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ABSTRACT

Photosynthetic activities of protoplasts isolated fronm spin-
ach leaf (Spinacia oleracea L.) were investigated. The proto-
plasts were stable up to 9 hr, without loss of the original ac-
tivity of C02 fixation (33-75 ,umoles C02/mg Chl hr) and
light-dependent 02 evolution (33-40 ,umoles 02/mg Chl * hr),
when stored in 0.8 M mannitol-0.05 M N-tris(hydroxymethyl)-
methylglvcine-NaOH buffer, pH 7, at 4 C in dark. The opti-
mum pH of 8.5 for C02 fixation reaction carried out in the
present experimental condition employed is about the same
as that reported for intact spinach chloroplasts. The C02 con-
centration for half-maximal rate of C02 fixation by proto-
plasts. "Km (CO2)," were determined to be 19.8 gM (pH 7) and
42 gM (pH 8.5) and are similar to those observed for intact
spinach chloroplasts. Protoplasts showed postillumination
CO2 fixation. Over-all results indicate that spinach protoplasts
are as active as the intact plant leaf tissues in their photo-
svnthetic activities.

Since the initial report by Cocking (10) on the isolation of
protoplasts from tomato root tip cells, many investigations
have been conducted on various types of plant cells (2, 9, 11,
14, 18-20, 26-28, 32, 33). Protoplasts with normal metabolic
activities are potentially useful for physiological research, and
we were interested in their application pertaining to structure-
function relationship of spinach leaf RuDP2 carboxylase. We
are attempting to elucidate the functional role of each in-
dividual subunit of the enzyme protein and the molecular
interaction in vivo (1). Immunochemical techniques are being
employed in this work (24, 25), and protoplasts appear to be an
attractive system for such studies (2, 27, 33). As a basis for
such research, spinach leaf protoplasts have been isolated, and
their biochemical activities have been measured. Results
reported below demonstrate that spinach protoplasts are
potentially useful for research in photosynthesis.

MATERIALS AND METHODS
Photoplasts. Young leaves of freshly harvested spinach

(Spinacia oleracea L. var Kyoho) were used for preparing
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C Abbreviation: RuDP: ribulose 1, 5-diphosphate.

protoplasts. Methods of the two-step enzymic maceration of
spinach leaves using Macerozyme R-10 and Cellulase Onozuka
R-10 (Kinki Yakult Co. Ltd, Osaka) were basically the same as
those for preparing tobacco leaf (Nicotiana tabacumn) proto-
plasts as reported by Takebe et al. (32). Two modifications
employed were that the concentration of mannitol was raised
to 0.8 M as recommended by Otsuki and Takebe (26) and that
the washing medium did not contain 0.1 mm CaClh. Two g of
spinach leaf segments (about 0.5 cm wide) devoid of lower
epidermis were placed in a 50-ml Erlenmeyer flask containing
20 ml of maceration medium (0.5% Macerozyme R-10-1%
K-dextran sulfate [18% S, Meito Sangyo Co. Ltd. Nagoya]-0.8
M mannitol [pH 5.8]). After vacuum infiltration of leaf samples
for 2 min, the enzymic disintegration was carried out in a
rotary shaker at 20 C. The spongy mesophyll cell suspension
was collected by decantation of the greenish supernatant every
30 min, by substituting 10 ml of fresh maceration medium each
time. At the same time, measurements of the absorbance incre-
ment at 680 nm as well as the phase contrast microscope in-
spection of the collected samples were carried out. This first
step of the enzymic treatment usually goes to completion in
5 hr, and the whole supernatant fractions were filtered through
a Nylon bolting cloth (35 mesh). The residues collected by
centrifugation at lOOg for 3 min were washed twice with 50
ml each of 0.8 M mannitol solution (pH 5.4). The spongy cell
fractions obtained (Fig. la) were then subjected to the second
enzymic treatment using a medium containing 2% Cellulase
Onozuka R-10 and 0.8 M mannitol (pH 5.2). The enzymic
reaction was carried out at 37 C with occasional stirring. The
complete conversion to protoplasts occurs within 1 to 1.5 hr
incubation, and the residues collected by centrifugation (100g,
3 min) were washed twice with 50 ml each of 0.8 M mannitol
solution. Fig. lb is a typical photomicrograph of the protoplast
preparations. The final preparation was stored in 0.8 M
mannitol at 4 C in dark until the time of analytical experiments.

Photosynthetic CO2 Fixation. The reaction mixture for deter-
mining photosynthetic CO2 fixation activity contained the
following components (lmoles): Tricine-NaOH at various pH
values, 20: NaH"CO,, 1.6 (2,Ci); mannitol, 160; and appro-
priate amounts of protoplasts (15-25 ,g Chl) in a total volume
of 0.2 ml. The reaction mixture except NaHCO, was incubated
in the dark for 3 min at 25 C. After 5 min preillumination
(3 x 104 lux of white light), NaH"4CO, was added and incuba-
tion continued at 25 C for 5 min. The reaction was then
stopped by adding 0.1 ml of glacial acetic acid and radio-
activity was measured by a Packard liquid scintillation
spectrometer. The effect of various compounds on photosyn-
thetic CO2 fixation was examined by adding them to the
standard assay mixture in the preincubation period.

