Supplementary Table 1. MAD data collection and phasing statistics of the SSO6202 GdCl $_3$ soaked crystal.

MAD data collection statistics

Beamline	ID29@ESRF								
Dataset	peak-1	peak-2	peak-3	infl-1	infl-2	infl-3	remote- 1	remote- 2	remote- 3
Wavelength (Å)	1.71076			1.71145			1.70371		
Resolution (Å)	31.1-2.7	31.1-2.6	31.1-2.3	31.1-2.7	31.1-2.7	31.1-2.3	31.1-2.2	31.1-2.7	31.1-2.3
Observations	44041	37250	37250	43098	35161	51973	67201	36144	53150
Unique observations	2385 (227)	2550 (170)	3478 (265)	3648 (219)	2191 (184)	3463 (260)	3963 (336)	2310 (189)	3524 (272)
Rmerge	0.07 (0.30)	0.05 (0.29)	0.05 (0.17)	0.07 (0.29)	0.05 (0.15)	0.04 (0.13)	0.06 (0.88)	0.05 (0.15)	0.04 (0.11)
Rmeas	0.07 (0.32)	0.05 (0.36)	0.05 (0.21)	0.07 (0.31)	0.05 (0.17)	0.05 (0.17)	0.07 (0.98)	0.07 (0.17)	0.04 (0.14)
<l d=""><!--</td--><td>33.7 (8.1)</td><td>37.4 (3.5)</td><td>37.2 (7.3)</td><td>35.2 (8.0)</td><td>44.5 (11.1)</td><td>42.6 (9.7)</td><td>31.6 (1.3)</td><td>45.1 (10.7)</td><td>44.7 (12.0)</td></l>	33.7 (8.1)	37.4 (3.5)	37.2 (7.3)	35.2 (8.0)	44.5 (11.1)	42.6 (9.7)	31.6 (1.3)	45.1 (10.7)	44.7 (12.0)
Completeness %	100 (100)	94.1 (69.1)	95.6 (75.7)	99.9 (99.0)	98.1 (86.4)	95.4 (74.6)	99.0 (90.7)	97.9 (87.0)	96.0 (77.1)
Multiplicity	18.5 (17)	14.6 (4.6)	15.0 (4.7)	18.4 (16.7)	16.0 (7.5)	15.0 (4.9)	17.0 (8.7)	15.6 (6.8)	15.1 (5.4)
Anomalous multiplicity	10.1 (9.1)	7.9 (2.5)	8.1 (2.6)	10.1 (8.8)	8.7 (3.9)	8.1 (2.7)	9.1 (4.6)	8.5 (3.7)	8.1 (2.9)
Anomalous completeness	100 (100)	92.7 (62.0)	94.2 (69.5)	99.8 (98.5)	97.8 (85.5)	94.1 (67.8)	98.6 (87.6)	97.2 (82.0)	94.8 (73.6)
Dano CC	0.82 (0.08)	0.86 (0.11)	0.88 (-0.02)	0.61 (0.03)	0.68 (-0.07)	0.73 (-0.14)	0.42 (-0.22)	0.53 (0.08)	0.61 (-0.05)

Supplementary Table 2. SHARP phasing statistics for resolution 31.1- 2.2 Å (in parenthesis values up to 6.6 Å)

Dataset	Phasing Power (isomorphous)		Phasing Power (anomalous)	FOM	
	Acentrics	Centrics	Acentrics	Acentrics	Centrics
Peak-1	-	-	2.87 (5.15)	-	-
Peak-2	-	-	2.92 (6.22)	-	-
Peak-3	-	-	2.93 (4.90)	-	-
Inflection-1	0.52 (1.81)	0.63 (1.32)	1.44 (3.19)	-	-
Inflection-2	1.15 (2.79)	1.46 (2.36)	1.82 (3.49)	-	-
Inflection-3	0.65 (2.12)	0.79 (1.66)	1.71 (3.13)	-	-
Remote-1	0.37 (1.58)	0.52 (1.35)	1.31 (4.82)	-	-
Remote-2	1.23 (3.81)	1.61 (2.64)	1.98 (5.28)	-	-
Remote-3	0.51 (1.71)	0.65 (1.48)	2.07 (5.11)	-	-
Overall				0.300 (0.765)	0.498 (0.939)

