

CIT2-mRuby2; pcIA-venus-SKL in BY4741

а

b

С

CIT2-mRuby2; penDE-venus-SKL in BY4741

CIT2-mRuby2; pcIA-venus-SKI in BY4741

CIT2-mRuby2; penDE-venus-ARL in BY4741

CIT2-mRuby2; pclA-venus-SKL in *Δpex5*

CIT2-mRuby2; penDE-venus-SKL in *Δpex5*

Supplementary Figure 1. *S. cerevisiae* PTS1 tags are necessary to localise pcIA and penDE to peroxisomes. (a) *S. cerevisiae* peroxisomal protein CIT2 with an mRuby2 fluorescence tag co-localises with venus-fluorescence-tagged *pcIA* and *penDE* proteins additionally tagged with the *S. cerevisiae* Peroxisome Targeting Sequence 1 (PTS1) tripeptide SKL at the C-terminus. For this and subsequent parts, the promoter driving expression of *pcIA* and *penDE* with the venus fluorescence tag is the strong constitutive promoter pTDH3. (b) Venus-fluorescence-tagged *pcIA* and *penDE* proteins without the *S. cerevisiae* PTS1 but tagged with the native *P. chrysogenum* PTS1 tripeptides SKI and ARL do not co-localise with mRuby2-tagged CIT2. (c) Plasmids from part (a) transformed into an *S. cerevisiae* strain harbouring a delete of the peroxisomal importer *pex5* prevent peroxisomal localisation of CIT2 and the *S. cerevisiae* PTS1-tagged *pcIA* and *penDE*

Supplementary Figure 2. Optimising ACV yields. Strong, constitutive promoters driving the ACV-producing part of the benzylpenicillin pathway on a low-copy plasmid (Sc.A2) gives higher maximal ACV yields than the same genes under galactose inducible promoters either integrated into a chromosome (Sc.A1) or on a high-copy plasmid (pESC-pcbAB-npgA). Sc.A2 was grown using glucose as the carbon source, while Sc.A1 and pESC-pcbAB-npgA were grown using galactose as the carbon source. Error bars represent standard deviation from three biological replicates.

pcbAB	npgA	GAL 1	GAL 2	GAL 3	mean GAL	GAL s.d.	Glu 1	Glu 2	Glu 3	mean GLU	Glu s.d.
GAL1	GAL7	502212.0	633534.0	217523.0	451089.7	212665.0	Not detected	Not detected	Not detected	0.0	0.0
GAL1	TDH3	786826.0	943928.0	391730.0	707494.7	284518.5	Not detected	Not detected	Not detected	0.0	0.0
GAL1	HHF2	561543.0	649935.0	279805.0	497094.3	193298.4	Not detected	Not detected	Not detected	0.0	0.0
GAL1	RPL18B	545298.0	565738.0	349162.0	486732.7	119577.2	Not detected	Not detected	Not detected	0.0	0.0
RPL18B	GAL1	100022.0	116057.0	51593.0	89224.0	33561.1	56568.0	53651.0	43446.0	51221.7	6890.1
RPL18B	PGK1	138596.0	110451.0	58385.0	102477.3	40695.6	197598.0	109863.0	157372.0	154944.3	43917.9
RPL18B	CCW12	144395.0	116449.0	59786.0	106876.7	43109.1	211374.0	150211.0	87174.0	149586.3	62102.4
RPL18B	ALD6	146092.0	68694.0	56735.0	90507.0	48508.0	131432.0	100424.0	107881.0	113245.7	16185.1
TDH3	PGK1	193113.0	86218.0	103581.0	127637.3	57364.3	404773.0	277704.0	284469.0	322315.3	71490.5
TDH3	CCW12	178619.0	138064.0	73651.0	130111.3	52934.0	361186.0	331388.0	218401.0	303658.3	75323.2
TDH3	ALD6	168824.0	74255.0	60426.0	101168.3	58998.1	369769.0	201340.0	218023.0	263044.0	92802.2
HHF2	PGK1	87157.0	40076.0	36120.0	54451.0	28393.2	56687.0	40722.0	28941.0	42116.7	13925.5
HHF2	CCW12	76374.0	72364.0	46495.0	65077.7	16217.5	34133.0	42551.0	21065.0	32583.0	10826.5
HHF2	ALD6	84088.0	32408.0	24310.0	46935.3	32428.9	65046.0	31137.0	45320.0	47167.7	17029.8
ACV Yields											
							mean conc.				
Strain	pcbAB	npgA	sugar	reading 1	reading 2	reading 3	(ng/uL)	conc. s.d.			
Sc.A1	GAL10	GAL1	gal	26.868	20.011	17.482	21.454	4.857			
pESC-npgA-pcbAB	GAL10	GAL1	gal	102.938	53.643	63.204	73.262	26.142			
Sc.A2	TDH3	PGK1	glu	362.586	249.952	255.949	289.495	63.369			