Postillumination CO2 Fixation. Postillumination CO2 fixation
activity was determined according to the method of Avron and
Gibbs (5). After preillumination of the protoplast preparations
for 10 min (3 x I04 lux of white light) at 25 C, test tubes con-
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FIG. l. Spinach protoplasts. Spinach leaf segments were first treated by pectinase (Macerozyme R-10) to give spongy cells
treatment with cellulase (Cellulase Onozuka R-10) to give protoplasts (b). X 500.

taining reaction mixture were returned to the dark with the
concomitant addition of NaH"CO2 (1.6 jtmoles, 2 ,uCi), and
subsequent time sequence of CO2 fixation was determined at
pH 7. A system without preillumination served as the control.

Photosynthetic 02 Evolution. The same protoplast suspen-
sion used for photosynthetic CO2 fixation was used for
measuring 02 evolution. The reaction mixture contained the
following components (,imoles): Tricine-NaOH (pH 7), 100;
NaHCO,, 8; mannitol, 800; and protoplasts containing 18 jig
of Chl in a total volume of 1 ml. The complete mixture was
placed in the reaction chamber of a Rank oxygen electrode
(Rank Bros., Bottisham, England), and the change of 02 tension
corresponding to the transient dark-light (3 X 10O lux of white
light) condition was recorded at 250 C.

Chlorophyll. Chlorophyll content of protoplasts was ana-
lyzed chlorimetrically by the method of Arnon (4).

RESULTS

Photosynthetic CO2 Fixation. The stability of the proto-
plasts was tested by withdrawing at 3-hr intervals aliquots of
protoplasts in Tricine-NaOH buffer of five different pH values
(7, 7.5, 8, 8.5, 9) at 4 C in the dark. Light-dependent CO2
fixation by the preparations, which is linear up to 15 min,
was measured at 25 C. As shown in Figure 2, the protoplasts
kept in the buffer at pH 7 did not lose the original activity
during 9 hr storage. At pH 8.5 and 9, however, there occurred
a drastic decline of activity with only 13 to 15% remaining
after 9 hr. Essentially the same results were obtained by using
HEPES-NaOH buffer. On the other hand, when tris-HCl or
phosphate buffer was used, activity of the light-dependent CO2
fixation of protoplasts was markedly impaired at every pH.
Therefore, preparations containing 0.8 M mannitol-0.05 M
Tricine-NaOH buffer (pH 7) were used throughout the in-
vestigation.

Experimental results of pH versus C02 fixation relationship
shown in Figure 3 demonstrate that the photosynthetic activity
was maximal at pH 8.5 under the experimental conditions em-
ployed. It will be recalled that Avron and Gibbs (5) reported
that the pH optimum for CO2 fixation by intact spinach chloro-
plast preparations is about 8.5 but dependent upon the reac-
tion medium.

Several compounds were tested for their effect on photo-
synthetic CO2 fixation, and results are summarized in Table
I. They had no effect when added singly, but the combination

(a), followed by
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FIG. 2. Stability of spinach protoplasts. Protoplasts were sus-
pended in 0.8 M mannitol-0.1 M Tricine-NaOH buffer of specified
pH and stored in dark at 4 C. Aliquots withdrawn at 3 hr intervals
were subjected to C02 fixation at 25 C for 5 min in the standard
assay system (pH 8.5). Original activity of the protoplasts was 47
,moles C02 fixed/mg Chl-hr (pH 8.5).

of 1 mm Mg2' and 0.5 mm EDTA caused a significant inhibitory
effect (23 %).
"Km(CO2)" of Protoplasts. The rate of CO2 fixation by proto-

plasts as a function of bicarbonate concentration was studied
to determine the CO2 concentration for half-maximal rate of
CO2 fixation ("Kin"), and "Km(HC032)" value of 0.9 mM (pH
7) and 2.5 mm (pH 8.5), respectively, was obtained (Fig. 4).
Although there is no assurance that the "apparent Kmn" is com-
parable to real Kin, the above "Km(HCO02)" value is in the
same range as that observed with the intact spinach chloroplasts
having high affinity to CO2 (16, 17, 35), which is evidently
lower than that of the purified RuDP carboxylase reported by
several workers (12, 23, 29, 31, 35). The "Km(C02)" calculated
from the data according to Murai and Akazawa (23), 19.8 ,uM
(pH 7.0) and 42 /iM (pH 8.5), respectively, was nearly equiv-
alent to that of the low Km form of RuDP carboxylase
reported by Bahr and Jensen (7) and Badger et al. (6).

Postiliumination CO2 Fixation. Protoplast preparations pre-
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FIG. 3. pH dependence of photosynthetic CO2 fixation. pH versus

CO2 fixation relationship was determined using the standard assay
system described in text, including Tricine-NaOH buffer of varied
pH. Original activity of the protoplasts was 64 ,umoles CO2 fixed/mg

hl[hr (pH 8.5).

