-1 < ...< dj.

We then obtain

[D] > ri[Da][Dib],

where in each term the b-block Dib is standard in the above
order. Let Aibc be the shape of the subdiagram Dibc of Dib
containing all the c-letters occurring in Dib. Then we have

Aibc (cont(Dib; Ck),cont(Dib; Ck-1), . . ., cont(Dib; c1))

=(cont(Db; CO), cont(Db; Ck-1),. ..., cont(Db; CO))

= (n - cont(Da; Ck), n - cont(Da; Ck-1) * *

n - cont(Da; c1))

= (cont(Da; dk),cont(Da; dk-1), . . . , cont(D.; dj))
= Aad

= A.

By the induction hypothesis we need consider only the term
[DaI[Dlb], where

Albc = A

= (cont(Dlb; Ck), cont(Dlb; Ck-1), . . . , cont(Dlb; cl)).

This term can be factored into

k

[Da][Dlb] =|[a ~n)ciAi)d ~n Ai)][b (n)Cin Ai)diti)]
i=l

where (A,, 2, . . .k) =(n-Ak, n -Ak-1, * * * n -A1).

This completes the proof that the set of invariants U'n- Q,
generate the algebra Linear[L].

Step 4. Let j E {1, 2, . . ., n - 1}, and I = {1, 2, . . ., n
- 1}\{j}. Prove that any invariants in Qj can be expressed by
invariants in UiesQi.

Consider the following n + 2 bracket monomials in the
bracket algebra Bracket[L]:

qi = [a(ln)c()d(n-i)][C(n-')d(')b(n)], i = 0 1, . . ., n,

qn+g= [ae(n)b(n)][C(n)de(n)t[
Applying the exchange identity we obtain that in Bracket[L]

n
qn+l = (-1)n > qi.

Since qo, qn, qn~l vanish in Linear[L], we obtain

qj = - :qjiEl-

[1]

as desired.
Step 5. Prove the minimality of a set of generators Uj1 Q;.

If such a set of generators were not minimal, then one could
prove that there is a linear relation in Bracket[L] among the
n + 1 bracket monomials {qjIi E I U {0, n, n + 1}}. Together
with Eq. 1 we can obtain a linear relation in Bracket[L] among
the n + 1 bracket monomials {qjIi = 0, 1, ... , n} by
eliminating qn+i from the two linear relations. But qO, q1,
... , q, are standard Young tableaux in the order a, < cl <
d, < bl, and therefore they are linearly independent in
Bracket[L]. This contradiction proves the minimality of the
set of generators. q.e.d.
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