
Prediction of ultra-potent shRNAs with a sequential classification 
algorithm 

Raphael Pelossof1,*, Lauren Fairchild1,2*, Chun-Hao Huang3,4, Christian Widmer1, Vipin T. Sreedharan1, 
Nishi Sinha5, Dan-Yu Lai5, Yuanzhe Guan5, Prem K. Premsrirut5, Darjus F. Tschaharganeh3, Thomas 
Hoffmann6, Vishal Thapar3, Qing Xiang7, Ralph J. Garippa7, Gunnar Rätsch1, Johannes Zuber6, Scott W. 
Lowe4,8, Christina S. Leslie1,# and Christof Fellmann5,9,# 

1Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA. 

2Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, USA. 

3Memorial Sloan Kettering Cancer Center, New York, New York, USA. 

4Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell 
University, New York, New York, USA. 

5Mirimus Inc., 500 Sunnyside Blvd., Woodbury, New York, USA. 

6Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria. 

7RNAi Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA. 

8Howard Hughes Medical Institute and Memorial Sloan Kettering Cancer Center, New York, New York, 
USA. 

9Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA. 

*These authors contributed equally to this work.  

#Correspondence should be addressed to C.S.L. (cleslie@cbio.mskcc.org) or C.F. 
(fellmann@berkeley.edu). 

 

 

Supplementary Information 

Supplementary Figures 1-6. 

Supplementary Tables 1-3.  

 

  



Supplementary Figure S1
a

1

10

100

1000

10000

R
ep

re
se

nt
at

io
n 

[p
pm

]
shRNAs

Vector 1 (reads + 1)

Vector 2 (reads + 1)

Sort 3 R1 (reads + 1)

Sort 3 R2 (reads + 1)

Sort 5 R1 (reads + 1)

Sort 5 R2 (reads + 1)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

c

1

10

100

1000

Ve
ct

or
 2

Vector 1

r: 0.91

1 10 100 1000
1

10

100

1000

10000

So
rt 

5 
R

2

Sort 5 R1

r: 0.49

1 10 100 1000 10000
1

10

100

1000

10000

So
rt 

5 
R

1

Vector 1

r: 0.28

1 10 100 1000 10000

d

0

2

4

6

8

10

12

14

Se
ns

or
 s

co
re

Vector (mean)

r: 0.04

1 10 100 1000

e

0.1

1

10

Se
ns

or
 s

co
re

Strong Intermediate Weak

Candidate
shRNA library

Potent shRNAs

PGK Venus TargetTRE

Sensor    assay

rtTA+
reporter cells

FACS

b



Supplementary Figure S1
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Supplementary Figure S1 Dataset generation.  

(a-f) Generation of the M1 (miR-30, 20,400 shRNAs) Sensor assay dataset (Sup Table S2, Methods).  

(a) Schematic of our previously published Sensor assay that enables large-scale functional assessment of 
shRNA potency (Methods).  

(b) Library complexity over Sensor assay sort cycles. Shown are normalized read numbers (parts per 
million, ppm) in both duplicates for each shRNA represented within the initial libraries (Vector) and the 
pools after the indicated sorts (Sort 3, 5).  

(c) Correlation of reads per shRNA between the two replicates before sorting (left panel), after Sort 5 
(middle panel) and between the initial and endpoint population (right panel; shown for one representative 
replicate). r, Pearson correlation coefficient.  

(d) Correlation of Sensor score and reads per shRNA in the vector libraries, showing that the score is 
independent of the initial shRNA representation. r, Pearson correlation coefficient.  

(e) Enrichment or depletion of 17 control shRNAs after Sort 5. All controls have been used in previous 
Sensor assays (e.g. TILE, mRas + hRAS) and are classified into a strong, intermediate and weak class 
according to their knockdown potency assessed by immunoblotting.  

(f) Rank correlation of 325 performance control shRNAs. 65 shRNAs per gene targeting mouse Bcl2, Kras, 
Mcl1, Myc and Trp53 that had previously been tested as part of the TILE dataset were chosen as 
supplemental controls to assess Sensor assay performance for weak, intermediate and strong shRNAs. 
The individual shRNA ranks between TILE and M1 were highly correlated (325 shRNAs, Spearman rank 
correlation coefficient rho: 0.63; gene-specific correlation coefficients are also reported), even though the 
TILE and M1 datasets were generated several years apart, using mostly different equipment, reagents and 
operators.  

