Supporting Information

A Quantitative Mechanistic PK/PD Model Directly Connects Btk Target Engagement and *In Vivo* Efficacy

Fereidoon Daryaee^{a,1}, Zhuo Zhang^{a,1}, Kayla R. Gogarty^a, Yong Li^a, Jonathan Merino^a, Stewart L. Fisher^{b,2} and Peter J Tonge^{a,2}

^aInstitute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook NY 11794-3400

^bC4 Therapeutics, Cambridge, MA 02142

¹These authors contributed equally to this work.

²Authors to whom correspondence should be addressed: SLF: <u>stewfisher@slfisherconsulting.com</u>; PJT: <u>peter.tonge@stonybrook.edu</u>

SI Materials and Methods

Synthesis of BDP-CC-292 (5), a fluorescent analog of CC-292

A covalent fluorescent Btk probe, BDP-CC-292, was synthesized from CC-292 as shown in **Scheme S1**. This method involved the synthesis of an azide derivative of CC-292 that was subsequently coupled to an alkyne analog of the fluorescent dye BODIPY using click chemistry. Each intermediate was purified by flash column chromatography and characterized by ESI-MS, ¹H and ¹³C NMR. The final probe was purified by HPLC and characterized by ESI-MS.

Scheme S1. Synthesis of BDP-CC-292 (5)

Demethylated CC-292 (1)

A solution of CC-292 (AVL-292, Ontario Chemicals Incorporated, 98% purity, CAS # 1202757-89-8) in 1 mL DCM was stirred at -80 °C for 5 min after which 120 mg of potassium iodide (KI) and 190 mg 18-Crown-6 were added. BBr₃ was dissolved in 1 mL of DCM and cooled to -80 °C. The solution of BBr₃ in DCM was then added dropwise to the solution of CC-292 which was stirred continuously. After stirring for 1 h at -80 °C, the mixture was warmed to -20 °C and stirred for another 15 min. Upon completion of the reaction, which was confirmed by TLC, the reaction was quenched by the addition of 2 mL saturated NaHCO₃ solution. The quenched reaction was stirred at RT for 10 min before the mixture was concentrated by rotary evaporation. The residual solution was extracted with 50 mL EtOAc for 3 times, and the organic layers were combined and then dried with MgSO₄. Evaporation under vacuum yielded crude product (**1**) which was purified by CombiFlash chromatography using a silica column.

ESI MS Calculated for $C_{21}H_{20}FN_5O_3 m/z$ [M+H]⁺ 410.16, found 410.1, ¹H NMR (400 MHz, Methanol- d_4) δ ppm 3.85 (t, J=4.80 Hz, 2 H), 4.00 (t, J=4.80 Hz, 2 H), 5.78 (dd, J=9.41, 2.13 Hz, 1 H), 6.33 - 6.40 (m, 1 H), 6.40 - 6.48 (m, 1 H), 6.80 - 6.86 (m, 2 H), 7.25 - 7.30 (m, 1 H), 7.38 - 7.45 (m, 4 H), 7.87 (d, J=4.02 Hz, 1 H), 8.05 (t, J=2.00 Hz, 1 H). ¹⁹F NMR (376 MHz, Methanol- d_4) δ ppm -168.86 (s., 1F).

CC-292-Tosylate (2)

Demethylated CC-292 (1) (10 mg), 0.01 mL triethylamine (TEA) and 1 mg DMAP were added to a 10 mL RBF containing 0.5 mL DCM. The mixture was cooled to 0 °C and then stirred for 5 min. 4-Toluenesulfonyl chloride (TsCl) was dissolved in 0.5 mL DCM in a glass vial and cooled to 0 °C. The TsCl solution was then added to the solution of 1 dropwise at 0 °C, which was then stirred at 0 °C for 10 min and then warmed to RT. The reaction mixture was stirred for another 12 h and when the reaction was shown to be complete by TLC the solution was evaporated under vacuum. Crude product (2) was obtained as a yellow residue and used in the next step without further purification.