Oligo Name	Sequence (5' to 3')
PolB1_For	CATGAC <u>CCATGG</u> CTAAGCAACTTACCTTATTTG
PolB1_Rev	CATGAC <u>CTCGAG</u> TTAACTATTTCCTTTACTTGGGTATG
PolB1_notag	CCCAAGTAAAGGAAATAGTTAACTCGAGCACCACCACCACC
mutation	ACCACTGAGAT
PBP1_For	CATGAC <u>CATATG</u> TCAACGAGATGGCTACC
PBP1_Rev	CATGAC <u>CTCGAG</u> CGTAAATCCTCCTACTATTAATATCTTAC
PBP2_For	CATGAC <u>CATATG</u> TCTGTTAATCAGAAGGAAATTG
PBP2_Rev	CATGAC <u>CTCGAG</u> CTTCTTGTCAGTAGATTTCCTCAC
PolB1_LD/KK	ACTAAAAAACAAAGGATACAATAAGAAGGAATTAGCGTTTA AAGTAATGC
PolB1_LD/AA	ACTAAAAAACAAAGGATACAATGCGGCCGAATTAGCGTTTA AAGTAATGC
PolB1_Thum b_For	GAT <u>ACCATGG</u> GCATGTTAGTGAAGAAGAGAAAC
PolB1_Thum b_Rev	GCAC <u>GTCGAC</u> TTAACTATTTCCTTTACTTGGGTA
Template_lo	TTAAAGTTAGGTGGCGGACTCTGCCTCAAATCGTGTAATGAT
ng	GCCATGCGACCTCTGACAACGTGACCGCAGCCCACCTG
Template	TTAAAGTTAGGTGGCGGACTCTGCCTCAAATCGTGTAATGAT
mismatch	GCCATGCAACCTCTGACAACGTGACCGCAGCCCACCTG
Template_sh	TTAAAGTTAGGTGGGGGACTCTGCCTCAAGACCTCTGACAA
ort	CGTGACCGCAGCCCACCTG
Cy5 primer	Cy5/CAGGTGGGCTGCGGTCACGTTGTCAGAGGTC
Top_DNA	TTGAGGCAGAGTCCGCCACCTAACTTTAA
Top_hybrid	rUrUrGrArGrGrCrArGrAGTCCGCCACCTAACTTTAA
Top_hybrid Cy3	rUrUrGrArGrGrCrArGrAGTCCGCCACCTAACTTTAA/Cy3
Templ_comp	CAGGTGGGCTGCGGTCACGTTGTCAGAGGTCTTGAGGCAGA
lementary	GTCCGCCA
EM oligo1	ACAGGTAAGCAGTCCGCG
EM oligo2	GCGGACTGCTTACDDC
FA_label	[6FAM]CAGGTGGGCTGCGGTCACGTTGTCAGAGGTC
FA_template	GTGTAATGATGCCATGCGACCTCTGACAACGTGACCGCAGC CCACCTG

Supplementary Table 3. Oligonucleotides used in this study.

Supplementary Table 4. Accession numbers for PolB1 sequences in Supplementary Figure 7a. SSOPolB2 and SSOPolB3 are included.

