## **Supplementary Figures and Tables**

#### The RNA ligase RtcB reverses

## MazF-induced ribosome heterogeneity in Escherichia coli

Hannes Temmel<sup>1</sup>, Christian Müller<sup>1</sup>, Martina Sauert<sup>1</sup>, Oliver Vesper<sup>1</sup>, Ariela Reiss<sup>2</sup>, Johannes Popow<sup>2</sup>, Javier Martinez<sup>2</sup>, and Isabella Moll<sup>1\*</sup>

#### SUPPLEMENTARY FIGURES



**Supplementary Figure S1.** RtcB affects the SU/M ratio but does not alter the sedimentation of 70S ribosomes or ribosomal subunits. For ribosome profile analysis S30 extracts were prepared from exponentially growing *E. coli* strains BW25113, BW25113 $\Delta$ *rtcB* and from strain BW25113 harboring plasmid pBAD*rtcB* 30 minutes after induction of *rtcB* expression by addition of 0.2% arabinose (**A**) or from strain BL21DE3 before and 30 minutes after induction of *rtcB* expression from plasmid pET*rtcB* by addition of 0.1mM IPTG (**B**). The extracts were separated on 10-30% sucrose gradients in Tico buffer (20 mM Hepes pH 7.4 at 4°C; 6 mM MgOAc; 30 mM NH<sub>4</sub>Ac; 4 mM 2-mercapthoethanol) and analyzed and

fractionated using an Äkta FPLC system (GE Healthcare, NJ, USA). **C** The proteins from the respective fractions were precipitated using TCA and further tested for the presence of RtcB using an RtcB specific antibody. Purified RtcB was used as control. Antibodies specific for ribosomal proteins uS2 and uL2 were used to indicate the fractions comprising the subunits, 70S monosomes and polysomes, respectively. The molecular weights of the marker proteins are given to the left.



**Supplementary Figure S2.** RtcA does not affect growth and recovery after *mazF* expression. **A** Growth of strain MC4100 F' (black) and its isogenic *rtcA* deletion mutant (green) was monitored by measuring the OD<sub>600</sub>. See also Figure 4A. **B** Strain MC4100 F' (black) and its isogenic *rtcA* deletion mutant (green) both harboring plasmid pSA1 were grown to an OD<sub>600</sub> of 0.35, when *mazF* expression was induced by addition of 1 mM IPTG (+). 30 minutes thereafter cells were transferred in fresh medium to remove the inductive agent (-) and growth recovery was monitored for additional 7 hours. The analysis was performed in triplicate, error bars indicate the standard deviation from the mean. See also Figure 4B.

## SUPPLEMENTARY TABLES

#### Supplementary Table 1

| Gene | Protein product                                       | Log <sub>2</sub> fold change |
|------|-------------------------------------------------------|------------------------------|
| rplY | 50S ribosomal protein L25                             | 1,1614                       |
| rpsP | 30S ribosomal protein S16                             | 1,1461                       |
| rpsF | 30S ribosomal protein S6                              | 1,1139                       |
| rplJ | 50S ribosomal protein L10                             | 1,1139                       |
| rpsM | 30S ribosomal protein S13                             | 1,0000                       |
| rpIS | 50S ribosomal protein L19                             | 1,0000                       |
| rplX | 50S ribosomal protein L24                             | 0,9700                       |
| rpIC | 50S ribosomal protein L3                              | 0,9542                       |
| rplU | 50S ribosomal protein L21                             | 0,9542                       |
| rpsA | 30S ribosomal protein S1                              | 0,9420                       |
| rpsD | 30S ribosomal protein S4                              | 0,9294                       |
| rpmG | 50S ribosomal protein L33                             | 0,9031                       |
| rpsU | 30S ribosomal protein S21                             | 0,9031                       |
| rplW | 50S ribosomal protein L23                             | 0,9031                       |
| rpmF | 50S ribosomal protein L32                             | 0,8451                       |
| rpll | 50S ribosomal protein L9                              | 0,8239                       |
| rpSJ | 30S ribosomal protein S10                             | 0,8129                       |
| rpsE | 30S ribosomal protein S5                              | 0,7782                       |
| rpsG | 30S ribosomal protein S7                              | 0,7782                       |
| rpmA | 50S ribosomal protein L27                             | 0,7782                       |
| secB | protein export chaperone, general protein chaperone   | 0,7782                       |
| rplA | 50S ribosomal protein L1                              | 0,7533                       |
| rplF | 50S ribosomal protein L6                              | 0,7270                       |
| rplO | 50S ribosomal protein L15                             | 0,6990                       |
| rpIR | 50S ribosomal protein L18                             | 0,6990                       |
| trmD | tRNA (guanine-N(1)-)-methyltransferase                | 0,6990                       |
| gpsA | glycerol-3-phosphate dehydrogenase [NAD(P)+]          | 0,6990                       |
| pheA | P-protein chorismate mutase                           | 0,6990                       |
| ydcY | DUF2526 family protein                                | 0,6990                       |
| rpIM | 50S ribosomal protein L13                             | 0,6601                       |
| lon  | Lon protease                                          | 0,6532                       |
| ycbX | 6-N-hydroxylaminopurine detoxification oxidoreductase | 0,6021                       |
| rplL | 50S ribosomal protein L7/L12                          | 0,5836                       |
| yahK | aldehyde reductase, NADPH-dependent, Zn-containing    | 0,5441                       |
| rplQ | 50S ribosomal protein L17                             | 0,5119                       |
| rpsQ | 30S ribosomal protein S17                             | 0,4771                       |
| ribB | 3,4-dihydroxy-2-butanone 4-phosphate synthase         | 0,4771                       |
| nanK | N-acetylmannosamine kinase                            | 0,4771                       |
| ynfG | S- and N-oxide reductase, Fe-S binding                | 0,4771                       |
| cspD | cold shock-like protein CspD                          | 0,4771                       |
| hns  | DNA-binding protein H-NS                              | 0,4771                       |
| yfeX | porphyrinogen oxidase, cytoplasmic                    | 0,4771                       |
| rpsP | 30S ribosomal protein S15                             | 0,3979                       |