(g) Generation of the miR-E reporter assay dataset (Sup Table S2, Methods). Normalized reporter 
knockdown values of miR-E shRNAs assessed one-by-one in an RNAi reporter assay. The shRNAs were 
tested in 42 individual batches, each including several control shRNAs for data scaling (miR-E Ren.713, 
miR-30 Pten.1524) and quality control (miR-E Pten.1523, miR-E Pten.1524). Background fluorescence of 
the parental chicken cell line (ERC) and maximal fluorescence of the batch-specific reporter cell line (ERC 
cells expressing the shRNA target reporter) were also measured. All shRNAs were grouped into either a 
positive or negative class. A threshold value of 80 was chosen as a cutoff, based on the performance of 
miR-30 Pten.1524 and miR-E Ren.713.  

(h) Nucleotide representation of positive shRNAs from the indicated datasets. Shown are the nucleotides 
one to eight of the guide strand (starting in the center), including the entire seed region. Unbiased TILE 
(miR-30) set, showing a diversified nucleotide composition (left panel). Preselected M1 (miR-30, DSIR + 
Sensor rules selected) set, showing a biased nucleotide representation (middle panel). Preselected miR-E 
+ UltramiR set, showing a different nucleotide bias due to the altered shRNA backbone. More shRNAs 
starting with a C were found to be potent (compared to TILE, p-value = 0.002, Fisher’s exact test), 
indicating less restrictive sequence requirements when using the miR-E backbone.  
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Supplementary Figure S2 Kernel selection and data integration.  

(a) Schematic of the first support vector machine (SVM) classifier that serves to eliminate non-functional 
sequences and prioritize shRNAs that are likely to be potent.  

(b) Schematic of the kernel representation used by SplashRNA. A weighted degree kernel is calculated 
across the entire guide sequence, while two spectrum kernels are calculated across nucleotides 1-15 and 
16-22, respectively. 

(c) TILE score distribution (Methods). We set a potency threshold separating the negative from the 
positive class at the minimal point between the two modes of the distribution (green line, for thresholds 
see Sup Table S1).  

(d) Testing of multiple kernel combinations in a leave-one-gene-out nested cross-validation setting on the 
TILE dataset found that the combination of a weighted degree kernel over positions 1-22 and two 
spectrum kernels at positions 1-15 and 16-22 (allKernels) yields the best performance. Spec1 is a spectrum 
kernel over positions 1-15. Spec2 is a spectrum kernel over positions 16-22. Spec1_spec2 is a combination 
of spec1 and spec2. Wdk is a weighted degree kernel over positions 1-22. Wdk_spec1 is a combination of 
wdk and spec1. Wdk_spec2 is a combination of wdk and spec2. All_kernels is a combination of wdk, spec1 
and spec2. 

(e) M1 score distribution (Sup Table S1, Methods). Cutoffs (green lines) were calculated by fitting 
Gaussian distributions to the modes and setting thresholds at 5% FPR and 5% FNR.  

(f) Incorporation of M1 positives, negatives or both into the TILE training set was tested in a nested leave-
one-gene-out cross-validation setting. Inclusion of M1 negatives deteriorated performance on the TILE 
dataset, whereas inclusion of the M1 positives alone improved performance. Note: TILE+M1pos = 
SplashmiR-30, the miR-30 classifier.  

(g) Score distribution for the shERWOOD miR-30 set (Sup Table S1, Methods). We set the threshold at an 
arbitrary cutoff of zero (green line). 

(h) Incorporation of M1 positives into the TILE training set improved performance on the external 
shERWOOD dataset. Note: TILE+M1pos = SplashmiR-30, the miR-30 classifier.  
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Supplementary Figure S3 Calibration of the sequential SVM classifier SplashRNA.  

