

Supplementary Figure 1 | NH3-TPD profiles of different zeolites.

The acidity of the zeolites was investigated by ammonia temperature-programmed desorption (NH₃-TPD) studies. The NH₃-TPD spectra mainly show one peak at 110– 300 $^{\circ}$ C and one peak above 310 $^{\circ}$ C, which correspond to the weak acid sites and strong acid sites of the zeolites, respectively.

Supplementary Figure 2 | The C5–C¹¹ composition over different Na– Fe3O4/Zeolite multifunctional catalysts. Note: n-: n-paraffin; ole-: olefin; iso-: isoparaffin; nap-: naphthene; aro-: aromatic.

Supplementary Figure 3 | Characterization of Na–Fe3O⁴ catalyst. **a**, Particle size distribution of Na–Fe₃O₄ catalyst (calculated on the basis of 200 nanospheres from TEM images). **b**, SEM images of Na–Fe3O⁴ catalyst. **c**, SEM micrograph and corresponding EDS elemental mapping of Na–Fe₃O₄ catalyst. Iron, oxygen and sodium elements are colored in green, red and cyan, respectively.

Supplementary Figure 4 | SEM, XRD and BET analyses of the catalysts. a, SEM

images of HZSM-5(160). **b**, XRD patterns of Na–Fe₃O₄, HZSM-5(160) and the resulting Na–Fe3O4/HZSM-5 composite catalyst. The XRD of HZSM-5 shows peaks corresponding to hydrogen aluminum silicate hydrate, as expected. **c**, XRD pattern of reduced Na–Fe₃O₄. **d**, BET analyses of Fe₃O₄, Na–Fe₃O₄ and HZSM-5(160) catalysts. **e**, N_2 adsorption–desorption isotherm and pore distribution of the Na–Fe₃O₄ catalyst. The catalyst exhibits a very broad pore distribution in the range of 7–40 nm with a maximum at \sim 22 nm, mainly formed by the agglomerates of Fe₃O₄ nanoparticles.

Supplementary Figure 5 | Catalytic performances over composite catalysts as a function of the mass ratio of Na–Fe3O4/HZSM-5 in the composite catalysts. Reaction conditions: $H_2/CO_2 = 3.0$, 320 °C, 3.0 MPa, 4,000 ml h⁻¹ g_{cat}⁻¹.

Supplementary Figure 6 | TG and Mössbauer spectra analyses of the catalysts. a, TG & DTG of HZSM-5 in the composite catalyst after reaction tests of 1,000 h in Fig. 4c. **b**, Mössbauer spectra of Na–Fe₃O₄ in the composite catalyst after reaction tests of 1,000 h in Fig. 4c. The detailed Mössbauer parameters are listed in Supplementary Table 5.⁵⁷Fe Mössbauer spectroscopy is a powerful tool to identify and quantify the iron phases formed during $CO₂$ hydrogenation reaction. As shown in Supplementary Table 5, the sextets with Hhf of 495 and 463 kOe can be attributed to tetrahedral site (A site) and octahedral site (B site) of magnetite (Fe₃O₄), respectively^{[1](#page-12-0)}. The three

sextets with Hhf values of 183 (Sextet I), 220 (Sextet II) and 108 kOe (Sextet III), respectively, agree well with the literature values for three sites in Hägg iron carbide $(\chi$ -Fe₅C_{[2](#page-12-1)} $)^2$.

Supplementary Table 1 | Description of the channel systems of zeolites ^a .

^a Data are from the International Zeolite Association (IZA).

Catalyst	T $(^{\circ}C)$	P (bar)	CO ₂ conv. $(\%)$	CO	Hydrocarbon distribution (%)		
				sel. (%)	CH ₄	$C_2 - C_4$	C_{5+}
Fe-Zn-Zr/HZSM-5 ³	360	50	19.5	57.4	$\overline{2}$	46	52
Fe-Zn-Zr@HZSM-5- HY ⁴	340	50	14.2	40.5	1.8	64.2	34.0
Fe-Ce/KY ⁵	300	10	20.1	34.6	8.9	41.5	49.6
Fe/RbY ⁶	300	10	17.2	31.6	9.5	36.1	54.4
Fe-Cu-Na/HZSM-5 ⁷	250	20	12.3	19.6	28.5	42.3	29.2
CuFeO ₂ 8	300	10	17.3	31.7	2.7	31.0	66.3 a
Cu-Zn-Al/HB ⁹	300	9.8	27.6	53.4	1.5	93.5	5.0
Fe-Zn-Zr/HY ¹⁰	340	50	22.4	50.4	1.8	83.9	14.3
Cu-Zn-Zr-Al/Pdß ¹¹	260	20	25.2	47.2	1.2	77.6	21.2
Na-Fe ₃ O ₄ /HZSM-5 ^b	320	30	22.0	20.1	4.0	16.6	79.4

Supplementary Table 2 | CO² hydrogenation performance data in our work and from other literatures.