| rpsR | 30S ribosomal protein S18                            | 0,3979 |
|------|------------------------------------------------------|--------|
| rplT | 50S ribosomal protein L20                            | 0,3979 |
| rplE | 50S ribosomal protein L5                             | 0,3979 |
| nfuA | Fe/S biogenesis protein NfuA                         | 0,3979 |
| luxS | S-ribosylhomocysteine lyase                          | 0,3680 |
| grcA | autonomous glycyl radical cofactor A                 | 0,3522 |
| ydgH | DUF1471 family periplasmic tri-domain protein        | 0,3522 |
| uspG | universal stress protein G                           | 0,3522 |
| rsuA | ribosomal small subunit pseudouridine synthase A     | 0,3010 |
| groL | 60 kDa chaperonin GroEL                              | 0,3010 |
| tig  | trigger factor                                       | 0,3010 |
| groS | 10 kDa chaperonin GroES                              | 0,3010 |
| mglB | D-galactose-, D-glucose-binding protein, periplasmic | 0,3010 |
| infC | translation initiation factor IF-3                   | 0,3010 |
| xseB | exonuclease VII, small subunit                       | 0,3010 |
| mdh  | malate dehydrogenase                                 | 0,3010 |
| bfr  | bacterioferritin                                     | 0,3010 |
| yacF | FtsZ stabilizer                                      | 0,3010 |

**Supplementary Table 1.** Proteins that interact with RtcB as identified by co-purification and subsequent mass-spectrometry. Proteins enriched by ratios > 0,3 log2 fold-change in relation to the mock experiment were considered significant.