Protein	Species	Accession Number
SSOPolB3	Sulfolobus solfataricus	WP_009988892.1
SSOPolB2	Sulfolobus solfataricus	WP_009989138.1
ASA	Acidilobus saccharovorans	WP_013266050.1
FFO	Fervidicoccus fontis	AFH42863.1
IGIS	Ignicoccus islandicus	WP_075050453.1
IGHO	Ignicoccus hospitalis	WP_011998724.1
THCE	Thermogladius cellulolyticus	WP_014737097.1
SMAR	Staphylothermus marinus	WP_011839163.1
SHEL	Staphylothermus hellenicus	WP_013143881.1
THAG	Thermosphaera aggregans	WP_013130178.1
DEMU	Desulfurococcus mucosus	WP_013562821.1
DEFE	Desulfurococcus fermentans	WP_014768161.1
DEKA	Desulfurococcus kamchatkensis	WP_052290773.1
PYFU	Pyrolobus fumarii	WP_014027250.1
MEYE	Metallosphaera yellowstonensis	WP_009075591.1
MECU	Metallosphaera cuprina	WP_013736984.1
MESE	Metallosphaera sedula	WP_048060164.1
ACHO	Acidianus hospitalis	WP_048054919.1
SSOPolB1	Sulfolobus solfataricus	WP_009991059.1
SIS	Sulfolobus islandicus	WP_012711569.1
STO	Sulfolobus tokodaii	WP_010979471.1
SAC	Sulfolobus acidocaldarius	WP_011278353.1

Supplementary Figure 1. Characterization of a *S. acidocaldarius* strain in which the gene for PoIB1 (*saci_1537*) is modified with a dual affinity tag.

(a) Schematic of chromosomal modification of the gene for S. acidocaldarius PolB1 (Saci_1537). The endogenous gene was replaced by a copy containing the additional 3' sequences illustrated in the expanded view.

(b) Western blot analysis using anti-c-Myc and anti-his-tag antibodies of parental (SacTK) and modified (SacPoIB1) strains to confirm the expression of the dual-tagged protein. TBP was used as a loading control.

(c) Comparison of growth of parental (SacTK) and modified (SacPolB1) strains over time, measured by absorbance at 600 nm. The scale on the y-axis is logarithmic. (d) FACS analysis of the two strains above at the indicated time points. 1C and 2C indicate the 1 and 2 chromosome content cell populations.

0.3

Supplementary Figure 2. Conservation of PBP1 and PBP2.

Phyletic distribution of PBP1 and PBP2 superimposed on a phylogenetic tree of PolB1 orthologs from the indicated archaeal species. The tree was generated using the phyolgeny webserver ^{1,2}. Red circles indicate the presence of PBP1 or PBP2 orthologs in that species, open circles indicate the lack of detectable homologs.

Supplementary Figure 3. Formation of complexes of PolB1 with PBP1 and/or

PBP2. Analytical gel filtration of the indicated proteins and complexes on a Superdex 200 HR 10/300 column. Protein elution was monitored by UV absorbance (280 nm) and the peak elution volume in milliliters is indicated adjacent to the peak. Fractions were also analyzed by gel filtration; size markers are indicated to the right of the panels. Samples were

- (a) 0.8 nmol PolB1
- (b) 2.4 nmol PBP1
- (c) 2.4 nmol PBP2
- (d) 0.8 nmol PolB1 + 2.4 nmol PBP1
- (e) 0.8 nmol PolB1 + 2.4 nmol PBP2
- (f) 0.8 nmol PolB1 + 2.4 nmol PBP1 + 2.4 nmol PBP2
- (g) 0.8 nmol PolB1 + 0.6 nmol PBP1 + 0.6 nmol PBP2