Azido-CC-292 (3)

Crude CC-292-Tosylate (2) (13 mg) was added to a 10 mL RBF containing 0.5 mL DMF and 3 mg NaN₃. The mixture was stirred at 65°C overnight and iced cold water was added after TLC demonstrated that the reaction was complete. The aqueous mixture was extracted with 10 mL EtOAc for 3 times and the organic layers were combined and dried with MgSO₄. After filtering, the solvent was evaporated under vacuum and the crude solid product was purified by CombiFlash chromatography using a silica column.

ESI MS Calculated for $C_{21}H_{19}FN_8O_2 m/z$ [M+H]⁺ 435.44, found 435.1, ¹H NMR (400 MHz, Methanol- d_4) δ ppm 3.85 (t, *J*=4.80 Hz, 2 H), 4.00 (t, *J*=4.80 Hz, 2 H), 5.78 (dd, *J*=9.41, 2.13 Hz, 1 H), 6.33 - 6.40 (m, 1 H), 6.40 - 6.48 (m, 1 H), 6.80 - 6.86 (m, 2 H), 7.25 - 7.30 (m, 1 H), 7.38 - 7.45 (m, 4 H), 7.87 (d, *J*=4.02 Hz, 1 H), 8.05 (t, *J*=2.00 Hz, 1 H). ¹⁹F NMR (376 MHz, Methanol-d4) δ ppm -168.74 (d, *J*=4.09 Hz). ¹³C NMR (126 MHz, Methanol- d_4) δ ppm 50.04, 67.27, 113.78, 114.30, 115.41, 117.62, 121.39, 126.58, 128.55, 131.13, 134.07, 138.49, 139.12, 139.47 (d, *J*=20.89 Hz, 1 C), 140.69 (d, *J*=246.14 Hz, 1 C), 150.55 (d, *J*=10.90 Hz, 1 C), 153.86, 156.17 (d, *J*=2.73 Hz, 1 C), 164.72.

BDP-CC-292 (5)

Azido-CC-292 (**3**) (0.5 mg) and 0.5 mg BDP FL alkyne (**4**, purchased from Lumiprobe) were added to a 1.5 mL glass reaction vial after which 0.2 mL tBuOH was added. Sodium ascorbate (2.3 mg) was dissolved in 0.5 mL H₂O and 1.4 mg CuSO₄·5H₂O was dissolved in 0.1 mL H₂O. Subsequently, 0.05 mL of each solution was added by pipette to the glass vial containing 0.2 mL tBuOH, Azido-CC-292 (**3**) and BDP FL Alkyne (**4**). The reaction mixture was stirred at room temperature overnight, filtered and then purified by HPLC using an analytical PFP column (Phenomenex, PFP, 250 × 4.6, 5 μ m). Chromatography was performed at a flow rate of 0.8 mL/min using a gradient of 0.020 M NH₄OAc in H₂O and MeCN. The mobile phase consisted of 0% MeCN (0 to 5 min), 0 to 50% MeCN (5 to 30 min), 50 to 100% MeCN (30 to 50 min), 100 to 0% MeCN (50 to 60 min). The pure product (**5**) eluted at 35.5 to 37.5 min and was characterized by ESI-MS and NMR spectroscopy.

ESI MS Calculated for $C_{38}H_{37}BF_3N_{11}O_3 m/z [M+H]^+ 764.31$, found 764.3, $m/z [M+Na]^+ 786.31$, found 786.3, HR MS Calculated for $C_{38}H_{37}BF_3N_{11}O_3 m/z [M+H]^+ 764.31$, found 764.3193.

¹H NMR (500 MHz, DMSO-*d*₆) δ ppm 1.24 (s., 3 H), 2.36 - 2.38 (m, 2 H), 2.41 (s, 3 H), 2.64 - 2.65 (m, 2 H), 4.29 - 4.35 (m, 4 H), 4.69 - 4.72 (m, 2 H), 5.76 (s., 1 H), 6.33 (d, *J*=3.81 Hz, 1 H), 6.36 (d, *J*=3.20 Hz, 1 H), 6.53 (s, 1 H), 6.75 (d, *J*=9.46 Hz, 2 H), 7.05 (d, *J*=4.27 Hz, 1 H), 7.10 (s, 1 H), 7.12 - 7.19 (m, 3 H), 7.38 - 7.44 (m, 2 H), 7.48 - 7.56 (m, 3 H), 7.88 (d, *J*=11.90 Hz, 1 H), 8.09 (s, 1 H)

