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Supplementary Figure 1 | Computed displacements of (red) positively- and (blue) negatively-charged particles
at several CO2 pressures: 0.1, 1, 10, 136 (thicker dashed line), and 500 kPa in order of increasing displacement.
All other parameters are as listed in Supplementary Table 1. The displacements are shown at t = 2L2/Dc =
168s.
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Supplementary Figure 2 | Computed particle concentrations and trajectories of positively-charged particles in
(a) pure water, (b) 0.1% NaN3 solution, and (c) 0.25% NaN3 solution.
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Supplementary Figure 3 | Image sequence of particle (polystyrene, 0.5 µm) removal driven by CO2 dissolu-
tion. The time between each frame is≈0.2 s, which allows tracking of individual particles (indicated by arrows)
flowing through the filtrate stream.
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Supplementary Table 1 | Parameters used in the calculations

description variable quantity
CO2 diffusivity1 Dc 1.91×10−9 m2 s−1

H+ diffusivity1 D+ 9.311×10−9 m2 s−1

HCO3
– diffusivity1 D− 1.185×10−9 m2 s−1

ambipolar diffusivity Di 2.102×10−9 m2 s−1

atmospheric CO2 partial pressure patm
CO2

40 Pa
applied CO2 pressure pCO2 135.8 kPa
channel half length L 400 µm
particle radius Rp 0.25 µm and 0.5 µm
particle zeta potential ζ −70 mV and 60 mV
CO2 Henry’s law constant2 Kh 2980 LkPamol−1

forward reaction rate3 kf 0.039 s−1

backward reaction rate3 kb 9.2×104 Lmol−1 s−1

water viscosity µ 0.9 mPas

Supplementary Table 2 | Concentrations of species in water in equilibrium with CO2 at several pressures

pCO2 (kPa) CO2 (molL−1) H+ (molL−1) HCO3
– (molL−1) CO3

2 – (molL−1) OH– (molL−1) pH
0.04 1.3×10−5 2.4×10−6 2.4×10−6 4.7×10−11 4.2×10−9 5.6

1 3.4×10−4 1.2×10−5 1.2×10−5 4.7×10−11 8.4×10−10 4.9
10 3.4×10−3 3.8×10−5 3.8×10−5 4.7×10−11 2.7×10−10 4.4

100 3.4×10−2 1.2×10−4 1.2×10−4 4.7×10−11 8.4×10−11 3.9
136 4.6×10−2 1.4×10−4 1.4×10−4 4.7×10−11 7.2×10−11 3.9
500 1.7×10−1 2.7×10−4 2.7×10−4 4.7×10−11 3.7×10−11 3.6

1000 3.4×10−1 3.8×10−4 3.8×10−4 4.7×10−11 2.7×10−11 3.4
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Supplementary Discussion
Governing equations. We use a one-dimensional model to describe the coupled diffusion and reaction of
dissolved species and the diffusiophoretic motion of particles. The parameters in the model are listed in Sup-
plementary Table 1. We neglect diffusioosmosis due to the wall surface charge since a Poiseuille flow driven
by back pressure cancels the diffusioosmotic flow, making a zero net fluid flow in any given cross-section of
the channel4. Not only is this approximation valid for the stationary experimental case in Fig. 2, but it is also
true for the continuous flow filtration device in Fig. 4 because the ion gradients are established in the direction
transverse to the main flow direction. Furthermore, the large speed of the main flow (≈300 µms−1) compared
to diffusioosmotic flow, O(10µms−1), would allow one to neglect the diffusioosmotic flow when predicting
the particle motion in the filtration devices.

Using the sign convention for x presented in Figure 1, CO2 diffuses inward from x = ±L. Dissolved CO2,
concentration cc(x, t), reacts with water according to the overall reaction5,6

CO2 +H2O
kf−−⇀↽−−
kb

H++HCO3
− (1)

with forward rate constant kf and backward rate constant kb. The net forward reaction rate is r = kfcc −
kbcH+cHCO3

− . The transport equation for CO2 is therefore

∂cc

∂ t
= Dc

∂ 2cc

∂x2 − r (2)

The transport equation for the anions and cations is

∂c±
∂ t

=−∂ j±
∂x

+ r± (3)

where j± is the ion flux and the subscripts refer to the sign of the ion’s charge. The stoichiometry of reaction 1
makes r+ = r− ≡ r. The ion fluxes are7

j± =−D±

(
∂c±
∂x
± c±

ze
kBT

∂φ

∂x

)
(4)

where φ is the electric potential, z = 1 is the ion valence, e is the elementary charge, kB is the Boltzmann
constant, and T is the absolute temperature. Under the assumption of local charge neutrality, we have c+ =

c− ≡ ci and j+ = j− ≡ ji. The assumption of local charge neutrality can be justified whenever the Debye
length is significantly smaller than the length scale of concentration gradients8; at 136 kPa the Debye length is
25 nm, which satisfies this requirement. It follows that

ji =−D+

(
∂ci

∂x
+ ci

ze
kBT

∂φ

∂x

)
=−D−

(
∂ci

∂x
− ci

ze
kBT

∂φ

∂x

)
(5)
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and the electric field E =−∂φ/∂x is