(a) Precision-recall trade-off between the two classifiers SplashmiR-30 and SplashmiR-E. Selection of alpha and 
theta hyperparameters leads to varied performance (area under the precision-recall curve, auPR) on the 
TILE miR-30 (x-axis) and miR-E + UltramiR (y-axis) sets. Each line represents a setting of alpha; points on 
the line represent distinct theta values. The circle indicates the alpha and theta choices for the final 
sequential classifier (SplashRNA, alpha = 0.6, theta = 1.1). The dotted line represents the performance of 
the convex linear classifier without a threshold at every alpha. Note that the performance of a sequential 
classifier equals or exceeds that of a linear combination since one can set the threshold to a large enough 
value such that all examples are evaluated by both classifiers. 

(b) Performance on the TILE set, varying the value for theta with alpha set to 0.6. The insert shows a zoom 
in of the first 15% of the precision-recall.   

(c) Performance on the miR-E + UltramiR set, varying the value for theta with alpha set to 0.6.   
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Supplementary Figure S4 Prediction performance of SplashRNA.  

(a) Precision-recall curves on the TILE dataset, comparing leave-one-gene-out nested cross-validation 
predictions from SplashRNA (auPR: 0.696) and SplashmiR-30 (auPR: 0.699) against the alternative prediction 
tools DSIR (auPR: 0.594), seqScore (auPR: 0.526) and miR_Scan (auPR: 0.449).  

(b) Score distribution of the mRas + hRAS set (DSIR + Sensor rules selected). The green line indicates the 
threshold (Methods, Sup Table S1).  

(c) Prediction performance comparison of the indicated algorithms on the external mRas + hRAS Sensor 
dataset (Sup Table S1). SplashRNA outperformed the other algorithms. 

(d) Score distributions of the miR-E and UltramiR datasets. For the miR-E set, the threshold was set to 80 
(green line, Methods). The UltramiR set represents the distribution of log depletion scores of shRNAs 
tested in a cell-viability screen (Sup Table S1). 

(e) SplashRNA and DSIR based re-ranking of shERWOOD selected UltramiR shRNAs targeting essential 
genes that were tested in a cell viability screen. X-axis: mean SplashRNA or DSIR score for equally sized 
groups (purple and blue dots, 20 groups) of 39 shRNAs each. Y-axis: Percent of shRNAs in each group that 
were potent (Methods). SplashRNA and DSIR were compared against the published minimum (Min), 
median (Med) and maximum (Max) shERWOOD algorithm performance on the same dataset (green-
brown dots).  

(f) Retrospective potency prediction of shRNAs from a large-scale essential genes RNAi screen. The 
biological screen used 20-25 miR-E-like shRNAs per gene to identify essential genes. shRNA potency was 
quantified by assessing their log fold changes (Methods). For each of the top 50 essential genes, all tested 
algorithms selected their top and bottom five sequences by prediction score. Log fold changes for all 
selected shRNA across the 50 genes were compared. SplashRNA achieved the most significant 
discrimination between top and bottom predictions (p = 1.8e-11, one-sided Wilcoxon rank sum test). 
seqScore (p = 2.3e-5) was used to generate the initial library of approximately 25 shRNAs per gene. 

(g) Retrospective potency prediction of shRNAs from a large-scale toxin resistance and sensitivity RNAi 
screen. The biological screen used 25 miR-E-like shRNAs per gene to identify resistance and sensitivity 
genes. shRNA potency was quantified by assessing their log fold changes (Methods). For each of the top 
20 sensitivity genes, all tested algorithms selected their top and bottom five sequences by prediction 
score. Log fold changes for all selected shRNA across the 20 genes were compared. SplashRNA was the 
only algorithm to achieve significant discrimination between the top and bottom predictions at p < 0.01 
(p = 4.8e-4, one-sided Wilcoxon rank sum test). Of note, SplashRNA also outperformed the other 
algorithms when selecting smaller or larger numbers of top sensitivity genes from the biological screen 
(data not shown). seqScore was used to generate the initial library of approximately 25 shRNAs per gene.   
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Supplementary Figure S5 Transcript selection.  

(a) Distribution of shRNA potency in functionally distinct transcript regions. Shown is the potency 
distribution of shRNAs in the unbiased TILE dataset that target the 5’UTR, CDS or 3’UTR. Since these 
shRNAs were evaluated using the Sensor assay, their targets are not subject to alternative cleavage and 
polyadenylation (APA) and/or splicing events.   

(b) A/U content of potent and weak miR-30 shRNAs from the unbiased TILE set. Potent shRNAs tend to 
have a higher proportion of A/U nucleotides (p < 2.2e-16, two-sided Kolmogorov-Smirnov test). 