Equilibrium target occupancy (MATLAB)

CC-292 is an irreversible inhibitor of Btk which binds to the ATP binding site (Scheme S2).

$$E + ATP \longrightarrow E ATP \longrightarrow E + P$$

$$+$$

$$K_{i}$$

$$K_{i}$$

$$K_{5}$$

$$E | \longrightarrow E|^{*}$$

Scheme S2. Kinetic scheme for the reaction of Btk with an irreversible competitive inhibitor.

A model that correlates target occupancy with inhibitor concentration ([I]) at equilibrium was derived assuming the steady-state approximation for enzyme-substrate turnover, rapid equilibrium for initial

enzyme-inhibitor complex formation, and that negligible target degradation and re-synthesis occurred during the exposure of the cells to the inhibitor.

According to mass balance:

$$E_0 = E_t + ES + EI + EI^2$$

Therefore:

$$E_0 = E_t + E_t * \left(\frac{S}{K_m}\right) + E_t * \left(\frac{I}{K_i}\right) + EI^*$$

$$E_0 = E_t * \left(1 + \frac{S}{K_m} + \frac{I}{K_i}\right) + EI^*$$

If
$$\alpha = \left(1 + \frac{S}{K_m} + \frac{I}{K_i}\right)$$

Then:

$$E_t = \frac{E_0 - EI^*}{\alpha}$$
 Eq. S1

According to drug-target kinetics:

$$\frac{dEI^*}{dt} = k_5 * EI = k_5 * E_t * \left(\frac{I}{K_i}\right)$$
$$\frac{dEI^*}{dt} = \left(\frac{k_5 * I}{K_i}\right) * \left(\frac{E_0 - EI^*}{\alpha}\right)$$

and since $K_i * \alpha = K_i^{app} + I$ Therefore:

$$\frac{dEI^*}{dt} = \left(\frac{k_5 * I}{K_i^{app} + I}\right) * (E_0 - EI^*)$$

If $b = \left(\frac{k_5 * I}{K_i^{app} + I}\right)$

$$\frac{dEI^*}{dt} = -b * (-E_0 + EI^*)$$

Solution of the above differential equation yields:

$$EI^* = EI_0^* * e^{-b*t} + E_0 * (1 - e^{-b*t})$$

Given that in the cellular target occupancy experiment, the initial concentration of irreversible enzymeinhibitor complex is zero:

$$EI^* = E_0 * (1 - e^{-b*t})$$

Therefore, target occupancy (TO) is defined as:

$$TO = \frac{EI^*}{E_0} = 1 - e^{-b*t}$$
 Eq. S2

and so:

$$TO = 1 - e^{-\left(\frac{k_5 * I}{\kappa_i^{app} + I}\right) * t}$$
Eq. S3

Model for cellular and in vivo target occupancy (MATLAB)

The concentrations of E, ES, EI and EI* change over time as expressed by differential Eq. S4 to S8.

$$\frac{dE_t}{dt} = -k_3 * [I] * E_t + k_4 * EI - k_1 * [S] * E_t + k_2 * ES + k_{cat} * ES$$
Eq. S4

$$\frac{dE.S}{dt} = k_1 * [S] * E_t - k_2 * ES - k_{cat} * ES$$
 Eq. S5

$$\frac{dP}{dt} = k_{cat} * ES$$
 Eq. S6

$$\frac{dE.I}{dt} = k_3 * [I] * E_t - k_4 * EI - k_5 * EI$$
Eq. S7

$$\frac{dEI^*}{dt} = k_5 * EI$$
 Eq. S8

In which, $E_{t=0} = E_0$; $ES_{t=0} = 0$; $P_{t=0} = 0$; $EI_{t=0} = 0$ and $EI^*_{t=0} = 0$, and [S]=substrate concentration ([ATP]) which is assumed to be constant, and [I]= inhibitor concentration which is assumed to be constant in the cellular assays and to be the serum free fraction for the *in vivo* experiments.