## Supplementary Table 2

|                             | Relevant features                                                                   | Source or           |
|-----------------------------|-------------------------------------------------------------------------------------|---------------------|
|                             |                                                                                     | reference           |
| <i>E. coli</i> strains      |                                                                                     |                     |
| MG1655                      | F <sup>-</sup> , lambda <sup>-</sup> , <i>rph</i> -1                                | (1)                 |
| JE28                        | MG1655::rplL-his                                                                    | (2)                 |
| BW25113                     | F, DE(araD-araB)567, lacZ4787(del)::rrnB-3,                                         | (3)                 |
|                             | LAM-, rph-1, DE(rhaD-rhaB)568, hsdR514                                              |                     |
| MC4100 F'                   | [araD139]B/r, Del(argF-lac)169, lambda, e14-, flhD5301,                             | (4)                 |
|                             | $\Delta$ (fruK-yeiR)725(fruA25), relA1, rpsL150(str <sup>R</sup> ), rbsR22,         |                     |
|                             | Del(fimB-fimE)632(::IS1), deoC1, [F' proAB lacl <sup>q</sup> Z∆M15, Tn10            |                     |
|                             | (Tet <sup>R</sup> )]                                                                |                     |
| BL21(DE3)                   | dcm, ompT, hsdS(rB <sup>-</sup> mB <sup>-</sup> ), gal, $\lambda$ DE3               | NEB                 |
| MG1655∆ <i>rtcB</i>         | MG1655, rtcB <sup>-</sup>                                                           | this study          |
| BW25113∆ <i>rtcB</i>        | BW25113, <i>rtcB</i> <sup>-</sup>                                                   | this study          |
| MC4100Δ <i>rtcB</i> F′      | MC4100 F', <i>rtcB</i>                                                              | this study          |
| Plasmids                    |                                                                                     |                     |
| pSA1                        | <i>amp<sup>R</sup></i> , pQE30 derivative harboring <i>mazF</i> gene                | (5)                 |
| pBAD- <i>rtcB</i>           | <i>cam</i> <sup>R</sup> , pBAD33 derivative harboring <i>mazF</i> gene              | this study          |
| pProEX-HTb                  | $amp^{R}$ , vector for Trc driven gene expression                                   | Invitrogen          |
| pPro- <i>gfp</i>            | amp <sup>R</sup> , pProEX-HTb encoding his- and HA-tagged emGFP                     | this study          |
| pPro- <i>rtcB</i>           | amp <sup>R</sup> , pProEX-HTb encoding his- and HA-tagged RtcB                      | this study          |
| pPro- <i>rtcB</i> (-His)    | amp <sup>R</sup> , pProEX-HTb encoding HA-tagged RtcB                               | this study          |
| pET28a                      | kan <sup>R</sup> , vector for T7 driven gene expression                             | Novagen             |
| pET <i>rtcB</i>             | <i>kan<sup>®</sup></i> , pET28a derivative harboring <i>rtcB</i> gene               | this study          |
| pTwin1                      | <i>amp<sup>R</sup></i> , vector for protein purification <i>via</i> an intein tag   | NEB                 |
| pTwin <i>rtcB</i>           | amp <sup>R</sup> , pTwin1 derivative harboring <i>rtcB</i> gene                     | this study          |
| 706-Flp                     | <i>tet</i> <sup>R</sup> , encoding Flp recombinase                                  | Gene Bridges        |
| pACA-RNA43 <sup>SD</sup>    | <i>cam</i> <sup><i>R</i></sup> , pBAD33 derivative harboring the 3'-terminal 54 nts | this study          |
|                             | of <i>rrnB</i> followed by <i>glyT</i> and the ara terminator                       |                     |
| pGCA-RNA43 <sup>SD</sup>    | pACA-RNA43 <sup>SD</sup> , ACA at position 1500 of the <i>rrnB</i> fragment         | this study          |
|                             | was changed to GCA                                                                  |                     |
| pUH-C_∆ACA-EmGFP            | amp <sup>R</sup> , pUH21-2 derivative harboring the emerald-gfp gene                | Oron-Gottesman et   |
|                             | devoid of ACA sites under control of the PA1-04/03                                  | al., under revision |
|                             | promoter                                                                            |                     |
| p <i>gfp</i> <sup>aSD</sup> | pUH-C_ΔACA-EmGFP derivative displaying an aSD sequence                              | this study          |
|                             | upstream of the <i>gfp</i> start codon                                              |                     |