E = β
kBT
ze

∂ lnci

∂x
(6)

where β = (D+−D−)/(D++D−). The ion flux therefore simplifies to

ji =−
(

2D+D−
D++D−

)
∂ci

∂x
(7)

and we obtain
∂ci

∂ t
= Di

∂ 2ci

∂x2 + r (8)

where Di = 2D+D−/(D++D−) is the ambipolar diffusivity, ci(x, t) is the concentration of anions or cations,
and r = kfcc− kbc2

i .
The evolution of the particle number concentration n(x, t) follows

∂n
∂ t

+
∂ (udpn)

∂x
= Dp

∂ 2n
∂x2 (9)

where Dp = kBT/(6πµRp) and udp =Γp
∂ lnci

∂x is the diffusiophoretic speed of the particles. Accounting for the fi-
nite ratio of particle size and Debye length, we estimate the particle mobilities−691 µm2 s−1 and 1001 µm2 s−1

for negatively- and positively-charged particles, respectively, based on the Keh and Wei model9. We do not
consider variation of the mobility with the local pH since the zeta potential of polystyrene does not change
significantly within the range of interest10.

Exploiting the symmetry of the domain, we only solve for the CO2, ion, and particle concentrations for
x ∈ [0,L]. The boundary conditions for cc, ci, and n at x = L are

cc = csat
c , ∂xci = 0, ∂xn = 0 (10)

where csat
c is the CO2 concentration in equilibrium with the applied CO2 pressure (pCO2/Kh where Kh is the

Henry’s law constant for CO2 in water). At x = 0 the boundary conditions are:

∂cc

∂x
=

∂ci

∂x
=

∂n
∂x

= 0 (11)

The initial conditions are
cc(x,0) = catm

c , ci(x,0) = catm
i , n(x,0) = n0 (12)

where catm
c and catm

i are the concentrations of carbon dioxide and ions in equilibrium with the atmospheric CO2

partial pressure (40 Pa), respectively, and we take n0 = 1.
To compute the trajectories of particles we integrate the positions xp(t) of several particles with evenly
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spaced initial positions xp(0) according to

dxp

d t
= udp(xp(t), t) (13)

Effect of CO2 pressure. Supplementary Figure 1 shows the computed displacements of particles under several
applied CO2 pressures. For comparison, CO2 partial pressures in carbonated beverages range from 200 to
400 kPa11. Near the experimental conditions (pCO2 = 136kPa), the particle displacements depend weakly on
the CO2 pressure. Over the considered range of pressures, the ratios of the final and initial ion concentrations
vary from 1.6 (at 0.1 kPa) to 112 (500 kPa). When the ratio is below approximately 10, which happens for
10 kPa, the displacements vary more strongly with the CO2 pressure, though a ratio of 2 is sufficient to generate
noticeable motion.

Additional species in solution. In addition to the equilibrium of dissolved CO2 with water

CO2 +H2O
K1−−⇀↽−− H++HCO3

− (14)

we have the reactions
HCO3

− K2−−⇀↽−− H++CO3
2− (15)

and
H2O

Kw−−⇀↽−− H++OH− (16)

where the equilibrium constants are K1 = kf/kb = 4.24×10−7 molL−1 , K2 = 4.7×10−11 molL−1 and Kw =

10−14 mol2 L−2. Using these equilibria, Henry’s law for the relationship between the CO2 partial pressure and
the dissolved CO2 concentration, and the constraint of electroneutrality, we can determine the concentrations
of the species in solution as a function of the CO2 pressure. The equilibrium concentrations of the dissolved
species for several representative CO2 pressures are given in Supplementary Table 2. At these conditions,
the concentrations of H+ and HCO3

– are effectively equal, and the concentrations of CO3
2 – and OH– are

negligible. The equilibrium concentrations may therefore be estimated as

ceq
H+ = ceq

HCO3
− = ceq

i =
√

pCO2K1/Kh (17)

The particle suspensions employed contain several solutes. The suspension of negatively-charged particles
(Bangs Laboratories) contains 2 mM sodium azide (NaN3) as an antibiotic, and 0.1% surfactant (Tween). Upon
dilution by a factor of 100 to reach a ∼ 0.01% solids volume, the concentrations become 20 µM and 8 µM,
respectively. These solute concentrations are neglected because Tween is nonionic and the NaN3 concentra-
tion is 7 times smaller than the H+ concentration in a solution saturated with CO2 at the pressure employed.
The details of the solution composition for the amine-modified, positively charged polystyrene particles are
unavailable from the supplier (Sigma-Aldrich). The provided typical compositions for this product are 0.1–
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0.5% surfactant and 0.2% inorganic salt. The safety data sheet for product number L9654 indicates a NaN3

concentration of 0.1–0.25% (which is assumed to be the main inorganic salt), which corresponds to 15 mM to
38 mM. Dilution by 200× (to ∼ 0.01% solids volume) yields 77 µM to 192 µM, which is 0.55 to 1.4 times the
H+ concentration at saturation. We estimate the effect of the additional ions on particle motion by writing

udp = Γp
∂ ln(cs + ci)

∂x
(18)

where cs is the concentration of additional ions, which reduces the speed of the particles. This reduction is
partially offset by a decrease in the Debye length and therefore an increase in the mobilities of the particles,
which we estimate as 1066 µm2 s−1 to 1107 µm2 s−1 over the range of NaN3 concentrations. The particle tra-
jectories computed for a solution without additional ions, with 0.1% NaN3, and 0.25% NaN3 are compared in
Supplementary Figure 2. Due to reasonable agreement with the experimental results, the trajectories for 0.1%
NaN3 were presented in Figure 3d.
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