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SUPPLEMENTAL INFORMATION: 
Computational Approximations and Sources of Uncertainty 

 
I. Potential Energy Function: This article reports the results of all-atom point-charge molecular dynamics 
simulations using the AMBER potential energy function (1) ported to the GROMACS 3.3 molecular 
dynamics suite (2).  Our porting of the AMBER force fields and relevant water models have been shown 
to numerically reproduce the results of these parameters when compared to the AMBER software (3), and 
are now distributed within the GROMACS software suite.  The AMBER energy function employs, from 
top to bottom in Equation [1] below, van der Waals contact between non-bonded atoms; Coulomb 
interactions between all pairs of non-bonded atoms; a Hooke’s Law treatment for all bonds, and a similar 
treatment of all bond angles; and sinusoidal treatments of proper and improper dihedral angles, where the 
latter is defined across a planar group involving a central atom bonded to three other atoms, as in the case 
of –NH2 amine groups.   
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Notably, this approach allows for the application of multiple sinusoidal functions to each specific 

quartet of linearly bonded atoms participating in a given dihedral torsion angle, allowing for highly accurate 
parameterizations of torsion angle energy profiles, which are known to greatly affect the overall 
conformational preferences of proteins and nucleic acids (4,5).  To allow larger simulation timesteps, and 
thereby enhance the speed of our simulations, it is assumed that all bonds are in their ground state 
configurations, sans molecular vibration, and all bonds are therefore constrained using the Linear Constraint 
Solver (LINCS) algorithm of Hess and co-workers (6).   
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This treatment employs single point charges on each atom, as derived via the Restrained 
Electrostatic Potential (RESP) method, which fits the electrostatic field for a given chemical group or 
molecule to that predicted by ab initio calculations (1). This method thus sacrifices the effects of atomic 
polarizability, which greatly decreases real-time simulation speed, to make simulations of large biochemical 
systems tractable on reasonable research timescales. In this case, the collective data set reported herein 
required approximately eight months to collect using tens of thousands of processors, which would not have 
been possible using a polarizable model. 
 
II. Solvation: To account for both the bulk and molecular properties of the ionic solvent, the RNA was 
centered in a 75 Å cubic box (with Na+ counterions) and solvated with approximately 13,500 TIP3P water 
molecules (7).  The TIP3P, or Transferrable Intermolecular Potential 3-Point, model is a rigid 3-point model 
of water that employs energy function [1] and thus assigns partial point-charges to each atom.  Although 
this model excludes the polarizability of molecular water and cannot reproduce some physical features of 
liquid water across a broad temperature range (8), this water model is well-understood; outperforms more 
sophisticated water models in several ways; provides a physically relevant solvation environment at 
standard and biological temperatures; and therefore remains widely used within the biomolecular 
simulation community (8,9).   

To avoid physical artifacts that would be expected from a hard-walled or van der Waals container 
(i.e. edge or fringe effects), periodic boundary conditions are applied in all simulations.  This is a standard 
simulation tool that effectively treats the system as an infinite number of identical neighboring cells and 
allows particles to traverse the boundaries of the aforementioned 75 Å cubic box without physical artifacts 
while maintaining constant pressure, temperature, and particle concentration, and which is also commonly 
used in rigorous ab initio calculations (10). 
 
III. Data Analysis: The authors have attempted to highlight approximations and sources of uncertainty 
inherent to analysis of the reported simulation data set within the associated article.  As noted in the text, 
the following should be considered with respect to the integrity of the data set reported and the authors’ 
analysis and interpretation of that data. 
• K-means clustering (3) is a heuristic method and is used herein only to determine the approximate time 

at which the simulated ensemble reaches steady state behavior.  
• Counterion treatment: As the pseudoknot of interest has been shown to fold in the absence of divalent 

ions (11), the reported simulations were performed using sodium counterions, and it is unclear what 
influence species such as Mg2+ might have on the conformational behavior of this species.  While beyond 
the scope of the current report, this is an important target for future studies. 

• Native and non-native contacts: Quantitative and algorithmic definitions of “native contacts” may vary 
across studies based on the system(s) studied and the models employed.  Such definitions are largely 
arbitrary and must, therefore, be physically logical and justifiable while avoiding the introduction of 
artifacts within the structural analysis.  The reported model and parameters used to define native contacts 
have been assessed for artifacts and are consistent with previously reported models (12,13).  It should be 
noted, however, that minor changes to the parameters used to define native contacts would impact the 
overall appearance of data that employs such metrics (Table 1 and Figures 4 and 7), which are meant 
largely to provide a qualitative view of the conformational states and behavior of the system studied. As 
noted in the associated article, normalization of non-native contacts is similarly arbitrary and should also 
be interpreted from a primarily qualitative perspective. 

• Sampling thoroughness: Finally, as noted in the associated article, it is not possible to verify that sampling 
of the configurational space of the studied species is complete, and there remains the possibility that 
regions outside of the reported configurational space remain unobserved within our simulated ensemble.  
The methods employed herein, however, were designed to optimize the sampling of the entirety of the 
configurational space and the thoroughness of that sampling.  It is thus expected that regions that remain 
unsampled would include only high-energy states and those not participating to any significant degree in 
the conformational equilibrium of the system studied.   
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