Supplementary Table 1. LCMS peak areas and yields for ACV for the pcbAB, npgA promoter screen

Name (X = sample from screened strain)	Area	Name (X = sample from screened strain)	Area	Name (X = sample from screened strain)	Area
Water		X49		X105	
Water		X50		X106	
benzylpenicillin; 10 pg/uL		X51		X107	
benzylpenicillin; 100 pg/uL	2233	X52		X108	
benzylpenicillin; 1 ng/uL	18103	X53		X109	
benzylpenicillin; 10 ng/uL	165306	X54		X110	
Water	981629	X55		X111	
water		X50	1500	X112	
X1		X57	1506	X113	
<u>X2</u>		X58		X114	
X3		X59		X115	
X4 V5	<u> </u>	X60 X61	<u> </u>	X110 X117	
X5 X6		X61 X62		X117 X118	586
X7		X62 X63		X110 X119	500
X8		X64		X120	
X9		X65		X121	
X10		X66		X122	
X11		X67		X123	
X12	318	X68		X124	
X13		X69		X125	
X14		X70		X126	
X15		X71	385	X127	
X16		X72		X128	
X17		X73	1285	X129	
X18		Х74		X130	
X19	2761	X75		X131	
X20		X76	295	X132	
X21	2709	Х77		X133	
X22	1062	X78		X134	
X23		Х79		X135	
X24		X80	411	X136	
X25		X81		X137	
X26		X82		X138	171
X27	1292	X83		X139	
X28		X84	665	X140	
X29		X85		X141	
X30		X86		X142	
X31		X87		X143	
X32	<u> </u>	X88	<u> </u>	X144	
X33		889		X145	
X34		X90	467	X146	692
X35		X91		X147	
X36		892		X148	1648
X37	527	X93		X149	
X38		X94		X150	1060
X39		X95		X151	
X40	<u> </u>	X97	<u> </u>	X152	
X41 X42	<u> </u>	X90	2102	X153	
X42		X90	2193	X154	
X43	359	X99	 	X155	
X44		X100	<u> </u>	X150 X157	
X45	<u> </u>	X101 X102	<u> </u>	X15/ V150	
X40 X47	<u> </u>	X102		X150 Y150	
X48		X104	<u> </u>	X160	
		A191		1100	

Supplementary Table 2. LCMS peak areas and yields for ACV for the pcbAB, npgA promoter screen

Summed nanopore read count data for single assemblies

	pcbC	pcIA	penDE
pGAL1	58	79	25
pGAL7	216	139	33
pTDH3	40	107	33
pCCW12	39	59	42
pPGK1	209	89	32
pHHF2	317	91	52
pRPL18B	105	71	39
pALD6	190	125	42
pPSP2	103	44	73
pREV1	78	67	26
TOTAL	1355	871	397

Summed nanopore read count data for multiegene level assembly

	pcbC	pcIA	penDE
pGAL1	16	15	12
pGAL7	19	24	7
pTDH3	12	10	10
pCCW12	17	11	13
pPGK1	7	28	13
pHHF2	17	27	25
pRPL18B	21	4	12
pALD6	3	3	14
pPSP2	13	5	26
pREV1	10	8	3
TOTAL	135	135	135

