Supplementary Information

Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes

Kejnovská Iva¹, Bednářová Klára¹, Renčiuk Daniel¹, Dvořáková Zuzana¹, Školáková Petra¹,

Trantírek Lukáš², Fiala Radovan², Vorlíčková Michaela¹*, Sagi Janos³

¹ Institute of Biophysics, Czech Academy of Sciences, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic

²CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic

³ Rimstone Laboratory, RLI, Carlsbad, CA 92010, U.S.A

*To whom correspondence should be addressed: Tel.: +420 541517188; e-mail: mifi@ibp.cz

Table S1: The htel-22 d[AG₃(TTAG₃)₃] and htel-25 d[TAG₃(TTAG₃)₃TT] used in this paper

Name	5'-to-3' sequence										
Substitutions	in the htel 22:										
1 7 13 10 22											
wt-22	A GGG TTA GGG TTA GGG TTA GGG										
	Loon substitutions										
ap7 A GGG TT GGG TTA GGG TTA GGG											
ap7 9n13	A GGG TTA GGG TT GGG TTA GGG										
ap13 9n10	A GGG TTA GGG TTA GGG TT_ GGG										
ap17 9n7 13	A GGG TT GGG TT GGG TTA GGG										
ap7,13	A GGG TT_GGG TTA GGG TT_GGG										
ap7,17 an13.19	A GGG TTA GGG TT GGG TT GGG										
ap13,17	A GGG TTA GGG TTA GGG GGG										
ap17,10,17 ap7 13 19	A GGG TT GGG TT GGG TT GGG										
Substitutions	in the htel-25:										
wt-25	TA GGG TTA GGG TTA GGG TTA GGG TT										
	A/AP substitutions										
арх	TA GGG TTA GGG TTA GGG TTA GGG TT										
ap14	TA GGG TTA GGG TT GGG TTA GGG TT										
ap20	TA GGG TTA GGG TTA GGG TT_ GGG TT										
ap8,14,20											
	G/AP substitutions										
ap3	TA _ GG TTA GGG TTA GGG TTA GGG TT										
ap4	TA G _ G TTA GGG TTA GGG TTA GGG TT										
ap5	TA GG _ TTA GGG TTA GGG TTA GGG TT										
	(A+G)/AP substitutions										
ap3,8	TA _ GG TT _ GGG TTA GGG TTA GGG TT										
ap4,8	TA G _ G TT _ GGG TTA GGG TTA GGG TT										
ap5,8	TA GG _ TT _ GGG TTA GGG TTA GGG TT										
ap3,14	TA _ GG TTA GGG TT _ GGG TTA GGG TT										
ap4,14	TA G _ G TTA GGG TT _ GGG TTA GGG TT										
ap5,14	TA GG _ TTA GGG TT _ GGG TTA GGG TT										
ap3,20	TA _ GG TTA GGG TTA GGG TT _ GGG TT										
ap4,20	TA G _ G TTA GGG TTA GGG TT _ GGG TT										
ap5,20	TA GG _ TTA GGG TTA GGG TT _ GGG TT										
	clustered G/AP										
ap3,4	TA G TTA GGG TTA GGG TTA GGG TT										
ap3,4,5	TA TTA GGG TTA GGG TTA GGG TT										
ap3,11	TA _ GG TTA GG _ TTA GGG TTA GGG TT										
ap3,15	TA _ GG TTA GGG TTA _ GG TTA GGG TT										
ap3,17	TA _ GG TTA GGG TTA GG _ TTA GGG TT										
ap3,21	TA _ GG TTA GGG TTA GGG TTA _ GG TT										
ap3,22	TA _ GG TTA GGG TTA GGG TTA G _ G TT										
ap3,23	TA _ GG TTA GGG TTA GGG TTA GG _ TT										
ap4,15	TA G_G TTA GGG TTA _ GG TTA GGG TT										
ap4,8,15											
ap4,11	TA G_G TTA GG_ TTA GGG TTA GGG TT										
ap4,11,20											
ap4,22											
ap4,25											
ap5,9											
ap5,11											
ap3,15											
ap5,11,15											
ap3,41 ap5 20 21											
ap5,20,21											
ap5,23											

Table S2: Thermal stabilities of the htel-22 and htel-25 quadruplexes and their AP site modified analogs. Tm values were measured in 100 mM K⁺ (10 mM K-phosphate + 85 mM KCl) and determined from the normalized 1-0 temperature dependences.

