
Supplementary Note 1. Mathematical subsampling

In the following, we derive in detail the novel subsampling scaling. We first introduce
the definition and basic results of subsampling in analogy to Stumpf et al. [1], who
treated subsampling of graphs. We then extend the aforementioned study as
follows:

• First, we focus on an analytical inference of the distribution of the full system
from the subsampling, a topic that was not touched by Stumpf et al. To this
end we derive (a) the exact subsampling scaling for negative binomials and
exponentials, and (b) the approximate scaling for power-law distributions.

• Second, we explicitly show how to derive the system size from subsampling
induced deviations from power laws (“hairs”).

• Third, we treat the relation between subsampling and finite size effects.

• Last, we apply our analytically derived subsampling scaling ansatz to infer the
probability distribution of avalanche sizes in developing neural networks.

Let X be a discrete, non-negative random variable with probability distribution
P (X = s) = P (s), with s ∈ N0, then G(z) =

∑∞
s=0 z

sP (s) is the corresponding
probability generating function (PGF). For distributions such as power laws, where
s = 0 is not supported, s is constrained to s ∈ N, and the probability distribution
needs to be normalized accordingly. X represents the size of a set of “events” that
comprise a “cluster”, e.g. the number of spikes in an avalanche, or the degree of a
node. For subsampling, we assume that each of the events in the cluster is sampled
independently with probability p, resulting in a random variable for the observed
cluster size, Xsub [1]. Thus the probability Psub(Xsub = s) to observe a cluster of
size s is derived using a binomial distribution:

Psub(s) =
∞∑
k=s

P (k)

(
k

s

)
ps(1− p)k−s.

The PGF Gsub(z; p) for Xsub with given p is thus:

Gsub(z; p) =
∞∑
s=0

zsPsub(s)

=
∞∑
s=0

zs
∞∑
k=s

P (k)

(
k

s

)
ps(1− p)k−s

=
∞∑
k=0

P (k)
k∑
s=0

zs
(
k

s

)
ps(1− p)k−s

=
∞∑
k=0

P (k)(zp+ (1− p))k,

Thus the PGF of X and Xsub show a direct relation [1]:

Gsub(z; p) = G(1− p(1− z)) (1)
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As a consequence, the expected values of X and Xsub also are closely related: Using
the expression for the expected value of X, E(X) = G′(1−)

E(Xsub) = G′sub(1−; p) = G′(1− p(1− 1−)) = pG′(1−) = pE(X) (2)

These relations hold for any P (s), however, only for specific P (s), namely positive
and negative binomials, the full and subsampled system’s P (s) follow the same
family of distributions [1], e.g. if P (s) is a binomial distribution, then Psub(s) also
is a binomial, but with different parameters.

Subsampling of negative binomial and exponential distribu-
tions

Assuming that X follows a negative binomial distribution X ∼ NB(r, pNB),

P (X = s) =

(
s+ r − 1

s

)
prNB(1− pNB)s, (3)

then the expectation of X is given by

m = E(X) = r
(1− pNB)

pNB

,

and the PGF is

G(z) =

(
pNBz − z + 1

pNB

)−r
=
(

1 +
m

r
(1− z)

)−r
.

Using Eq. 1 then returns the PGF under subsampling,

Gsub(z; p) =
(

1 +
pm

r
(1− z)

)−r
,

which corresponds to the negative binomial distribution with the same r, but dif-
ferent pNB, selected such that

1− p′NB

p′NB

= p
1− pNB

pNB

. (4)

In the special case of r = 1, the negative binomial is a geometric distribution with
probability parameter pNB, and the discrete exponential distribution is a particular
parametrization of the geometric distribution 1− pNB = e−λ.

Pexp(s) = (1− e−λ) · e−λs, with s ∈ N.

Using equation 4, the relation between λ and λsub is:

e−λsub

1− e−λsub
= p

e−λ

1− e−λ
⇔ eλsub − 1 =

eλ − 1

p
.