Supplementary Table S2. Bacterial strains and plasmids used in this study

# Supplementary Table 3

| Name                                           | Binding region                                                              | Sequence*                                        |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
| PCR amplification of DNA templates for cloning |                                                                             |                                                  |  |  |  |
| D10 <sub>fwd</sub>                             | <i>rtcB</i> from nt 1 - 17                                                  | ATAT <i>CCATGG</i> GTATGAATTACGAATTACT           |  |  |  |
| <i>rtcB</i> <sub>rev</sub>                     | <i>rtcB</i> from nt 1227 – 1209                                             | AAGGATCCTCATCATTATCCTTTTACGCACACC                |  |  |  |
| IM_P9 <sub>fw</sub>                            | <i>rtcB</i> from nt 1 – 18                                                  | TA <i>CCATG</i> GTATACCCATACGATGTTCCAGATTACGCTAT |  |  |  |
|                                                |                                                                             | GAATTACGAATTACTG                                 |  |  |  |
| IM_R9 <sub>rev</sub>                           | <i>rtcB</i> from nt 1227 – 1209                                             | AA <i>CTCGAG</i> TCATCATTATCCTTTTACGCACACC       |  |  |  |
| IM_I19 <sub>rev</sub>                          | pUH-C ΔACA-EmGFP                                                            | [phos] GGA GGATAG GATCCA AAATAC GCCATG           |  |  |  |
|                                                | <br>(changing the SD to aSD)                                                |                                                  |  |  |  |
| IM_J19 <sub>fw</sub>                           | pUH-C ΔACA-EmGFP                                                            | [phos] CGCAAAAAATGGTGAGCAAGG                     |  |  |  |
| _                                              | (changing the SD to aSD)                                                    |                                                  |  |  |  |
| PCR amplification                              | DCD amplification of DNA tomplator for in vitro transprintion               |                                                  |  |  |  |
| W11                                            | rrsB from nt 1491 - 1506                                                    | ΑΔΑΤΤΓΓΤΑGΑGTΑΑΤΑΓGΑCΤΓΑΓΤΑΤΑGGGAAGTΓGTAACAAGGT  |  |  |  |
| 018                                            | rrsB from nt 1542 - 1524                                                    |                                                  |  |  |  |
| Olorev                                         | N3D 1011 11 1342 1324                                                       |                                                  |  |  |  |
| Probes for northern blot analyses              |                                                                             |                                                  |  |  |  |
| A20                                            | <i>rrsB</i> from nt 1541 - 1511                                             | AAGGAGGTGATCCAACCGCAGGTTCCCCTACGGTTACC           |  |  |  |
| R25                                            | <i>rrfB</i> from nt 120 - 101                                               | ATGCCTGGCAGTTCCCTACT                             |  |  |  |
| CD                                             | <i>rrsB</i> from nt 955 - 939                                               | CCACATGCTCCACCGC                                 |  |  |  |
| Primer extensio                                | n analysis                                                                  |                                                  |  |  |  |
| IM_Y25 <sub>rev</sub>                          | <i>rtcB</i> from nt 124 -139                                                | GCATTACCGCAATATG                                 |  |  |  |
| RT-PCR primer                                  |                                                                             |                                                  |  |  |  |
| S76d                                           | rrsB from nt 1360 – 1379                                                    | AGAATGCCACGGTGAATACG                             |  |  |  |
| X15 <sub>rov</sub>                             | <i>rrsB</i> from nt 1499 - 1483                                             | TACGACTTCACCCCAGT                                |  |  |  |
| Y12 <sub>rev</sub>                             | <i>rrsB</i> from nt 1542 - 1522                                             | TAAGGAGGTGATCCAACCGC                             |  |  |  |
| H17rov                                         | $rrsB^{Agel}$ from nt 1538 – 1523                                           | GAGGTGATCCAACCGAT                                |  |  |  |
| S19 <sub>rev</sub>                             | <i>rrsB<sup>SD</sup></i> from nt 1542 - 1522                                | TATCCTCCTGATCCAACCGC                             |  |  |  |
| Overlan BCB pri                                | imor                                                                        |                                                  |  |  |  |
|                                                | rrcP from at 1/99 1511                                                      | GGTGAAGTCGTAGCAAGGTAACCG                         |  |  |  |
| IIVI_012 <sub>fw</sub>                         | (introducing mutation A1500G)                                               | GOIGAAGICGIAGCAAGGIAACCG                         |  |  |  |
| IM V12                                         | rrsB from nt 1/88-1511                                                      | CGGTTACCTTGCTACGACTTCACC                         |  |  |  |
| nvi_vizrev                                     | (introducing mutations A1500G)                                              | edd i neer i dei neen en en ee                   |  |  |  |
| IM 1156                                        | rrsB from nt 702 – 720                                                      | ΑGAGATCTGGAGGAATACC                              |  |  |  |
|                                                | rrsB from nt 1511 – 1530                                                    | GGTGGGGAACCATCGGTTGG                             |  |  |  |
|                                                | (introducing mutations T1512G                                               |                                                  |  |  |  |
|                                                | A1513T: T1522A: G1523T)                                                     |                                                  |  |  |  |
| IM H15ray                                      | pKK3535 from nt 3537 – 3552                                                 | CC <i>TCTAGA</i> CGAAGGGG                        |  |  |  |
| IM K15                                         | <i>rrsB</i> from nt 1525 – 1504                                             | CGATGGTTCCCCACCGGTTACC                           |  |  |  |
| lev                                            | (introducing mutations T1512G:                                              |                                                  |  |  |  |
|                                                | A1513T; T1522A; G1523T)                                                     |                                                  |  |  |  |
| * The T7 promo                                 | * The T7 promoter sequence is underlined. Restriction sites are in italics. |                                                  |  |  |  |

Supplementary Table S3. Oligonucleotides used in this study

#### REFRENCES

- 1. Blattner, F.R., Plunkett, G., 3rd, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F. et al. (1997) The complete genome sequence of *Escherichia coli* K-12. *Science*, **277**, 1453-1462.
- 2. Ederth, J., Mandava, C.S., Dasgupta, S. and Sanyal, S. (2009) A single-step method for purification of active His-tagged ribosomes from a genetically engineered *Escherichia coli. Nucleic Acids Res.*, **37**, e15.
- Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L. and Mori, H. (2006) Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol. Syst. Biol.*, 2, 2006 0008.
- 4. Casadaban, M.J. (1976) Transposition and fusion of the *lac* genes to selected promoters in *Escherichia coli* using bacteriophage lambda and Mu. *J. Mol. Biol.*, **104**, 541-555.
- Amitai, S., Kolodkin-Gal, I., Hananya-Meltabashi, M., Sacher, A. and Engelberg-Kulka, H. (2009) *Escherichia coli* MazF leads to the simultaneous selective synthesis of both "death proteins" and "survival proteins". PLoS Gen., 5, e1000390.