Table I. C02 Fixation unlder Various Reactionl Co,iditionis
Various compounds were added to the assay mixture in the

preincubation periods. Original activity (light-dependent CO2
fixation) of the protoplasts was 55 ,umoles CO2 fixed/mg Chl-hr
(pH 8.5).

Light- Postillumina-
Changes in Reaction Mixture dependent tion C02

C02 Fixation Fixation

So

Complete 100 100
With 0.1 mM Mg2+ 95 93
With 1 mM Mg2+ 92 94
With Mg2+ and 0.5 mm EDTA 77 82
With 0.5 mm EDTA 88 96
With 0.1 mM Pi 93 94

viously illuminated for 10 min exhibited the activity of CO2 fixa-
tion in dark (Fig. 5). The specific activity was approximately
13% of the light-dependent CO2 fixation. The behavior is essen-

tially analogous to the intact cells of higher plants (21) as well as

green algae (34). The results can be interpreted on the basis that
a steady state level of RuDP in the preilluminated protoplasts
sustains the CO2 fixation reaction in the subsequent dark period.
The effect of various compounds on the postillumination CO2
fixation was basically the same as that on light-dependent CO2
fixation (Table I).

Photosynthetic 02 Evolution. A complete structural assembly
of photosynthetic activities in protoplasts can be envisaged from
the light-dependent 02 evolution as shown in Figure 6 (3). The
specific activity of 33 to 40 ,umoles of 02 evolved/mg Chl hr
(pH 7) is nearly in the range observed with intact chloroplasts
(13, 22), and the activity was not lost during 9 hr storage in 0.8
M mannitol buffer (pH 7). The photosynthetic 02 evolution by
the protoplast preparations was strongly inhibited by 10 ftM

DCMU. However, it will be noted that there is a DCMU-insen-
sitive 02 uptake in the dark (12.7 ,umoles of 02 uptake/mg
Chl hr), which is approximately the same rate as that observed
by Aono et al. (3) using spinach mesophyll cells.

Koms0.9mM
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FIG. 4. Effect of bicarbonate concentration on CO2 fixation by
protoplasts. Experimental systems were the same as those described
in Fig. 3, except for varied levels of bicarbonate. Activities were

measured at both pH 7 and 8.5. In order to calculate the "Km(CO2)"
values, the concentration of C02 at each pH was computed accord-
ing to the method of Murai and Akazawa (23). Original activity of
the protoplasts was 60 ,umoles C02 fixed/mg Chl-hr (pH 8.5).
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FIG. 5. Time course of postillumination CO2 fixation by proto-
plasts. Reaction conditions are described in text. Reaction compo-
nents containing protoplasts (18 ,ug Chl) were same as those in Fig.
1. Original activity of the protoplasts was 60 Amoles C02 fixed/mg
Chl-hr (pH 8.5). Preillumination for 10 min (0); without preillu-
mination (0).
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FIG. 6. Photosynthetic 02 evolution by protoplasts. Reaction
conditions are described in text. To examine the effect of DCMU,
the reagent dissolved in ethanol was added to the reaction mixture
at the final concentration of 10 uM at arrow. Original activity of
the protoplasts was 75 ,umoles C02 fixed/mg Chl-hr (pH 8.5) and
40 ,umoles 02 evolved/mg Chl - hr (pH 7), respectively.

DISCUSSION

With the advent of knowledge permitting the interpretation
of the regulatory mechanism of photosynthetic reactions in mo-
lecular terms, much current interest in photosynthesis research
is directed at correlating molecular mechanisms based on en-

zymic studies (in vitro) with those operating in living plant cells
(in vivo) (1, 12, 35). Many experiments using intact chloroplast
preparations having high photosynthetic activities have shown
that they are profitable for such research purposes (12, 16, 17,
22, 35). Chloroplasts, however, are vulnerable to environmental
conditions during isolation steps. Isolated chloroplasts are clas-
sified into several types depending on the degree of intactness or

breakage, and changes in structural characteristics are reflected
in impairment of their biochemical activities (15, 22, 30). It will
be noted that there is a discrepancy between chloroplasts and
intact plant cells with respect to their photosynthetic activities,
e.g. postillumination CO2 fixation (5). One major reason for this
phenomenon is that metabolic channeling is cut off between the
chloroplast and cytoplasm. Our results on protoplasts show that
they have reasonably high photosynthetic activities and high
affinities to CO2. Penetration of macromolecular metabolites
into protoplasts appears to be another advantage in their usage
for biological research. In a series of investigations, Takebe and
his associates (2, 27, 28, 33) clearly established the multiplica-
tion of tobacco mosaic virus in tobacco leaf protoplasts by
means of penetration of virus particles and anti-tobacco mosaic
virus--/-globulin into protoplast preparations. In order to dis-
close the functional role in vivo of constituent subunits of the
spinach leaf RuDP carboxylase molecule, we are now exam-

ining the effect of antibodies raised against each subunit mole-
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cule on photosynthetic CO2 fixation reactions in protoplasts.
Because several investigations have demonstrated that the site
of synthesis of two subunits of RuDP carboxylase is different
(8, 13), we feel that protoplasts may also provide a chance of
studying the biosynthetic mechanism of this important protein
in plant leaf cells.
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