		* *
ASAC 1192	1	MEQGNLKEVTVE-FSGSRFRAFIDTSSGLLVCPICRR
Desfe_0230	1	MAYTWEPKWEPFEVN-VDGIVIKTCRDRYTGLIACPICIHAVSSCLGGNPPENYQFEN
Saci_0746	1	MSSTTRWTPKWKTVKTK-LNDKDIDICFDEITKLYACPICAPECKKGNTPNYG
Ahos_0879	1	<u>MS</u> TRWLPKWKVVKIN-VKGKEVEVCYDDDLKLYACPFCNPICKKGGIPDYS
SS00150	1	MSTRWLPKWKAIEID-YNNKKVTVCYDEVTRLYVCPICSPNCAKGVSTDYS
Msed_0158	1	<u>MS</u> SRWAPRWELIKIT-VNGRQETVCYDQE <mark>TKLYLCPRC</mark> GPECLKGGIPTSG
Igag_0095	1	MSYGWEAKWIKKKFKVVGGLEVETCOLLSTGLILCPLCTDISKICPSPTEPSSTPVSK
Hbut_1256	1	<u>MS</u> LQWEPQWEETIIE-VYGVRLKVPRDRVTGLYACPICGFGVDA
Pyrfu_1495	1	MALQWEPQWEELVIE-KWGVKLKVKKDKVTGMVACPICGISDSA
		* *
ASAC 1192	37	T-RVTSPDDVAHIMAMK-SLDKRREPPORAHVTSBSSSBE
ASAC_1192 Desfe_0230	37 58	* * T-RVTSP⊡DLVAHILAHAMK-SLDKRREPPQRAHVTS⊡SSS⊡E S-YFFTVDDLISHLKTYHVR-GMHRRIESVASKSS⊡E⊡D
ASAC_1192 Desfe_0230 Saci_0746	37 58 53	* * T-RVTSPEDLVAHILAHAMK-SLDKRREPPQRAHVTSESSSEE S-YFFTVDDLISHLKTYHVR-GWHRRIESVASKSSEED A-YFFSLDDLKEHVLSHNFS-YWLRKRKTEEEEEEEEKVKAEEEEE
ASAC_1192 Desfe_0230 Saci_0746 Ahos_0879	37 58 53 51	* * T-RVTSPEDLVAHILAHAMK-SLDKRREPPQRAHVTSESSSEE S-YFFTVDDLISHLKTYHVR-GWHRRIESVASKSSEED A-YFFSLDDLKEHVLSHNFS-YWLRKRKTEEEEEEEEKVKAEEEEE T-YFYHVEDLVSHIIAHKNA-LWLKKRPQEIREEEEGEEDNEED
ASAC_1192 Desfe_0230 Saci_0746 Ahos_0879 SS00150	37 58 53 51 51	* * T-RVTSPEDLVAHILAHAMK-SLDKRREPPQRAHVTSESSSEE S-YFFTVDDLISHLKTYHVR-GWHRRIESVASKSSEED A-YFFSLDDLKEHVLSHNFS-YWLRKRKTEEEEEEEKVKAEEEEE T-YFYHVEDLVSHIIAHKNA-LWLKKRPQEIREEEEGEEEDNEED T-YFFNLEDLKRHLDAHKYG-LWLQKKTRTEEEEEEPKLSIGEEESEEE
ASAC_1192 Desfe_0230 Saci_0746 Ahos_0879 SS00150 Msed_0158	37 58 53 51 51 51	* * T-RVTSPEDLVAHILAHAMK-SLDKRREPPQRAHVTSESSSEE S-YFFTVDDLISHLKTYHVR-GWHRRIESVASKSSEED A-YFFSLDDLKEHVLSHNFS-YWLRKRKTEEEEEEEKVKAEEEEE T-YFFNLEDLKRHLAHKNA-LWLKKRPQEIREEEEGEEEDNEED T-YFFNLEDLKRHLDAHKYG-LWLQKKTRTEEEEEEPKLSIGEEESEEE S-YFFNQQDLLNHLLAHRYE-LWNKKKHKEVEEEEEGGEEDEDEE
ASAC_1192 Desfe_0230 Saci_0746 Ahos_0879 SS00150 Msed_0158 Igag_0095	37 58 53 51 51 51 59	* * T-RVTSPEDLVAHILAHAMK-SLDKRREPPQRAHVTSESSSEE S-YFFTVDDLISHLKTYHVR-GWHRRIESVASKSSEED A-YFFSLDDLKEHVLSHNFS-YWLRKRKTEEEEEEKVKAEEEEE T-YFFHVEDLVSHIIAHKNA-LWLKKRPQEIREEEEEKEEDNEED T-YFFNLEDLKRHLDAHKYG-LWLQKKTRTEEEEEEFKLSIGEEESEE S-YFFNLODLLNHLLAHRYE-LWNKKKHKEVEEEEEGGEEDEDEE GVYFFSIEDLYRHMIAHTRASEWGKYVTVGEEEGEEGDEEEBELDTDTL
ASAC_1192 Desfe_0230 Saci_0746 Ahos_0879 SS00150 Msed_0158 Igag_0095 Hbut_1256	37 58 51 51 51 59 44	* * T-RVTSPEDLVAHILAHAMK-SLDKRREPPQRAHVTSESSSEE S-YFFTVDDLISHLKTYHVR-GWHRRIESVASKSSEED A-YFFSLDDLKEHVLSHNFS-YWLRKRKTEEBEEEEEKVKAEEEEE T-YFFNLEDLVSHIIAHKNA-LWLKKRPQEIREEEEEGEEEDNEED T-YFFNLEDLKRHLDAHKYG-LWLQKKTRTEEEEEPKLSIGEESEE S-YFFNQQDLLNHLLAHRYE-LWNKKKHKEVEEEEEGGGEEDEDEE GVYFFSIEDLYRHMIAHTRASEWGKYVTVGEEEGEEGDEEEEELDTDTL T-YFFSEKDLVIHILNHAKV-KRAERVKVQIVEPGEPAEEKLEEED