Solving this equation with respect to λsub we obtain:

λsub = ln

(
eλ + p− 1

p

)
. (5)
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Supplementary Figure 1: Scaling of subsampled power-law distributions Psub(s),
using a = 1 − γ, b = 0, with γ = 1.5. the blue line shows the perfect power law of
the fully sampled distribution, i.e. P (s). Note the deviations from power law for
small s, which increase with smaller sampling probability p.

Subsampling of power-law distributions

To derive an approximate scaling for power-law distributions under subsampling,
we expand on the work by Stumpf et al. [1]. Consider mathematical subsampling as
defined in the main text, and a power-law distribution P (s) = Cγs

−γ with exponent
γ > 1, and normalization Cγ = 1/ζ(γ), where ζ(γ) is the Riemann zeta function.
Then Psub(s; γ, p) is a binomial subsampling with sampling probability p:

Psub(s; γ, p) = Cγ

∞∑
n=0

(s+ n)−γps(1− p)n
(
s+ n

n

)
. (6)

Building on the work by Stumpf et al., we assume that for the tail (i.e. for s→∞)
the subsampled distribution is approaching an appropriately scaled power-law with
slope γsub = γ, i.e. we assume

Psub(s; γ, p)
s→∞−→ cγ(p)s

−γ. (7)

cγ(p) is the subsampling-dependent normalization constant. To derive how cγ(p)
depends on p, we need to assume that

∂

∂p
Psub(s; γ, p)

s→∞−→ s−γ
∂

∂p
cγ(p). (8)

This is a strong assumption, because typically an exchange of differentiation and
limit is only possible in case of uniform convergence of the derivatives [2], which
is not the case here. However, all the functions we consider are monotonous in all
parameters and numerical results support the assumption above.
In the following we assume that s is large enough so that Eq. 7 can be taken as an
identity. Then

∂

∂p
Psub(s; γ, p) = Cγs

∞∑
n=0

(s+ n)−γps−1(1− p)n
(
s+ n

n

)
− Cγ

∞∑
n=0

(s+ n)−γpsn(1− p)n−1
(
s+ n

n

)
.
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The first term can be approximated as:

Cγs

∞∑
n=0

(s+ n)−γps−1(1− p)n
(
s+ n

n

)
=

s

p
Psub(s; γ, p) ≈ s

p
cγ(p)s

−γ.

The second term, after introducing k = n− 1, reduces to:

Cγ

∞∑
n=0

(s+ n)−γpsn(1− p)n−1
(
s+ n

n

)
= Cγ

s+ 1

p

∞∑
k=0

(s+ 1 + k)−γps+1(1− p)k
(
s+ 1 + k

k

)
=

s+ 1

p
Psub(s+ 1; γ, p)

≈ s+ 1

p
cγ(p)(s+ 1)−γ

The “≈” is inherited from Eq. 7, which is only exact for s → ∞. Combining the
two terms, we obtain for Eq. 8:

s−γ
∂

∂p
cγ(p) ≈

∂

∂p
Psub(s; γ, p) ≈ s

p
cγ(p)s

−γ − s+ 1

p
cγ(p)(s+ 1)−γ. (9)

From this, ∂
∂p
cγ(p) can be expressed as:

∂

∂p
cγ(p) =

cγ(p)

p
lim
s→∞

[
s− (s+ 1)

(
1 +

1

s

)−γ]
(10)

For solving the limit, we use the known identity

lim
x→0

(1 + x)µ − 1

µx
= 1,

which can be restated by replacing x by 1/s and µ by −γ:

lim
s→∞

s

(
1 +

1

s

)−γ
− s = −γ.