Summed Sanger read count data from all 10 benzylpenicillin producers

	pcbC	pcIA	penDE
pGAL1	0	0	0
pGAL7	1	0	0
pTDH3	0	2	2
pCCW12	1	5	0
pPGK1	0	3	2
pHHF2	2	0	2
pRPL18B	5	0	1
pALD6	0	0	0
pPSP2	1	0	3
pREV1	0	0	0
TOTAL	10	10	10

one-sided Fisher's exact test for enrichment of pcIA strong promoters in multigene assemblies vs. benzylpenicillin producers

assemblies	va. Delizyi	pemenini producer			
	strong	non-strong			
multigene	44	938			
producers	10	0			
n < 0.005	0.005 (Eicher's exact test)				

p < 0.005	(Fisher's	exact	test)

Observed nanopore read count data by promoter category for single assemblies

	pcbC	pcIA	penDE
Strong	605	346	159
Medium	295	196	81
Weak	181	111	99
Inducible	274	218	58

Expected nanopore read counts for single assemblies for Chi square test based on promoter proportions used in library construction

	pcbC	pcIA	penDE
Strong	542	348	159
Medium	271	174	79
Weak	271	174	79
Inducible	271	174	79

Observed nanopore read count data by promoter category for multigene

assemblies					
	pcbC	pcIA	penDE		
Strong	53	76		61	
Medium	24	7		26	
Weak	23	13		29	
Inducible	35	30		19	

Expected nanopore read count data by promoter category for multigene assemblies based on single assembly observed distributions

	pcbC	pcIA	penDE
Strong	60	54	54
Medium	29	30	28
Weak	18	17	34
Inducible	27	34	20

Observed nanopore read count data by promoter category for producers

	pcbC	pcIA	penDE
Strong	3	10	6
Medium	5	0	1
Weak	1	0	3
Inducible	1	0	0

p-values for Pearson's Chi-squared tests comparing single to multigene level assembly, and Fisher's exact test comparing multigene level

assembly to producer for promo	assembly to producer for promoter category distributions				
	pcbC	pcIA	penDE		
uniform dist vs. single	p < 0.27	p < 0.27	p < 0.27		
single vs. multigene	p < 0.22	p < 0.22	p < 0.22		
multigene vs. producers	p < 0.15	p < 0.005	p < 0.52		

Supplementary Table 3. Read counts and statistics for nanopore and Sanger sequencing

Experiment	Strain name(s)	Background Strain	plasmid(s)
Fig 1c, 2a	Sc.A1	BY4741	-
Fig 1c, d	Sc.P1	Sc.A1	pAA056
Fig 1c	Sc.P1x		
Fig 2b, 3	Sc.P2	Sc.A2	pAA179
Fig 3	Sc.P2x	BY4741	pAA180, pAA171
Fig 3	Sc.S1 - Sc.S12	BY4741	variants of pAA179*
Fig S1	-	BY4741	pAA210
Fig S1	-	BY4741	pAA211
Fig S1	-	BY4741	pAA212
Fig S1	-	BY4741	pAA213
Fig S1	-	BY4741 <i>Δpex5</i>	pAA210
Fig S1	-	BY4741 <i>Δpex5</i>	pAA211
Fig S2	pESC-npgA-pcbAB	BY4741	pESC-npgA-pcbAB
Fig S2	Sc.A2	BY4741	pAA145

Primers used to create #peex5strain				
Purpose	Orientation	Sequence		
to amplify and retarget gRNA vector	F	CGTTTCTATTTTGAATACTAaaagtcccattcgccacccg		
to amplify and retarget gRNA vector	R	/5Phos/gttttagagctagaaatagcaagttaaaataaggctag		
Overlap extension PCR 1	F	GTGAAGGAAATCGCAGCTCC		
Overlap extension PCR 1	R	AATGCTAATGAATTTGGGCAGTGATGCGAGCTCCGCCGGAAGAGGGTACCGACTTGTCGG		
Overlap extension PCR 2	F	CCGACAAGTCGGTACCCTCTTCCGGCGGAGCTCGCATCACTGCCCAAATTCATTAGCATT		
Overlap extension PCR 2	R	CCTCTCTGTATTCGTGAGAGTATC		

Supplementary Table 4. Strains and plasmids used in this paper

* same as pAA179, but with promoters driving pcbC, pclA and penDE as specified by Table S12