Supplementary Figure 4. Sequence alignment of PBP1 proteins from various archaea. The conserved putative zinc-coordinating residues are indicated by red asterisks. ASAC – *Acidilobus saccharovorans*; Desfe - *Desulfurococcus fermentans*; Saci - *Sulfolobus acidocaldarius*; Ahos – *Acidianus hospitalis*; SSO - *Sulfolobus solfataricus*; Msed - *Metallosphaera sedula*; Igag – *Ignicoccus aggregans*; Hbut – *Hyperthermus butylicus*; Pyrfu- *Pyrolobus fumarii*. The number refers to the open reading frame number in the genome annotations ³.

Supplementary Figure 5. Biochemical characterizations of Holoenzyme and sub-complexes.

(a) The ability of PBP2 to bind either single or double stranded DNA was assessed by fluorescence anisotropy measurements. Protein concentrations are a 2-fold dilution series from 2μ M. Measurements were performed in triplicate and the error bars are +/-the standard deviation.

(b) Primer extension activity comparison between PolB1 and the thumb domain mutants. Reactions contained 5 nM, 10 nM, 20 nM, 40 nM of each enzyme and 50 nM DNA substrate.

(c) Polymerase activity comparison at pH 6 and 8. Substrate information is illustrated on the left, with the Cy5 labeled primer colored in blue (asterisk indicates the position of labeling). Reactions contained 20 nM enzymes and 50 nM DNA substrate and were incubated at 50 °C.

(d) DNA binding activity comparison at pH 8 and pH 6, determined by fluorescence anisotropy. Polymerase concentrations are 2-fold dilutions from 200 nM to 0.78 nM. Data were plotted using Kaleidagraph version 4.5 and fit to a single site binding model.

(e) Exonuclease activities of PolB1-HE and subassemblies on a DNA substrate with a primer/template containing a mismatch at the 3'-end of the primer. Reactions contained 1 M PolB1-HE and subcomplexes with 1 M DNA substrate. Reaction products were analyzed by denaturing PAGE. 'PBP1∆C' denotes PBP1 C-terminal tail deletion mutant.

Supplementary Figure 6. Negative stain image processing of apo-PoIB1 and PoIB1-HE.

(a) Representative area from an electron micrograph recorded for apo-PolB1 (left) and holoenzyme PolB1-HE (right). Red circles mark some of the extracted particles. Scale bar 50 nm.

(b) Stereoview of the volume (semi-transparent yellow) calculated from the crystal structure of DNA PolB1 from *Sulfolobus solfataricus* (PDB ID 1S5J) filtered at 50

Å resolution (contoured at 0.05 threshold in Chimera) with the corresponding atomic model fitted as cartoon representation (colored light-blue).