Thus

∂

∂p
cγ(p) =

cγ(p)

p
(γ − 1) (11)

This differential equation is solved by:

cγ(p) = C∗pγ−1, (12)

For p = 1 we know that C∗ = Cγ, because sampling all units does not change the
distribution. The final expression for cγ(p) is thus

cγ(p) = Cγp
γ−1. (13)
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With this we can derive scaling parameters a, b that collapse the distribution’s tails,
i.e. paPsub(pbs) = P (s) for large s. Using Eq. 13:

paPsub(pbs) = Cγp
γ−1pa(pbs)−γ = pa−bγ+γ−1Cγs

−γ. (14)

Thus for any a and b, such that a − bγ = 1 − γ, the scaling ansatz leads to a
collapse. One of the members of this scaling family is b = 0, a = 1 − γ, which
scales the y-axis only. As shown in Supplementary Fig. 1, this scaling collapses the
tails of distributions perfectly. For small s, however, there are systematic deviations
under subsampling, which increase with smaller p. We call them “hairs”, because
they grow on the head of the distribution, as opposed to the tails.
A different member of the scaling family is a = b = 1. This scaling is especially
attractive, because it does not require information about the exponent γ of the power
law (see Supplementary Fig. 1). As this scaling is linear in p, we call it p-scaling.

Power-law exponent close to unity

Here we show why the “hairs” become smaller, i.e. converge to zero, in the limit of
the power-law exponent γ → 1. It is in agreement with results of Stumpf et al. [1],
stating that “hairs” are growing with increase of the exponent. Mathematically, the
exponent of the power-law distribution cannot be exactly equal to one or smaller,
because in this case the distributions cannot be normalized. Thus without loss of
generality we consider truncated power laws: P (s) = C · s−1 for s ≤ smax and
P (s) = 0 for s > smax. The normalizing constant C depends on smax. In this case
the subsampled distribution Psub(s), with sampling probability p can be written
explicitly

Psub(s; p) =
smax∑
l=s

C

l

(
l

s

)
ps(1− p)l−s =

C

s

smax∑
l=s

(
l − 1

s− 1

)
ps(1− p)l−s.

We are interested in the behavior of the “hairs” and thus consider small s. In
this case, we can approximate Psub(s; p) by the infinite sum, and make use of the
geometric series

1

(1− x)s
=
∞∑
n=0

(
n+ s− 1

s− 1

)
xn

to obtain, with a variable exchange m = l − s,

Psub(s; p) ≈ C

s
ps

∞∑
m=0

(
m+ s− 1

s− 1

)
(1− p)m =

C

s
= P (s).

Thus we showed that in the limit γ → 1 subsampling of the power law converges to
the original power law.

Inferring the system size from the subsampled distribution

The deviations from power laws (i.e. the hairs), which emerge under subsampling,
allow to infer the system size M from the subsampled distribution Psub(s) alone,
given that P (s) follows a power law. This is because the hairs are a function of
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the sampling probability p = N/M . The hairs are most pronounced for Psub(s = 1)
(except for Psub(s = 0), which may remain unknown in experiments). Therefore, the
inference of system size in experiments is most accurate if it is based on Psub(s = 1).
We explore this in the following derivations. Derivations based on other (small) s
can be performed analogously.
Quantitatively, using the explicit relation for subsampling of power laws (Eq. 6)
with l = n+ 1 results in:

Psub(s = 1) =
∞∑
l=1

l−γ

ζ(γ)
l(1− p)l−1p

=
p

(1− p)ζ(γ)

∞∑
l=1

(1− p)l

lγ−1

=
p · Liγ−1(1− p)

(1− p)ζ(γ)
,

where ζ is the Riemann zeta function, and Liγ(z) =
∑∞

k=1 z
k/kγ is the polylogarithm

function. This relation is exact if P (s) is a true power law. For application to the
real data obtained from subsampled observation the following algorithm allows to
infer p:

1. Check whether the experimentally obtained empirical distribution Pemp(s) is
likely to originate from a system that under full sampling shows a power-law
distribution. If not, the method cannot be applied.