Experiment	Molecule of interest	Sugar	Dropouts	Supplements	Volume
Fig 1c, d	ACV	galactose	uracil	5 mM AAA	30 mL
				5 mM AAA,	
Fig 1c, d	benzylpenicillin	glucose	uracil, histidine	0.25 mM PAA	30 mL
		galactose/			
Fig S2	ACV	glucose	uracil	5 mM AAA	600 μL
				5 mM AAA,	
Fia 2b, 3, S3, S4	benzylpenicillin	alucose	uracil, histidine	0.25 mM PAA	600 μL

AAA = alpha-amino adipic acid (VWR L13924.0 PAA = phenylacetic acid (Sigma P16621)

Supplementary Table 5. ACV and benzylpenicillin production media composition

of compounds in the penicillin-G pathway					
Time (minutes)	% Solvent A	% Solvent B	Flow rate (mL/min)		
0	98	2	0.2		
2	98	2	0.2		
8	35	65	0.2		
8.01	5	95	0.2		
9	5	95	0.2		

The LC gradient elution method for the separation of compounds in the penicillin-G pathway

The MS/MS fragment ions used for the measurement of benzylpenicillin and other materials in the pathway

Analyte	Formula	Precursor ion [M+H]+	Product ion	Collision energy (eV)
benzylpenicillin	C16H18N2O4S	335.106	176.0707	16
LLD-ACV	C14H25N3O6S	364.1537	144.0655	16

Supplementary Table 6. LCMS specifications

Promoter	Category	Relative Expression*
pTDH3	Strong	820
pCCW12	Strong	575
pPGK1	Strong	291
pHHF2	Strong	230
pRPL18B	Medium	60
pALD6	Medium	39
pPSP2	Weak	2.2
pREV1	Weak	1.7
pGAL1	Inducible	1.3
pGAL7	Inducible	**

Supplementary Table 7. Promoters used in first promoter screen to optimise conversion of ACV to benzylpenicillin.

* Based on fold-change expression over background of fluorescent reporter Venus protein under each promoter, cells grown in glucose.

Taken from Lee, M.E., DeLoache, W.C., Cervantes, B. & Dueber, J.E. ACS Synth Biol 4, 975-986 (2015).

** Uncharacterised in the above study, but should be similar to value from pGAL1, as these promoters naturally drive similar levels of expression when uninduced.

Sample	pcbC	pcIA	penDE	LCMS	pcIA promoter Strength	penDE promoter Strength	Geometric mean of promoter strength pcIA + penDE	[benzylpenicillin] ng/mL
X19	pRPL18B	pTDH3	pCCW12	2761	820	575	686.659	3.204
X148	pRPL18B	pTDH3	pPGK1	1648	820	291	488.487	1.845
X98	pRPL18B	pCCW12	pPGK1	2193	575	291	409.054	2.505
X80	pRPL18B	pTDH3	pGAL1	411	820	1.3	32.650	0.418
X84	pRPL18B	pPGK1	pPGK1	665	291	291	291.000	0.699
X37	pRPL18B	pPGK1	pHHF2	527	291	230	258.708	0.545
X90	pRPL18B	pALD6	pHHF2	467	39	230	94.710	0.479

Supplementary Table 8. Relationship between promoter strength and benzylpenicillin yield in first promoter screen

Carbon source for these experiments is glucose, with promoter strengths that are indicated those for growth in glucose. Blue = strains featured in Figure 2. Red = strains with low penicillin production, not featured in Figure 2.

Single Gene Assemblies

Reaction	Туре 2	Туре З	Туре 4	Pre-assembled Type 1;Type 5;Type 8		
Single 1	promoter mix	pcbC	tPGK1	ConLS;ConR1;AmpR-ColE1		
Single 2	promoter mix	pcIA	tENO2	ConL1;ConR2;AmpR-ColE1		
Single 3	promoter mix	penDE	tTDH1	ConL2;ConRE;AmpR-ColE1		

Multigene Assembly

Managene Assembly				
Gene 1	Gene 2	Gene 3	Pre-assembled Type 6;Type7;Type 8	
Single 1	Single 2	Single 3	His3;2micron;KanR-ColE1	

Supplementary Table 9. Golden Gate Assembly reaction parts for promoter screen to optimise conversion of ACV to benzylpenicillin and for nanopore sequencing

Promoter	Category	Relative Expression*
pTDH3	Strong	820
pCCW12	Strong	575
pPGK1	Strong	291
pTEF1	Strong	230
pHHF1	Medium	81
pRPL18B	Medium	60

Supplementary Table 10. Promoters used in second promoter screen to optimise conversion of ACV to benzylpenicillin

* Based on fold-change expression over background of fluorescent reporter Venus protein under each promoter, cells grown in glucose.