Dividing both sides of Eq. S4-S8 by [E₀] yields the relative fraction for each of the enzyme species.

From mass balance: $E_0 = E + ES + EI + EI^*$

so
$$E = E_0 - ES - EI - EI^*$$

Converting the above mass-balance to the ratio of each enzyme species with respect to the initial total enzyme concentration, yields

$$E = 1 - ES - EI - EI^*$$
 Eq. S9

Given that a fraction of the enzyme will be degraded and re-synthesized every hour (target turnover), **Eq. S9** can be converted to the following equation,

$$1 + \rho * t = E + ES + EI + EI^*$$
 Eq. S10

where ρ is the fraction of enzyme that is turned over every hour

Under the steady state approximation, $\frac{dES}{dt} = 0$, therefore:

$$[E] = \frac{\kappa_m}{[S]} * [ES]$$
Eq. S11

Assuming rapid-equilibrium for initial enzyme-inhibitor complex formation,

$$[EI] = \frac{[I]}{K_i} * [E]$$

so that

$$[EI] = \frac{[I]}{K_i} * \frac{K_m}{[S]} * [ES]$$
Eq. S12

Substitution into Eq. S10 with the terms containing [ES] in Eq. S11 and S12, yields:

$$1 + \rho * t = \frac{K_m}{[S]} * ES + ES + \frac{[I]}{K_i} * \frac{K_m}{[S]} * [ES] + EI^*$$
$$1 + \rho * t = \left(1 + \frac{K_m}{[S]} + \frac{[I]}{K_i} * \frac{K_m}{[S]}\right) * ES + EI^*$$
$$\left(1 + \frac{K_m}{[S]} + \frac{[I]}{K_i} * \frac{K_m}{[S]}\right) = \beta \text{ and } \frac{K_m}{[S]} = M$$

Eq. S13

 $1 + \rho * t = \beta * ES + EI^*$

Derivatization of both sides gives:

$$\rho = \beta * \frac{dES}{dt} + \frac{dEI^*}{dt}$$
 Eq. S14

According to Scheme S2:

$$\frac{dEI^*}{dt} = k_5 * EI$$

Replacing $\frac{dEI^*}{dt}$ in Eq. S14 with the above definition, and EI with the definition in Eq. S12 and EI* with its equality presented in the Eq. S13, we have,

$$\rho = \beta * \frac{dES}{dt} + k_5 * \frac{[I]}{K_i} * \frac{K_m}{[S]} * [ES]$$

By rearrangement:

$$\frac{dES}{dt} = \frac{\rho}{\beta} - \left(\frac{k_5}{\beta} * \frac{[I]}{K_i} * \frac{K_m}{[S]}\right) * ES$$

Considering $\left(\frac{k_5}{\beta} * \frac{[I]}{K_i} * \frac{K_m}{[S]}\right) = k$

$$\frac{dES}{dt} = \frac{\rho}{\beta} - k * ES$$

Integration of the above equation gives:

$$ES = \frac{\rho}{\beta * k} + \gamma * e^{-k * t}$$
 Eq. S15

where $\gamma = ES_0 - \frac{\rho}{\beta * k}$

Assuming that all non-ES forms of the enzyme complexes are representative of the occupied form of the enzyme, we have:

$$TO^{t} = \frac{1 + \rho * t - ES}{1 + \rho * t} = 1 - \frac{\frac{\rho}{\beta * k} + \gamma * e^{-k * t}}{1 + \rho * t}$$
Eq. S16

Note that the inhibitor concentration in the above equations, [I], is either the extracellular concentration in the cell-based experiments or the plasma free fraction of the drug and that K_i is K_i^{app}, which is measured based on drug total concentration in cellular assay or plasma free fraction *in vivo*.

To calculate target occupancy, drug concentration was incorporated into **Eq. S16** by incorporating a multidose PK model. Target occupancy was then used in the following equation (**Eq. 17**) to predict drug efficacy (in **Mathematica**) together with a sigmoidal term relates target occupancy and efficacy (target vulnerability):

$$\frac{dAD}{dt} = k_{inf} * \left(1 - \left(\frac{(TO^t)^n}{(TO^t)^n + (TO_{50})^n} \right) \right) * (AD - AD_0)$$
 Eq. S17

 k_{inf} is a rate constant for the change in AD (h^{-1}) while AD is the ankle diameter in mm. AD₀ is the ankle diameter in healthy rats, TO₅₀ is the target occupancy that results in 50 percent of the maximum efficacy and n is the Hill coefficient that defines how steeply target occupancy and efficacy are correlated.