2. Estimate the power-law slope γ of the power-law tail of the distribution to
obtain γ̂.

3. Solve the following equation for p:

Pemp(s = 1) =
p · Liγ̂−1(1− p)

(1− p)ζ(γ̂)

This will return the sampling probability p. From this, the system size can be
inferred if N is known. This approach is also applicable approximately if the full
system does not display a pure power law, but a power law with cutoff at large s.
Then the power-law slope γ has to be inferred on an appropriate interval between
the hairs and the cutoff.
We applied this method numerically to the data generated by the critical branch-
ing model of size M = 1024, subsampled to N = 20, 21, . . . 29 units based on 107

avalanches in the full system. Indeed, the full system size could be inferred by
M̂ = p̂N with high precision (Fig 2): The maximal deviations were smaller than
6%.

Supplementary Note 2. Subcritical systems

As outlined in the main text, avalanche distributions collapse under p-scaling for
critical systems, but not for subcritical systems. The main reason is that for sub-
critical systems the exponential tail is too steep, i.e. the requirement λ � p is
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Supplementary Figure 2: Estimating the sampling fraction p from the “hairs”. Dots
represent the estimated p as a function of the true one, the dashed line represent
the perfect correspondence.
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Supplementary Figure 3: Exponential tails of subcritical distributions. Left: Sub-
critical distributions for different branching ratios σ plotted in a log-lin scale clearly
show exponential tails, with the tail slope λ depending on σ (results for M = 1024).
Right: Subcritical distribution with a fixed deviation from criticality (σ = 0.7 or
0.8) for different system sizes M .

violated. We in the following derive an approximate relation between λ and the
distance to criticality (ε = σcrit − σ = 1 − σ). We show that for more subcritical
systems, λ becomes increasingly larger (see also Supplementary Fig. 3 (left)). To
approximately derive the relation between λ and ε (or σ), we used the branching
process [3], because it allows to easily control the distance to criticality by chang-
ing the branching ratio σ, and because it is independent of finite size effects. This
is a reasonable assumption, because in subcritical systems P (s) is not affected by
changing the system size for any M > M0. Only for very small systems sizes there
are finite size effects (Supplementary Fig. 3 (right)).
To derive heuristically the slope of the exponential tail λ as a function of the control
parameter σ, consider a branching process with branching ratio σ < 1, and assume
that an avalanche starts with 1 neuron firing. Then on expectation in the second
time step there are σ neurons firing, in the third time step σ2, and so forth. Thus
we obtain an expression for the average avalanche size 〈s〉:

〈s〉 = 1 + σ + σ2 + σ3 + . . . =
1

1− σ
.
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Supplementary Figure 4: Slope of tails, λ, for avalanche distributions of subcritical
models. λ increases with increasing distance to criticality (decreasing σ). The dots
denote the numerical results for 107 avalanches on the full system, the line denotes
the analytical results.

In the subcritical regime, the distribution of the avalanche sizes is dominated by the
exponential cutoff. We consider that they are well approximated by the power law
with slope γ and an exponential cutoff parametrized by λ

P (s) = Cnorms
−γe−λs.

The mean value of this distribution is given by:

〈s〉 =
Li1−γ(e

−λ)

Liγ(e−λ)

Where Liγ(z) =
∑∞

k=1 z
k/kγ is again the polylogarithm function. The relation

between λ and σ is thus

Li1−γ(e
−λ)

Liγ(e−λ)
=

1

1− σ
, (15)

and hence λ approaches zero when approaching the critical point (σ → 1). As λ
decays slowly as a function of σ, except in the very close vicinity of the critical point,
the requirement for p-scaling, λ � p, is only satisfied in the close vicinity of the
critical point. Else p-scaling does not apply.
To compare our analytical with numerical results, we used the same data as in
Supplementary Fig. 3. We first estimated γ ≈ 1.3 from the distributions, and with
this solved equation 15 numerically. The analytical results closely fitted the slopes
λ of the exponentials from the simulations (Supplementary Fig 4).