A)			B)			C)				
ht	el-22		hi	tel-25		h	htel-25			
name	Tm [°C]	ΔTm [°C]	name	Tm [°C]	ΔTm [°C]	name	Tm [°C]	ΔTm [°C]		
wt-22	66.1	_	wt-25	62.0	_	clust	ered G/	AP		
sing	le A/AI		sing	gle A/A	P	ap3,23	ap3,23 36.2 -25.8			
ap7	66.0	-0.1	ap8	61.0	-1.0	ap3,15	35.8	-26.2		
ap13	60.0	-6.1	ap14	55.8	-6.2	ap3,21	33.8	-28.2		
ap19	66.5	0.4	ap20	62.2	0.2	ap3,11	32.5	-29.5		
doub	ole A/A	P	trip	le A/A	P	ap3,17	32.5 -29.5			
ap7,13	59.0	-7.1	ap8,14,20	65.3	3.3	ap3,22	25.0	-37.0		
ap7,19	60.0	-6.1	sing	gle G/A	P	ap3,4,5	-	-		
ap13,19	58.0	-8.1	ap3	46.5	-15.5	ap3,4	-	-		
trip	le A/AF		ap4	26.0	-36.0	ap4,8,15	25.0	-37.0		
ap17,18,19	67.5	1.4	ap5	39.5	-22.5	ap4,15	23.5	-38.5		
ap7,13,19	68.2	2.1	(A-	+G)/AP		ap4,23	20.7	-41.3		
		<u> </u>	ap3,8	46.0	-16.0	ap4,11,20	18.2	-43.8		
			ap4,8	30.0	-32.0	ap4,11	18.0	-44.0		
			ap5,8	43.7	-18.3	ap4,22	-	-		
			ap3,14	42.2	-19.8	ap5,23	35.2	-26.8		
			ap4,14	-	-	ap5,21	33.8	-28.2		
			ap5,14	36.8	-25.2	ap5,9	32.0	-30.0		
			ap3,20	40.8	-21.2	ap5,15	31.8	-30.2		
			ap4,20	25.5	-36.5	ap5,11	31.0	-31.0		
			ap5,20	36.2	-25.8	ap5,20,21	27.3	-34.7		
						ap5,11,15	27.0	-35.0		

Table S3: Thermal stabilities of the htel-22 and htel-25 quadruplexes and their AP site modified analogs. Tm values were measured in 100 mM Na⁺ (10 mM Na-phosphate + 85 mM NaCl) and determined from the normalized 1-0 temperature dependences.

A)			_	B)						
h	tel-22			htel-25						
name	Tm [°C]	∆Tm [°C]		name	Tm [°C]	∆Tm [°C]				
wt-22	57.2	-		wt-25	50.2	-				
sing	gle A/Al	P		single A/AP						
ap7	51.4	-5.8		ap8	50.1	-0.1				
ap13	51.0	-6.2		ap14	46.0	-4.2				
ap19	53.8	-3.4		ap20	52.0	1.8				
trip	le A/Al	P		trip	ole A/Al	P				
ap7,13,19	38.4	-18.8		ap8,14,20	-17.2					
				sing	gle G/A	J/AP				
				ap3	41.0	-9.2				
				ap4	27.0	-23.2				
				ap5	39.4	-10.8				
				(A+G)/AP						
				ap3,8 30.0 -20.						
				ap4,8	19.8	-30.4				
				ap5,8	31.0	-19.2				
				ap3,14	32.4	-17.8				
				ap4,14	-	-				
				ap5,14	30.0	-20.2				
				ap3,20	33.7	-16.5				
				ap4,20	19.5	-30.7				
				ap5,20	34.5	-15.7				

Figure S1: Various quadruplex folding topologies observed for human telomere sequences: (**a**) basket-type with edgewise-diagonal-edgewise loop configuration formed in Na⁺ solution (1), (**b**) parallel topology with all loops in propeller-like configuration observed in crystal containing K⁺ ions (2), (**c**) hybrid-1 (h-1) with propeller-like loop followed by two edgewise loops (3-6), and (**d**) hybrid-2 (h-2) two edgewise loops followed by propeller-like loop (6,7), both observed in K⁺ solution, (**e**) (2 + 2) quadruplex with edgewise-propeller-edgewise loop configuration formed in Na⁺ solution (8), (**f**) 2-tetrad basket quadruplex with edgewise-diagonal-edgewise loop configuration but with a sugar-phosphate backbone running in the opposite direction, formed in K⁺ solution and acidic pH (11). The deoxyadenosine and deoxythymidine residues are shown as red and blue circles, respectively. Tetrad deoxyguanosines in *anti-* and *syn*-conformation are represented by dark and light green rectangles, respectively.

Figure S2: CD spectra and melting curves (insert) of ap7,13,19 htel-22 measured in 100 mM K⁺. The black thick spectrum was taken at 23°C. Increasing the temperature resulted in time dependent formation of the parallel quadruplex at 45°C (red spectrum). Further increase in temperature up to 96°C led to quadruplex denaturation accompanied by decrease in CD amplitudes. Insert: Melting curves monitored at 265 nm in 60 mM K⁺ (black circles, open circles correspond to non-equilibrium points), in 100 mM K⁺ (red points). Starting from 45 °C to 96 °C melting took place; the cyan circles correspond to renaturation which was fast up to about 45 °C and very slow (24 hours – the open circle corresponds to non-equilibrium) returning to room temperature.

Figure S3: Native polyacrylamide gel electrophoresis of htel-22 analogs in (A): 10 mM K-phosphate buffer + 85 mM KCl, pH 7 (100 mM K⁺) run at 35°C and (B): 10 mM Na-phosphate buffer + 85 mM NaCl, pH 7 (100 mM Na⁺) run at 21°C.