(c) Left, stereoview of the angular coverage of the particles contributing to the 3D reconstruction for the apo-PoIB1 (yellow density in the centre) from Relion and visualized in Chimera; the height of each cylinder relates with the number of particles at that Euler angle. Right, gold-standard Fourier Shell correlation from the last iteration of the auto-3d refinement in Relion and displayed in Scipion with the dashed lines crossing the FSC profile at 0.5 at 22.8 Å resolution and at 0.143 at 14.6 Å resolution respectively.

(d) As (c) but for PolB1-HE holoenzyme (pink density in the center) with FSC calculated at the converged iteration 13. The estimated resolution is 20.2 Å at 0.5 FSC criteria (14.9 Å at 0.143 FSC criteria).

	SSO PolB3	626	SKDVKKAIKL <mark>VK</mark> STVIKLRRGEFD <mark>NE</mark> ELITWAKIERDLNEVNNQLE-FVTAARKAIQSGY
	SSO PolB2	483	KKLRIRDLFEHYRKRAINGEPIDYVIWIKDVEWIKDVE
Г	ASA	852	EKTLDLIREK VOEI UTKIRRREVTIDOLAI SVMMSKDPMEVKKNTPOHVKAALLIINEGV
	FFO	810	LETODKIKENVKKIYLKLKNMEYNLDELAFNVMLNKDVLEYKKNTPOHVKAALOLKPFNK
	IIS	810	VETRERIKDLVQQLYVNIRKQYYNLDEVAFHMQITKGLNEYNKNVPQHVKAARMLLKFGV
	іно	786	VKTREEVKNLVKELYMNLKRQYYD <mark>LD</mark> ELAFHMQLTKPIESYTKNMPQHVKAAKMLAKFGI
	TCE	733	KEFEEWLRSEVKEKYVSLKRKEITLDQLTIRTGLTKKVEEYTKNTPPHVKAAIQLKNYGI
	SMA	727	KEFQEWLENEVKRLYRELKKKEITLDQLAFKVGLTKSLNEYTKNKPPHVKAALQLKTYGY
	SHE SHE	727	KEFQEWLENEVKRLYRELKKKEITLDQLAFKVGLTKSLNEYTKNKPPHVKAALQLKTYGY
	Ο TAG	729	IEFVKWLEHQVKTIHNDIRRKEITLDRLAIRVALTKTPSLYTKTKPPHVKAALQLMNYGY
	O DMU	732	VSFANWLEDRIKEYYVGIKRREVPIDRIAIRVAITKPPSSYTKTKPPHVRAAMQLANYGI
	두 DFE	731	VVFVDWLREMLKEYYDGLKRREIPLDHLAIRVALTKPPSSYNKTKPPHVKAAQQLIDYGI
	O DKA	731	VVFVDWLREMLKEYYDGLKRKEIPLDHLAIRVALTKPPSSYNKTKPPHVKAAQQLIDYGI
	E PFU	858	LVVKKKIRDKLHEVYKRIKEKDFM <mark>LDELAIHMALTKPVNEVA-NIPPHVRAAIQLMQAG</mark> V
	H MYE	747	EKAKQDLTVKVKEVYAKLRNKEYNLDELAFRVMLAKDPNSYEKNTPQHVKAARLLREFNV
	S MCU	744	EKAIADLTAQVKEVYRKLKSKEYNLDELAFRVMLSKSVNSYDKNTPQHVKAAAQLAELNI
	MSE	746	EKAIQDLTAQVKEVYRKLKMKEYNLDELAFRVMLSRDVKSYEKNTPQHVKAAAQLAEMNV
	АНО	746	EKVKKEVAEKVKSVYDRLKNKEYNLDELAFRVMLSKDLDSYTKNTPOHVKAAMQLRALGI
	SSO PolB1	748	KEIKRKIVDVVKGSYEKLKNKGYNLDELAFKVMLSKPLDAYKKNTPQHVKAALQLRPFGV
	SIS	748	KEIKGKIVDVIKGSYEKLKNKGYNLDELAFKVMLSKPLDAYKKNTPQHVKAALQLRPFGV
	STO	746	PKIRDQLEYKIKEIYEKLRHKGYNLDELAFRVMLSKPLESYTKNTPQHVKAALQLRSYGV
L	SAC	746	PEVKNK <mark>LEIKIKDIYNKLRNKGYNLD</mark> DLAFRIMLSKPLDSYTKNTPOHVKAGLOLRAFGV