Supplementary Note 3. Subsampling of the EHE-

model and sparse branching model

In this section, we investigate whether subsampling scaling also applies to other
models than the ones treated in the main manuscript. In particular, we treat here
first the Eurich, Herrmann & Ernst (EHE) model [4], a classical extension of the
BTW model to neural networks, and then a realization of the BM with sparse
connectivity (k = 4, see Methods). The details of the EHE model can be found in [4,
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Supplementary Figure 5: Subsampling scaling of the Eurich, Herrmann & Ernst
model. N = 32, 64, . . . , 512 units were sampled out of M = 1024 units. Parameters:
connection probability pconn = 0.1, connection strength α = 0.96/(M · pconn). The
dashed line indicates a slope of −1.5.

5]. This model produces power-law distributions of the avalanche sizes with slope
≈ 1.5 that indicates that it belongs to the same university class as the branching
model. However, activity transmission is not stochastic as in BM, but deterministic
as in BTW. Another peculiarity of the model lays in its dissipative nature: for the
finite system sizes M each spike leads to dissipation of ∆ ≈ 1/

√
M [4]. Thus only in

the limit M → ∞ the model is both truly critical and conservative. We simulated
the EHE model with both, the classical fully connected graph topology and also with
random connectivity probability pconn. For both models, the dynamics is as follows:
Each neuron i is a non-leaky integrator, and its membrane potential is denoted
by hi ∈ [0, 1). When hi crosses the threshold θ = 1 the neuron fires and is reset
hi 7→ hi − 1 and all its postsynaptic connections receive an input of strength α/M ,
where α is the control parameter in the model, the strength of interaction. For the
fully connected network, it is known that α ≈ 1 −M−0.5 leads to an approximate
power-law distribution of the avalanche sizes. For not-fully connected networks the
connection probability pconn needs to be included, and thus the condition to achieve
approximate power-law distributions generalizes to α · pconn ≈ 1−M−0.5.
As the avalanche size distribution in the EHE model can be directly mapped to
the branching model [5], subsampling scaling is expected to behave the same as in
the BM, producing “hairs” but resulting in a good collapse. We tested this for the
model of M = 1024 neurons with pconn = 0.1 and obtained, as expected, a collapse
under subsampling scaling (Supplementary Fig. 5).
The distributions of the fully and the sparsely connected BM are very similar (Sup-
plementary Fig. 6). The only difference is a slightly more pronounced lack of small
avalanches in the fully sampled sparse BM (Supplementary Fig. 6 C), which trans-
lates to somewhat less pronounced “hairs”, in particular under “mild” subsampling
(N ≥ 210).
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(dashed black line).
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Supplementary Note 4. Detailed discussion of the

experimental results

Supplementary Fig. 7 displays Psub(s) for all recordings of developing neural cultures
we evaluated (see Methods). As discussed in the main text (Fig. 4), with maturation
the Psub(s) approached power-law scaling, which for the fully sampled culture is
expected to extend over almost six orders of magnitude. In addition to the power
laws, about half of the mature cultures also showed a bump in Psub(s) at very large
sizes (s ≈ 5000). These very large avalanches comprise only a tiny fraction of all
avalanches (≈ 0.02%). Such bumps are a priori not expected for critical systems.
The collapse of the bumps itself is a manifestation of the activity spread during the
large avalanches that hit the sampled set proportionally to the number of sampled
units. In the following we discuss first whether the distributions with the bumps are
expected to collapse under p-scaling, and then the potential origin of the bumps.
Regarding the questions whether the distributions observed here are expected to
collapse, the answer is straight forward: The avalanches in the tail make only a
tiny fraction of all observed avalanches (about 2 in 10,000), while the other 99.98%
avalanches follow a power law for about 3 orders of magnitude. (It is the log-log
scale together with the logarithmic binning that might make the bumps appear more
prominent than they are.) With only 0.02% of avalanches not following a power law,
a decent collapse is to be expected.
Regarding the origin of the bumps, there are a number of potential explanations,
which we outline in the following. At first glance, the bumps are reminiscent of
supercritical systems (hypothesis 3), however, they do not occur at N , the number of
sampled units, as expected for supercritical systems. More likely, they may represent
finite size effects (hypothesis 1), or alternatively transient switches to a bursty state
(hypothesis 2). All three hypotheses are detailed in the following:

1. Biological finite size effects in a critical system.
Assume the neural cultures were precisely at a critical point. Thus the dis-
tribution of the avalanche sizes would be a perfect power law without cutoff.
However, in biological systems the avalanche size cannot go to infinity, because
biological mechanisms (e.g. depletion of synaptic resources, shortage of Ca2+

or homeostatic mechanisms) limit their maximal size. All these avalanches
that are larger than some strans (in our data strans ≈ 3000) are thus expected
to be distributed around a characteristic, biologically determined size, which
here is about s ≈ 5000. The probability pbump to observe an avalanche larger
than some maximal size strans is given by the Hurwitz zeta function. Indeed,
in agreement with this hypothesis, the number of the avalanches observed in
the bump agrees with the probability pbump for perfectly critical system. Thus
the data support our hypothesis that the bump represents the collection of all
avalanches that would, in an ideal system, be larger than 3000. (Note that all
avalanche sizes s given here are the sizes observed under subsampling). Thus
biological finite size effects are a probable origin for the bumps.

2. Criticality alternates with a state that gives rise to large avalanches
The in vitro neural networks we analyzed could in principle alternate between
different states. While in one state, which comprises about 99.98% of the
avalanches, the system is critical, in the other state it displays unusually large
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Supplementary Figure 7: Changes of the avalanche size distributions with develop-
ment. This figure corresponds to Fig. 4 in the main text, but here shows distributions
for all recordings we evaluated, and for all five recording weeks (typically day 7, 14,
21, 28, 34). For each experiment, the p-scaled avalanche size distributions Psub(s)
are displayed; c denotes the total number of avalanches observed in the respective
recording, and the dashed line a slope of −2 for visual guidance.
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avalanches that run multiple times over the entire system and give rise to
population bursts, i.e. they manifest as the observed bumps. The precise
fraction of “burst avalanche” can depend on the properties of each individual
culture (some showing none at all), and it could be pure coincidence that the
fraction of burst avalanches is in agreement with the fraction expected for the
avalanche tail (see hypothesis 1).

3. A novel form of slight supercriticality in a finite system.
While it is straight forward to identify “subcriticality” (no avalanches covering
the full system size, no power-law behavior of distributions, but a prominent
exponential tail), it is much trickier to identify “supercriticality” in neural
systems by pure observation, potentially because supercriticality in the ther-
modynamic limit implies a non-zero fraction of infinite avalanches, but in finite
systems it depends on the type of system how these infinite avalanches man-
ifest. For supercritical systems in neuroscience, the bump in Psub(s) occurs
typically at N , i.e. the system size or the number of sampled neurons [6, 10].
However, here in all experiments where the bump is observed, it is around
80 times N (i.e. s ≈ 5000 from sampling up to 60 electrodes). Thus here
the bumps do not indicate supercritical behavior resembling that of previous
studies. However, it could indicate a novel form of supercriticality on a finite
system.

How to distinguish between these potential causes of the bump appearance remains
an open question for further experimental investigations (e.g. changing the network
size; making the network on purpose supercritical). In the experiments evaluated
here, the presence of the data collapse in the more mature networks predicts a
power-law distribution for P (s) of the full neural system that spans approximately
6 orders of magnitude. However, whether such power-laws scaling is sufficient to
infer criticality, is still under debate.

Supplementary Note 5. Combining subsampling

scaling and finite-size scaling

As demonstrated in section “Subsampling versus finite size scaling”, there is a funda-
mental difference between subsampling scaling that deals with partial observations
of a system, and finite-size scaling (FSS) that extrapolates from models of finite
size to infinite size systems. Here we show how to combine both scaling ansätze to
obtain a universal scaling.
The finite-size scaling ansatz for a critical system is formulated as:

P (s,M) = M−βg
( s

Mν

)
⇔ MβP (sM ν ,M) = g(s), (16)

where g(s) is a scaling function. The formulation for the subsampling scaling in a
system with M units is:

Psub(s,N ;M) = N−1gsub

( s
N

;M
)
.