Figure S4: The same type of CD spectra provided by (left) htel-23 $TAG_3(TTAG_3)_3$ shown (12) to form h-1 quadruplex and of ap8 htel-25 $TAG_3(TTAG_3)_3TT$, and by (right) ap19 htel-22 shown (13) to form h-2 quadruplex. Inserts: The same orientation of quadruplex tetrads and *anti/syn* guanine glycosidic angles in the two hybrid structures drawn according to (12).

wt-25	A _{8de}	ap14	ap20	ap8,14,20	ap3,8	ap4,8	ap5,8	ap3,14	ap4,14	ap5,14	ap3,20	ap4,20	ap5,20	DNA ladder		DNA ladder	wt-25	ap3	ap4	ap5
														11111	100 b 70 b 50 b 40 b 30 b	1)1) 1				
wt-25	B 8de	ap14	ap20	ap8,14,20	ap3,8	ap4,8	ap5,8	ap3,14	ap4,14	ap5,14	ap3,20	ap4,20	ap5,20	DNA ladder	20 b	DNA ladder	wt-25	ap3	ap4	ap5
		-	_		-		-	-	-						70 b 50 b 40 b 30 b	1111			-	

-

Figure S5: Native polyacrylamide gel electrophoresis of the htel-25 analogs in (A): 10 mM K-phosphate buffer + 85 mM KCl, pH 7 (100 mM K⁺) and (B): 10 mM Na-phosphate buffer + 85 mM NaCl, pH 7 (100 mM Na⁺), both run at 21°C.

Figure S6: (A) Normalized melting profiles (1 stands for native, 0 for denatured state), and (B) melting profiles expressed in molar absorption of htel-25 analogs monitored by UV absorption at 297 nm measured in 100 mM K⁺.

Figure S7: Normalized melting profiles of htel-25 wt and its (A+G)/AP analogs monitored by UV absorption at 297 nm measured in 100 mM K⁺.

Figure S8: Double G/AP sites containing htel-25 analogs: (A) CD spectra in 1 mM sodium phosphate buffer with 0.3 mM EDTA, pH 7.2 (dotted lines), in 10 mM K-phosphate (dashed lines), and in K⁺ added up to 100 mM (solid lines); the sketch of the quadruplex with numbering G positions (in the middle); (B) Normalized melting curves and (C) native PAGE. All measurements were undertaken in 100 mM K⁺ at 21°C.

Figure S9: Column graphs of changes in Tm values caused by A/AP lesions (upper panels) in htel-22 (left) and htel-25 (right) analogs and by G/AP (left) and (A+G)/AP (right) lesions (bottom panels) in htel-25 analogs, compared to their wt's, in 100 mM K⁺ or 100 mM Na⁺.

References

1. Wang, Y. and Patel, D.J. (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. *Structure*, **1**, 263–282.

2. Parkinson, G.N., Lee, M.P.H. and Neidle, S. (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. *Nature*, **417**, 876–880.

3. Ambrus, A., Chen, D., Dai, J., Bialis, T., Jones, R.A. and Yang, D. (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. *Nucleic Acids Res.*, **34**, 2723–2735.

4. Luu,K.N., Phan,A.T., Kuryavyi,V., Lacroix,L. and Patel,D.J. (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. *J. Am. Chem. Soc.*, **128**, 9963–9970.

5. Dai, J., Punchihewa, C., Ambrus, A., Chen, D., Jones, R.A. and Yang, D. (2007) Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation. *Nucleic Acids Res.*, **35**, 2440–2450.

6. Phan,A.T., Kuryavyi,V., Luu,K.N. and Patel,D.J. (2007) Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. *Nucleic Acids Res.*, **35**, 6517–6525.

7. Dai, J., Carver, M., Punchihewa, C., Jones, R.A. and Yang, D. (2007) Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. *Nucleic. Acids Res.*, **35**, 4927–4940.

8. Lim,K.W., Ng,V.C.M., Martín-Pintado,N., Heddi,B. and Phan,A.T. (2013) Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity. *Nucleic Acids Res.*, **41**, 10556–10562.

9. Lim,K.W., Amrane,S., Bouaziz,S., Xu,W., Mu,Y., Patel,D.J., Luu,K.N. and Phan,A.T. (2009) Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. *J. Am. Chem. Soc.*, **131**, 4301–4309.

10. Zhang,Z., Dai,J., Veliath,E., Jones,R.A. and Yang,D. (2010) Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures. *Nucleic Acids Res.*, **38**, 1009–1021.

11. Galer, P., Wang, B., Šket, P., Plavec, L. (2016) Reversible pH Switch of Two-Quartet G-Quadruplexes Formed by Human Telomere. *Angewandte Chemie* **55**, 1993-1997.

12. Phan, A.T., Luu, K.N., Patel, D.J. (2006) Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplex in K solution. *Nucleic Acids Res.* **34**, 5715-19.

13. Babinsky, M., Fiala, R., Kejnovska, I., Bednarova, K., Marek, R., Sagi, J., Sklenar, V., Vorlickova, M. (2014) Loss of loop adenines alters human telomere d[AG3(TTAG3)3] quadruplex folding. *Nucleic Acids Res.* **42**, 14031-14041.