b

Supplementary Figure 7. Basis of selection of L772 and D773 for mutagenesis (a) Sequence alignment of protein sequences in the vicinity of the knuckle of the PolB1 thumb domain from a range of members of the Sulfolobales and Desulfurococcales. The leucine and aspartate residues highlighted in red are absolutely conserved in PoIB1 but not in PoIB2 and PoIB3. Accession numbers are given in Supplementary Table 4.

(b) Modeled crystal structure of PolB1 with the leucine and aspartate resides highlighted in part (a) shown in red.

а

Supplementary Figure 8. DNA polymerase fidelity and lagging strand processing mediated by PolB1 sub-assemblies.

(a) General error rate comparison among PolB1-HE and sub-assemblies. Background mutation rate has been subtracted.

(b) Specific types of error rates generated by all enzymes. Different types of mutations are colorcoded. 'Background' represents the error rates of gapped pSJ3 plasmid; 'pSJ3' represents the error rates of wild type pSJ3.

(c, d and e) The left panel of Figure S8C illustrates the lagging strand synthesis substrate illustration. Primer was labeled at the 5' end with Cy5 and the downstream "Okazaki fragment" was labeled at the 3' end with Cy3. Lengths of all the oligos and possible products are labeled. Reactions contained the indicated PolB1 sub-assemblies at 12.5 nM, 200 nM PCNA, 50 nM Fen1, 400 nM Lig1, and 50 nM double-labeled substrate. Reaction products were analyzed by denaturing PAGE. The gels were scanned twice using the Cy3 channel showing Fen1 degradation and Lig1 ligation products. Results for the Cy5 channel are in Figure 7. Notable product sizes are indicated on the right of the gel. The ligation product (80 Lig) is indicated.