^a The C₅₊ products cover the gasoline (C₅-C₁₁), diesel (C₁₂-C₂₁) ranges, and

~15% of waxy hydrocarbons (C_{25+}) .

^b The data in our work. The C₅₊ products cover 78.3% of C₅-C₁₁, and 1.1% of C_{12+} hydrocarbons.

Catalyst	CO ₂ conv. (%)	Product selectivity $(\%)$			Hydrocarbon distribution $(C$ -mol %)			
		CO	$Oxy-$				HC CH ₄ C ₂₋₄ C ₅₋₁₁ C ₁₂₊	
Fe ₃ O ₄	21.4	10.6	1.6	87.8	53.3	41.8	4.9	0.0
$Na-Fe3O4$	34.0	14.3	4.0	81.7	11.7	48.4	37.9	2.0
$Na-Fe3O4/HZSM-5(160)$	33.6	14.2	0.0	85.8	7.9	18.4	73.0	0.7
2%Na-10%Fe/HZSM-5	5.4	29.5	0.0	70.5	49.3	43.9	6.8	0.0

Supplementary Table 3 | Reaction performance for CO² hydrogenation ^a .

^a Reaction conditions: H₂/CO₂ = 3.0, 320 ^oC, 3.0 MPa, 4,000 ml h⁻¹.

Supplementary Table 4 | Detailed composition of the aromatics fraction over Na–Fe3O4/HZSM-5(160) catalysts in Fig. 1a,d.

Supplementary Table 5 | Detailed Mössbauer parameters.

Supplementary References

- 1. Berry, F. J., Skinner, S. & Thomas, M. F. Mössbauer spectroscopic examination of a single crystal of Fe3O4. *J. Phys.: Condens. Matter* **10**, 215-220 (1998).
- 2. Raupp, G. B. & Delgass, W. N. Mössbauer investigation of supported Fe and FeNi catalysts: II. Carbides formed Fischer-Tropsch synthesis. *J. Catal.* **58**, 348-360 (1979).
- 3. Tan, Y., Fujiwara, M., Ando, H., Xu, Q. & Souma, Y. Syntheses of isobutane and branched higher hydrocarbons from carbon dioxide and hydrogen over composite catalysts. *Ind. Eng. Chem. Res.* **38**, 3225-3229 (1999).
- 4. Wang, X. *et al.* Synthesis of isoalkanes over core (Fe-Zn-Zr)-shell (zeolite) catalyst from CO² hydrogenation. *Chem. Commun.* **52**, 7352-7355 (2016).
- 5. Nam, S.-S., Kishan, G., Lee, M.-W., Choi, M.-J. & Lee, K.-W. Selective synthesis of C_2-C_4 olefins and C_{5+} hydrocarbons over unpromoted and cerium-promoted iron catalysts supported on ion exchanged (H, K) zeolite-Y. *J. Chem. Res.(S)*, 344-345 (1999).
- 6. Nam, S.-S., Kim, H., Kishan, G., Choi, M.-J. & Lee, K.-W. Catalytic conversion of carbon dioxide into hydrocarbons over iron supported on alkali ion-exchanged Y-zeolite catalysts. *Appl. Catal. A: Gen* **179**, 155-163 (1999).
- 7. Xu, Q. *et al.* Hydrogenation of carbon dioxide over Fe–Cu–Na/zeolite composite catalysts: Na migration via solid–solid reaction and its effects on the catalytic activity. *J. Mol. Catal. A: Chem.* **136**, 161-168 (1998).
- 8. Choi, Y. H. *et al.* Carbon dioxide Fischer-Tropsch synthesis: a new path to

carbon-neutral fuels. *Appl. Catal. B: Environ* **202**, 605-610 (2017).

- 9. Fujiwara, M., Satake, T., Shiokawa, K. & Sakurai, H. $CO₂$ hydrogenation for $C₂₊$ hydrocarbon synthesis over composite catalyst using surface modified HB zeolite. *Appl. Catal. B: Environ* **179**, 37-43 (2015).
- 10. Bai, R., Tan, Y. & Han, Y. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe–Zn–M/zeolite composite catalysts. *Fuel Process. Technol.* **86**, 293-301 (2004).
- 11. Li, C., Yuan, X. & Fujimoto, K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite. *Appl. Catal. A: Gen* **475**, 155-160 (2014).