Taken from Lee, M.E., DeLoache, W.C., Cervantes, B. & Dueber, J.E. ACS Synth Biol 4, 975-986 (2015).

Single Gene Assemblies

Reaction	Туре 2	Туре З	Туре 4	Pre-assembled Type 1;Type 5;Type 8
Single 1	pTDH3	pcbC	tPGK1	ConLS;ConR1;AmpR-ColE1
Single 2	pCCW12	pcbC	tPGK1	ConLS;ConR1;AmpR-ColE1
Single 3	pPGK1	pcbC	tPGK1	ConLS;ConR1;AmpR-ColE1
Single 4	pTEF1	pcbC	tPGK1	ConLS;ConR1;AmpR-ColE1
Single 5	pHHF1	pcbC	tPGK1	ConLS;ConR1;AmpR-ColE1
Single 6	pRPL18B	pcbC	tPGK1	ConLS;ConR1;AmpR-ColE1
Single 7	pTDH3	pclA	tENO2	ConL1;ConR2;AmpR-ColE1
Single 8	pCCW12	pclA	tENO2	ConL1;ConR2;AmpR-ColE1
Single 9	pPGK1	pclA	tENO2	ConL1;ConR2;AmpR-ColE1
Single 10	pTEF1	pclA	tENO2	ConL1;ConR2;AmpR-ColE1
Single 11	pHHF1	pclA	tENO2	ConL1;ConR2;AmpR-ColE1
Single 12	pRPL18B	pclA	tENO2	ConL1;ConR2;AmpR-ColE1
Single 13	pTDH3	penDE	tTDH1	ConL2;ConRE;AmpR-ColE1
Single 14	pCCW12	penDE	tTDH1	ConL2;ConRE;AmpR-ColE1
Single 15	pPGK1	penDE	tTDH1	ConL2;ConRE;AmpR-ColE1
Single 16	pTEF1	penDE	tTDH1	ConL2;ConRE;AmpR-ColE1
Single 17	pHHF1	penDE	tTDH1	ConL2;ConRE;AmpR-ColE1
Single 18	pRPL18B	penDE	tTDH1	ConL2;ConRE;AmpR-ColE1

Multigene Assebmly								
Gene 1	Gene 2	Gene 3	Pre-assembled Type 6;Type7;Type 8					
Single 1 – Single 6	Single 7 – Single 12	Single 13 – Single 18	His3;2micron;KanR-ColE1					

Supplementary Table 11. Golden Gate Assembly reaction parts for second promoter screen to optimise conversion of ACV to benzylpenicillin

				pcbC promoter	pcIA promoter	penDE promoter
Strain	pcbC	pcIA	penDE	Strength	Strength	Strength
Sc.P2	HHF1	TEF1	PGK1	81	230	291
S7	TDH3	CCW12	TEF1	820	575	230
S2	PGK1	TDH3	TEF1	291	820	230
S3	RPL18B	TEF1	TEF1	60	230	230
S1	RPL18B	TEF1	TEF1	60	230	230
S6	RPL18B	TDH3	CCW12	60	820	575
S4	PGK1	TEF1	PGK1	291	230	291
S5	TEF1	TDH3	PGK1	230	820	291
S10	CCW12	PGK1	CCW12	575	291	575
S11	RPL18B	HHF1	RPL18B	60	81	60
S8	TEF1	TDH3	CCW12	230	820	575
S12	TDH3	PGK1	TEF1	820	291	230
S9	PGK1	RPL18B	TEF1	291	60	230

Supplementary Table 12. Promoter strengths for strains shown in Figure 3d