(c) A/U content of functionally distinct transcript regions in the human genome. Shown are the A/U 
densities in 5’UTR, CDS and 3’UTR.  

(d) A/U content in mouse transcripts.  

(e) Alternative cleavage and polyadenylation (ApA) prevents potent shRNAs from inhibiting their putative 
target gene. Immunoblotting of Pten in NIH/3T3s transduced at single-copy with LEPG expressing the 
indicated shRNAs. Nine top predictions targeting the CDS or the 3’UTR after early ApA sites were 
compared alongside controls for their ability to suppress mouse Pten. Actb was used as loading control. 

(f) Comparison of knockdown efficiency and annotation of ApA sites. Shown are potent Pten shRNA 
predictions and their position (start, end) on the mouse genome (mm9). KD indicates a qualitative degree 
of the knockdown observed in immunoblotting analyses of NIH/3T3s (e). ApA indicates previously 
published positions on the mouse genome (mm9) of ApA sites identified in NIH/3T3 and mouse ES cells 
by 3P-seq. 2P-Seq shows the quantification of transcript expression levels measured by 2P-Seq. All shRNAs 
and ApA sites are ordered according to their position along the mouse genome. 
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Supplementary Figure S6 Extensive validation of de novo SplashRNA predictions. 

(a-f) Western blot validation of de novo SplashRNA predictions. All shRNAs were expressed using LEPG at 
single-copy conditions. β-Actin (Actb, ACTB) was used for normalization.  

(a) Immunoblotting of Pbrm1 in NIH/3T3s (median KD: 97%, median SplashRNA score: 1.70).  

(b) Immunoblotting of Rela in NIH/3T3s (median KD: 90%, median SplashRNA score: 1.15).  

(c) Immunoblotting of Bcl2l11 in NIH/3T3s (median KD: 96.5%, median SplashRNA score: 0.65).  

(d) Immunoblotting of Axin1 in NIH/3T3s (median KD: 94.5%, median SplashRNA score: 1.30).   

(e) Graphical depiction of the multiple human NF2 transcript variants. NF2 has nine variants with an 
intersection of only 198 nucleotides, excluding the 5’UTR, rendering the prediction task especially difficult 
due to limited sequence space. 

(f) Predicting miR-E shRNAs for extremely short transcripts. Immunoblotting of NF2 in A375s transduced 
with the indicated shRNAs targeting all nine NF2 variants (median KD: 89%, median SplashRNA score: 
0.65).   

(g) Comparison of SplashRNA and DSIR predictions against CRISPR-Cas9 mediated suppression of Cd9 in 
mouse embryonic fibroblasts (MEFs). Shown are normalized (relative to the indicated controls) median 
anti-Cd9-APC fluorescence intensities of RRT-MEFs and CRT-MEFs expressing the indicated shRNAs or 
sgRNAs (Methods). The six top-scoring predictions from DSIR + Sensor rules (DSIR) or SplashRNA (ordered 
according to their respective scores) were compared to six sgRNA sequences (Sup Table S2). *, Cd9.1137 
is the top prediction of both algorithms and was plotted twice for clarity. While DSIR predictions triggered 
Cd9 knockdown with variable efficacy, SplashRNA predictions consistently induce strong Cd9 suppression, 
closely approaching knockout conditions. 

(h) Transfer function of SplashRNA score versus protein knockdown for all 62 de novo predicted shRNAs 
validated by immunofluorescence (Sup Table S2). Green triangles indicate the minimum knockdown for 
80% of the predictions for a given SplashRNA score bin. Bins were defined to have a width of 0.5 with the 
leftmost bin starting at 0.25. For the bin centered on SplashRNA score = 1, 80% of predictions showed at 
least 86% protein knockdown. The expected knockdown for the top 80% of predictions (e.g. 4/5 shRNAs) 
increases with the SplashRNA score. Together, 91% of predictions with a SplashRNA score >1 showed 
more than 85% protein knockdown. 