Inclusion of BTK inhibitor residence time in the mechanistic PK/PD model

To evaluate the impact of residence-time of reversible BTK inhibitors on the dynamics of target engagement and efficacy we need to include the BTK-inhibitor dissociation rate constant (k_6) in the model (Scheme S3).

$$E + ATP \longrightarrow E ATP \longrightarrow E + P$$

$$\downarrow K_{i}$$

$$E = K_{5} EI^{*}$$

Scheme S3. Kinetic scheme for the reaction of BTK with a reversible competitive inhibitor.

Eq. S7 and S8 can be modified to include k_6 , leading to modified versions of Eq. S15 and S16.

$$\frac{dE.I}{dt} = k_3 * \rho m * [I] * E_t - k_4 * EI - k_5 * EI + k_6 * EI^*$$
Eq. S18 (modified version of Eq. S7)
$$\frac{dE.I^*}{dt} = k_5 * EI - k_6 * EI^*$$
Eq. S19 (modified version of Eq. S8)

According to Eq. S14, we have

$$\rho = \beta * \frac{dES}{dt} + \frac{dEI^*}{dt}$$

Replacing EI* in the above equation with the definition in **Eq. S19**, and EI with the definition in **Eq. S12** and EI* with the definition in **Eq. S13**, we have,

$$\rho = \beta * \frac{dES}{dt} + k_5 * \frac{[I]}{K_i} * \frac{K_m}{[S]} * [ES] - k_6 * (1 + \rho * t - \beta * ES)$$

By rearrangement:

$$\frac{dES}{dt} = \frac{\rho + k_6}{\beta} + k_6 * \rho * t - \left(\frac{k_5}{\beta} * \frac{[I]}{K_i} * \frac{K_m}{[S]} + k_6\right) * ES$$

Assuming that $\left(\frac{k_5}{\beta} * \frac{[I]}{K_i} * \frac{K_m}{[S]} + k_6\right) = k$, then

$$\frac{dES}{dt} = \frac{\rho + k_6}{\beta} + \frac{k_6}{\beta} * \rho * t - k * ES$$

Integration of the above equation gives

$$ES = \frac{\rho + k_6}{\beta * k} - \frac{k_6 * \rho}{\beta * k^2} + \frac{k_6}{\beta * k} * \rho * t + \gamma * e^{-k * t}$$

Where

$$\gamma = ES_0 - \frac{\rho + k_6}{\beta * k} + \frac{k_6 * \rho}{\beta * k^2}$$

Assuming that all non-ES forms of the enzyme represent occupied, inhibited enzyme, we have,

$$TO^{t} = \frac{1 + \rho * t - ES}{1 + \rho * t} = 1 - \frac{\frac{\rho + k_{6}}{\beta * k} \frac{k_{6} * \rho}{\beta * k^{2}} \frac{k_{6}}{\beta * k^{2}} * \rho * t + \gamma * e^{-k * t}}{1 + \rho * t}$$

Eq. S21 (modified version of Eq. S16)

Incorporation of **Eq. S21** together with a multi-dose one-compartment PK model into **Eq. S17** allows the efficacy of a reversible competitive BTK inhibitor to be predicted.