This can be re-written as:
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NPsub(sN,N ;M) = gsub(s;M) = MPsub(sM,M ;M). (17)

Our goal is to combine the finite size scaling and the subsampling scaling relations
(Eqs. 16 and 17) to factorize out the dependence of gsub on M , and hence be able
to collapse subsampled distributions from different system sizes M . To find the
appropriate scaling, we need to identify the exponents δ and κ such that

NM δPsub(sNMκ, N ;M) = g(s).

To this end, recall that Psub(s,M ;M) = P (s,M). In the following we first use
subsampling scaling to express Psub(s,M ;M) in terms of P (s,M) using Eq. 17:

NM δPsub(sNMκ, N ;M) = M1+δPsub(sMκ+1,M ;M) =

M1+δP (sMκ+1,M) = M1+δ−βg(sMκ+1−ν).

Thus the solutions for the exponents is given by δ = β− 1 and κ = ν− 1, and hence
the general subsampling-finite-size scaling is given by:

NMβ−1Psub(sNM ν−1, N ;M) = g(s). (18)

We tested this relation numerically for the case of the branching model (BM). For
this model, FSS is given by β = 1.5, ν = 1 and thus the subsampling-finite-size
scaling is given by:

P (s) = NM0.5Psub(sN). (19)

Indeed, with this scaling we obtained as expected a good collapse for combining
different sampling sizes N and system sizes M (Supplementary Fig. 6).

Supplementary Note 6. Numerical estimation of

optimal scaling

Throughout the manuscript we used an analytical approach to determine the opti-
mal scaling for the subsampled distributions. In this section we confirm that our
analytical results coincide with a direct numerical estimation of the scaling constants
a, b.
To achieve an optimal scaling collapse, we numerically estimated the parameters a
and b that minimize the distance d(a, b) between the rescaled distributions Psub(s; a, b,N) =
NaPsub(N bs) under subsampling, and the rescaled distribution under full sampling,
P (s; a, b,N = M). In more detail, we first estimated for each N ∈ [8, 16, 32, . . . ,M ]
the distance d(a, b;N) as follows:

d(a, b,N) = 〈| ln(Psub(s; a, b,N))− ln(P (s′; a, b,M))|〉s . (20)

The mean 〈·〉s was taken over all s ∈ [1, 10 · N ], and s′ are the support points
in P (s′; a, b,M) corresponding to those in Psub(s; a, b,N), i.e. s′/M b = s/N b is
fulfilled. As s′ may take non-integer values, the values Psub(s′; a, b,N) are obtained,
if necessary, by linear interpolation between the nearest integers. Then the weighted
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Supplementary Figure 8: Numerical estimation of scaling parameters a, b. Color
code represent deviation from the perfect collapse d(a, b), yellow – large deviation,
dark blue – close to perfect collapse. Red dashed lines denote the analytical predic-
tion. Left: Branching model (BM), middle: Bak-Tang-Wiesenfeld model (BTW),
right: BTW with circular boundaries (BTWC). For presentation purposes d(a, b)
was shifted and scaled to the interval between zero (for the minimal value) and
unity. This procedure does not change the location of the minima.

average over all d(a, b,N) is taken to obtain d(a, b) = 〈d(a, b,N)〉N . The parameter
combination (a∗, b∗) that minimizes d(a, b) provides numerically the optimal collapse.
We scanned a and b in steps of 0.01 and found for both, the BM and the BTWC an
optimal collapse at a∗ = b∗ = 1, as predicted analytically (Supplementary Fig. 8).
For the BTW, the optimal collapse was at a∗ = 1.01, b∗ = 1.02, but the value of
d(a, b) in the point analytically obtained a = b = 1 deviated only by 3% from
the absolute minimum (Supplementary Fig. 8). Thus overall, our numerical results
match very well the theoretical prediction.
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