 

  



Supplementary Table S1 
 

Dataset  Backbone Screen type n (shRNAs) n-pos n-neg 
Pos 
threshold 

Neg 
threshold 

Score type Use Availability 

TILE miR-30 
Sensor assay, 
pooled 

18720 5736 12685 -3 -3 V-S3 
Training, 
validation 

Published 

M1 miR-30 
Sensor assay, 
pooled 

20324 9602 10722 -2 -3.5 V-S3 
Training, 
validation 

New 

mRas + hRAS miR-30 
Sensor assay, 
pooled 

9804 1139 8665 3 3 Score** Validation Published 

shERWOOD 250k miR-30 
Sensor assay, 
pooled 

227673 53234 174439 0 0 Score** Validation Published 

miR-E miR-E 
Reporter assay, 
one-by-one 

397 170 227 80 80 Score 
Training, 
validation 

New 

UltramiR UltramiR* 
Cell viability, 
pooled 

780 378 402 -0.5 -0.5 
Log fold 
depletion 

Training, 
validation 

Published 

Essential genes, 
Top50 hits 

Mini miR-30 
with DCNNC 
motif* 

Cell viability, 
pooled 

1002      
Log fold 
depletion 

Validation Published 

Sensitivity genes, 
Top20 hits 

Mini miR-30 
with DCNNC 
motif* 

Toxin resistance 
and sensitivity, 
pooled 

500     
Log fold 
enrichment 

Validation Published 

 
 



Supplementary Table S1 Novel and existing shRNA potency datasets used for training and performance 
assessment. The total count of shRNAs in each library (or selected sub-library) is indicated (n) along with 
the number of positive (n-pos) and negative (n-neg) examples chosen using the indicated thresholds. The 
score type indicates how the read counts were integrated (Methods). *, These microRNA-based shRNA 
backbones are functionally equivalent to miR-E. **, Score from original paper. For TILE, shRNAs with 0 
reads in V1 or V2 were excluded from the set.  

 

Supplementary Table S2 Novel datasets and sequences of validated shRNAs. 

Sensor-M1 dataset tab: Sequences and scores of Sensor assay evaluated shRNAs from the M1 dataset. 
For each of the 20,324 unique shRNAs, the name (Gene name, Entrez ID, Species), the sequence (97-mer, 
Oligo 185-mer) and the final Sensor assay readout (Rank, Sensor score) are indicated along with the read 
counts (parts per million, ppm; Vector-1, Vector-2, S3R1, S3R2, S5R1, S5R2).  

miR-E dataset tab: Sequences and scores of reporter assay tested shRNAs from the miR-E set. For each 
shRNA, the 97-mer sequence, the normalized reporter score and the class attribution are provided 
(Methods). 

UltramiR dataset tab: Sequences and scores of shRNAs from the previously published UltramiR cell 
viability screen. For each shRNA the name (Name, Algorithm, Gene), sequence (97-mer, Guide), score 
(Score, pval) and class attribution are indicated (Methods).   

Validation shRNAs tab: Sequences of shRNAs used for immunoblotting based validation of SplashRNA. For 
each sequence, the gene (Gene name, Entrez ID), shRNA name and 97-mer sequence are indicated. For 
de novo predictions, the SplashRNA score and measured protein knockdown level (KD%) are also 
indicated.   

CRISPR sgRNAs tab: Sequences of sgRNAs used for Cd9 knockout and comparison to shRNA-based Cd9 
knockdown. For each sgRNA, the name, target gene, guide sequence and measured median knockout 
levels are indicated. 

 

Supplementary Table S3 Genome-wide SplashRNA predictions for all human and mouse protein coding 
genes. The predictions were designed to target the intersection of all transcript variants per gene (NCBI), 
after shortening of transcripts due to ApA (Methods). Where no ApA annotation was available, shRNAs 
were designed to target the CDS only (5041 human, 5058 mouse), unless this resulted in an intersection 
of length 0. For the few genes where there was no intersection between all transcript variants (118 
human, 71 mouse), no predictions are reported. Predictions fully targeting (22/22 nucleotides) two or 
more distinct sites in the transcriptome were eliminated to avoid off-targeting. Transcript variant-specific 
or other custom predictions can be generated using the online implementation of SplashRNA 
(http://splashrna.mskcc.org).  

Human tab: Top SplashRNA predictions for all human protein coding genes.  

Mouse tab: Top SplashRNA predictions for all mouse protein coding genes.  

  

http://splashrna.mskcc.org/
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