Eq. S20 (modified version of Eq. S15)

Inclusion of self-limitation term into the kinetics-driven PK/PD model

The rat CIA model shows spontaneous remission after 4 days. Using the same approach as that described by Liu et al.(1) we included a rate constant for self-resolution of the disease (k_{out}) into a modified version of the PK/PD model (Eq. S23). The transit model used to derive Eq. S23 is shown below (Scheme S4):

Scheme S4. Transit model used to obtain kout

$$\frac{dAD}{dt} = k_{inf} * \left(1 - \left(\frac{(TO^t)^n}{(TO^t)^n + (TO_{50})^n} \right) \right) * (AD - AD_0) - k_{out} * (AD - AD_0)$$
Eq. S23

$$\frac{dk_1}{dt} = R - k * k_1$$
 Eq. S24

$$\frac{dk_2}{dt} = k * k_1 - k * k_2$$
 Eq. S25

$$\frac{dk_3}{dt} = k * k_2 - k * k_3$$
Eq. S26

$$\frac{dk_{out}}{dt} = k * k_3 - k * k_{out}$$
Eq. S27

AD₀, is a correction factor for the absolute value of AD. The derivatives for k_1 to k_{out} represent the development of the self-resolution process over time. The term R in **Eq. S24** is the initial rate of decrease in ankle swelling before the self-resolution process starts. The transit rate constant, k, governs the transition from k_1 to k_{out} , where k_{out} is the ultimate rate constant that describes the decrease in ankle swelling.

The initial values of k_1 , k_2 , k_3 and k_{out} at time 0 are 0.

Values of AD₀, k and k_{inf}, were estimated by fitting the untreated (control) experimental data, $TO^{t} = 0$, to Eq. **S23- S27**, using a value of R = 0.001 h⁻² taken from Liu et al. (Table 3).(1) This gave AD₀ (mm) 1.78, k (h⁻¹) 0.012 and k_{inf} (h⁻¹) 0.0031.

Eq. S23 was then used to simulate efficacy using the values of AD_0 , k and k_{inf} , TO^t from **Eq. S16** and drug concentration from a multi-dose one-compartment PK model.

Supplementary Tables

[CC-292] (nM)	Fraction of Btk in total protein (%)	Std. Dev.
0	3.70	1.62
0.4	2.84	1.46
1.5	2.86	1.81
5.9	2.41	1.46
11.7	2.46	1.68
93.8	2.50	1.60
750	3.56	3.01
 3000	1.34	0.57

 Table S1. The Fraction of Btk in Total Protein in Ramos Cells

Table S2. The Change in the Fraction of Btk in Total Protein in Ramos Cells as a Function of Time

Time after Drug Washout (h)	Fraction of Btk in total protein (%)	Std. Dev.
0	3.80	2.69
2	3.07	0.49
18	3.23	0.57
24	2.89	0.45

Table S3. Pharmacokinetic parameters for CC-292 in rats^a

In vivo data							
Dose (mg kg ⁻¹)	C _{max} (ng mL ⁻¹)	t _{max} (min)	t _{1/2} (h)	k _a (h⁻¹)	k _e (h⁻¹)	V _d /F (L kg⁻¹)	CL/F (L h ⁻¹ kg ⁻¹)
3	235	30	0.7	3.5	1	8	8
30	1003	40.2	1.2	3	0.6	20	12
100	2979	36	9	8.5	0.08	32	2.4

 ${}^{a}C_{max}$, maximum plasma concentration of CC-292; t_{max} , time at which the maximum plasma concentration was observed; $t_{1/2}$, half-life of CC-292; k_{a} and k_{e} , rates of absorption and elimination of CC-292, respectively; V_{d}/F , apparent volume of distribution; Cl/F, apparent clearance.

CC-292 is 92% protein bound.

In vitro data: CC-292, free fraction of drug (fu) = 0.08

Supplementary Figures

Figure S1. Method for experimentally quantifying target occupancy

Fluorescence

Total BTK

Western Blot

1. 97.5 ng Pure BTK	5. DMSO	9. 11.718 nM CC-292			
2. 48.75 ng Pure BTK	6. 0.366 nM CC-292	10. 93.75 nM CC-292			
3. 24.38 ng Pure BTK	7. 1.46 nM CC-292	11. 750 nM CC-292			
4. 12.19 ng Pure BTK	8. 5.859 nM CC-292	12. 3000 nM CC-292			

Figure S2. SDS-PAGE analysis of Btk engagement. Treatment of Ramos cells with varying concentrations of CC-292 resulted in alteration in fluorescence intensity of BDP-CC-292 bound to Btk whereas the luminescence from the western blot remained constant.