	PolB1 N-terminus	PBP1	PBP2
Nitrososphaera gargensis_c34170	MPDRRKRLDDLPELP	No	No
Cenarchaeum symbiosum_1180		No	No
Nitrosopumilus koreensis_05375	TMP	No	No
Nitrosopumilus maritimus_0948	SMP	No	No
Korarchaeum cryptofilum_1180	MP	No	No
Thermofilum pendens 0298	МКР	No	No
Thermoproteus tenax 0168	MAFEEEEFIEEEVRESEEEVAEYRIKGALSASIP	No	No
Thermoproteus uzoniensis 1178	MAFEEEEFLEEGEEIREFEGEEVAEFKIKGAVSTSIP	No	No
Pyrobaculum calidifontis 1087	MENEFEFEEEEVQEYEGEAIEESKLKGVVSVTIP	No	No
Thermoproteus neutrophilus 1361	BEFEEFEEEVKEYEGEAIEEGKIKGVVSNSIP	No	No
Pyrobaculum aerophilum 2180	MAEFEEDFEEFEOEEVREYEGEAIEESKIKGVVTSSVP	No	No
Pyrobaculum arsenaticum 0798	MEFEEFEEVEEVTEYEGEAIEEGKIKGVVSNTIP	No	No
Pyrobaculum oquniense 1534	MVEFEEFEEVEEEVTEYEGEAIEEGKIKGVVSNTIP	No	No
Caldivirga maguilingensis 0144	MPKDELDKIEEPEEEVEESSEEYIQESAITAETPTSTP	No	No
Vulcanisaeta distributa	MRSKEYREEDEEEELEEEFEEREEEEITIKAETPONTP	No	No
Vulcanisaeta moutnovskia	MRSKEDEEEEIEEEFEEREEEEEITIKAETPQNTP	No	No
Aeropyrum camini 0076	MKDSGRKRTTLDESLLSYIRTTVRIKGGAGGGALDDRGRSIDDSEDSEDKT	YES	YES
Aeropyrum pernix 0099	MRVRGGOEAAQDKETSLDSDEERGRRGLROTTLLDYMAGPAKP	YES	YES
Acidilobus saccharovorans 0130	MALRNDGSPOAGGOGRANEGRSSAASAKSEGKGGGNDRAPAKOPOSOKOP-EP	YES	YES
Caldisphaera lagunensis 1108	LOEIKVEEMIDKDKNKIINKEDKNYDIINKN	YES	YES
Fervidicoccus fontis 0875	MAMATLKRDRKENGPTLFDFINSSNKKEKTANNFAEDLTYNODKELKDHEDEVOKL	YES	YES
Ignicoccus hospitalis 0690	MKKPRRGPTLLDFLKOKOANDGSKALKAPKPVEEKAPKRPLEGAEK	YES	YES
Thermogladius sp 0422	MKYSKIGDVYTLDFDRYVSTLDS	YES	YES
Staphylothermus hellenicus 1596	IGKMKYSIIGNVYRLYDVNKVDFIGK	YES	YES
Staphylothermus marinus 0872	TIDKMKYNIIGDVYRLYDVNKVDFIDK	YES	YES
Thermosphaera agrregans 1324	MRISKIGYVASLPSETYEKVLSK	YES	YES
Desulfurococcus mucosus 1305	MTYMGEOPPPGFIDRSSYKALSKP	YES	YES
Desulfurococcus fermentans 1409	MRSMDILLHVKESFTSYKVLSKP	YES	YES
Desulfurococcus kamchatkensis 13	MDTPLHVKESFTSYKVLSKP	YES	YES
Ignicoccus aggregans 1176	MAROKSIYEFLKKETAKNSDRKPISKDGKEONNIEIHGSFSND	YES	YES
Metallosphaera cuprina 0378	WVKOLTLTEFSLPERKMDKIEGKSKEEYIEEP	YES	YES
Metallosphaera sedula 1907	MSIMAROLTLADFSGIKREEPVKOEEKTOEEERPLERP	YES	YES
Acidianus hospitalis 1186	MLKEYFFHLYNVAKOITLFDFSIKOETHSEGKGVEKEEEVOOL	YES	YES
Sulfolobus solfataricus 0552	MTKOLTLFDIPSSKPAKSEONTOOSOOSAPVE	YES	YES
Sulfolobus acidocaldarius 1537	MSKOATLFDFSIKKNESKEOTNOESVEVPKOT	YES	YES
Sulfolobus tokodaii 1426	MAROITLFDFTLKKEONKDESRKEEIPHANIN	YES	YES
Hyperthermus butylicus 1274	MORYFDESLRELLTEIRSSRNEANRAGEGARSEKRLSTSVSDNIAD	YES	YES
Pyrolobus fumarii 1718	MARQSTLLEFLNASKRAKRAAGAGGSSPKGTRDTSRKEGGENREKRGEDRNLLEMLL	YES	YES

Supplementary Figure 9. PolB1 in Thermoproteales has an acidic N-terminal tail.

Comparison of the sequences of the N-terminal regions of PolB1 orthologs from the indicated archaeal species. Full PolB1 sequences were aligned using MUSCLE ⁴, for clarity only the N-terminal regions are shown. Glutamic acid residues are highlighted in red. See also Supplementary Fig. 2 and Fig. 1.

Supplementary Figure 10. Full membrane images of the cropped western blots presented in Figures 1b and 1c.

Supplementary references

- 1) Dereeper, A. *et al.,*. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. *Nucleic Acids Res.* **36**, W465-9. (2008)
- 2) Dereeper, A., Audic, S., Claverie, J.M., Blanc, G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. *BMC Evol. Biol.* **10**,8. (2010)
- 3) http://www-archbac.u-psud.fr/projects/sulfolobus/
- 4) http://www.ebi.ac.uk/Tools/msa/muscle/