Fluorescence 13 12 11 10 9 8 7 6 5 4 3 2 1 Free BTK Western Blot 1. 97.5 ng Pure BTK 5 to 7: 2 hours post drug treatment 2. 48.75 ng Pure BTK 8 to 10: 18 hours post drug treatment 3. 24.38 ng Pure BTK 11 to 13: 24 hours post drug treatment 4. 12.19 ng Pure BTK

Figure S3. *In vitro* Btk Turnover in Ramos Cells. SDS-PAGE showing the increase in fluorescence of the BDP-CC-292 probe as a function of time after CC-292 washout and also showing a western blot of total Btk.

Figure S4. *In vivo* Btk Turnover in B Cells. SDS-PAGE showing the increase in fluorescence of the BDP-CC-292 probe as a function of time after CC-292 washout and also showing a western blot of total Btk.

Figure S5. Sensitivity of simulated target occupancy to the values of k_5 , K_i , ρ , M and t_R . The experimentally determined *in vivo* target occupancy is shown in red points and the result of fitting to the target occupancy model is shown as a red solid line. In each case the target occupancy has been simulated after increasing or decreasing each parameter by a factor of 5. a) k_5 , b) K_i , c) M, d) ρ , e) t_R .

Compound Characterization Demethylated CC-292 (1) ¹*H NMR*

¹H NMR (400 MHz, METHANOL-*d*₄) δ ppm 3.85 (t, *J*=4.80 Hz, 2 H) 4.00 (t, *J*=4.80 Hz, 2 H) 5.78 (dd, *J*=9.41, 2.13 Hz, 1 H) 6.33 - 6.40 (m, 1 H) 6.40 - 6.48 (m, 1 H) 6.80 - 6.86 (m, 2 H) 7.25 - 7.30 (m, 1 H) 7.38 - 7.45 (m, 4 H) 7.87 (d, *J*=4.02 Hz, 1 H) 8.05 (t, *J*=2.00 Hz, 1 H)

Demethylated CC-292 (1) ¹⁹F NMR 20141003 Pure De-Me-CC-292.002.001.1r.esp

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 Chemical Shift (ppm)

errelation de capacita par la parte

Azido-CC-292 (3) ¹H NMR

¹H NMR (400 MHz, METHANOL -*d*₄) δ ppm 3.57 (t, *J*=4.90 Hz, 2 H) 4.12 (t, *J*=4.80 Hz, 2 H) 5.80 (dd, *J*=9.54, 2.26 Hz, 1 H) 6.35 - 6.41 (m, 1 H) 6.42 - 6.50 (m, 1 H) 6.82 - 6.86 (m, 2 H) 7.29 (t, *J*=7.90 Hz, 1 H) 7.39 - 7.50 (m, 4 H) 7.89 (d, *J*=3.89 Hz, 1 H) 8.08 (t, *J*=2.01 Hz, 1 H)

Azido-CC-292 (3) ¹⁹F NMR

12/9/2014 10:46:28 PM

Azido-CC-292 (3) ¹³C NMR

12/9/2014 10:47:40 PM

¹³C NMR (126 MHz, METHANOL-*d*₄) δ ppm 50.04 (s, 1 C) 67.27 (s, 1 C) 113.78 (s, 1 C) 114.30 (s, 1 C) 115.41 (s, 1 C) 117.62 (s, 1 C) 121.39 (s, 1 C) 126.58 (s, 1 C) 128.55 (s, 1 C) 131.13 (s, 1 C) 134.07 (s, 1 C) 138.49 (s, 1 C) 139.12 (s, 1 C) 139.47 (d, *J*=20.89 Hz, 1 C) 140.69 (d, *J*=246.14 Hz, 1 C) 150.55 (d, *J*=10.90 Hz, 1 C) 153.86 (s, 1 C) 156.17 (d, *J*=2.73 Hz, 1 C) 164.72 (s, 1 C)

20141003 Pure CC-292 Azide Probe 13C.esp

BDP-CC-292 (5) HRMS

References

1. Liu L, *et al.* (2011) Antiarthritis effect of a novel Bruton's tyrosine kinase (BTK) inhibitor in rat collageninduced arthritis and mechanism-based pharmacokinetic/pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy. *J Pharmacol Exp Ther* 338(1):154-163.