Reviewers' comments:
Reviewer #1 (Remarks to the Author):

In this manuscript, Levina and Priesemann aim to address the problem of subsampling,
which has plagued the field of neuronal avalanches for many years. Priesemann has
previously published on this, but the present work with Levina gives a firm analytical
foundation to this problem and is therefore an important new contribution. Their results are
convincing and demonstrate to my satisfaction that they have made great progress in this
area, coming up with the correct equations to describe how power law and exp onential
distributions will be affected by subsampling. Based on this method, they go on to showthat
data collapse of the avalanche size distribution will occur only in models that are actually
tuned to be critical, and that such collapse will not occur in models that are not critical. They
also clearly demonstrate howthe problem of subsampling is different from the problem of
finite sized data. Finally, they apply their methodto a publicly-available data set of cultured
networks (from Potter’s group) and showthat mature cultures show collapse, while young
and still developing cultures do not.

| think that this is a very important new contribution, and clearly merits publication in Nature
Communications for two main reasons. First, this problem of subsampling has been known
for about a decade, but no clear solution has been presented until now. Here, this
controversy is nearly solved, at least for some of the main cases (power law and exponential
distributions). Second, this area of criticality in biological systems is receiving increased
attention and is not confined merely to neuronal avalanches. Criticality has been suggested
in bacterial colonies, flocks of birds, and even human interactions. This work is thus very
broadly applicable and is likely to be well-cited.
That said, | have a few comments, questions and suggestions:
The problem of subsampling that you address is confined to limited spatial sampling (e.g.,
not having enough electrodesto record all the neurons in the population). Thisis an
enormous problem and tackling it is a commendable task. But could you at least say a few
words about how this problemis related to two other issues? lam thinking of recording
length and temporal binning. Your ability to properly correct for subsampling assumes that
the data were collected over a long period of time (at least one hour), and this may be limited
in many preparations (those that rely on Ca++ imaging, for example in neuroscience). Must
recordings be of some length (assuming some firing rate) for all of this to work? Somewhat
related to this, the temporal binning of the data you used was at 1 ms. But many labs bin at 5
ms, or even longer bins. Can you comment on howthese will affect your conclusions on
subsampling? In some sense, both of these issues are related to subsampling because they
are also presenting limited views of what is actually going on in the data.

When doing data collapse, there are generally two ways that one could proceed. First, you
can get the analytically expected parameters (as you did) and then showthat they produce a
reasonable collapse when inspected by eye. Second, you can conduct a collapse by
minimizing some type of error after searching through different parameter values. In this
manuscript, you did the former but not the latter. | see that your plots look “pretty good” but |
would also like to see some type of independent corroboration of their quality. Can you show
that deviating from the parameter values you have chosen will actually increase the distance
between the curves? There are now some toolboxes out there that claim to do automated
collapse by minimization of error.

Minor:



In supplementary figure 1, what is ASMC? Don’t you mean BTWC? Or BTW with periodic

boundary Conditions?
In the supplementary figures, it looks like there is a “supercritical bump” in some of the files,

even though they showwhat appears to be good collapse. Can you explain this apparent
discrepancy?



Reviewer #2 (Remarks to the Author):

| have read with interest the manuscript by A. Levina and V. Priesemann. It brings an
interesting analytical understanding to the problem of subsampling, which has deservedly
received considerable attention in the literature of neuronal avalanches. Specifically, the
paper assumes that events Xoriginally described by a probability distribution P(X) are
sampled with a probability p, rendering events X_sub whose effective probability distribution
is P_sub(X sub). Scaling relationsrelating P_sub to P and p are derived, some of which had
been previously published by Stumpf et al PNAS 2005 (Ref. [3] of the manuscript). | find that
the paper is relevant and mostly well written. There are, however, essential points that |
would like to see discussed before the manuscript could be considered suitable for
publication in Nature Communications.

To start with, | suggest the authors provide simple examples of the mathematical quantities
upon which they are going to develop all their calculations (N_0, N, X, X _sub etc). One can
understand them in retrospect, once the calculations are advanced, but the manuscript could
read much better and gain much more traction if the description of the problem was clearer
fromthe start. Lines 59 and 64 have unclear expressions, such as “N_0 that represents the
number of events in a cluster”, or “each event or component of every cluster is
independently observed”. Since a “cluster” has notbeen properly defined, the above
sentences, as they stand, hinder more than they help. Perhaps one simple example
preceding them would suffice.

Most importantly, the authors’ mathematical description of subsampling leave aside, as far
as | can understand, a very important aspect of subsampling, namely, the time -dependent
nature of the underlying processes. Consider, for instance, neuronal avalanches, whose
sizes are defined as the number of events (e.g. local field potential large -enough deviations)
that occur in between silent epochs. To properly define what a silent epoch is, data is usually
binned using some characteristic time of the system. In Ref. [20], for instance, this
characteristic time is the inter-event interval tau. It turns out that tau itself depends on the
level of subsampling: clearly, one is prone to wait longer for an event when measuring with a
couple of electrodes than with hundreds of them. Therefore, using the authors’ notation, if an
event of size X=s occurs in the fully sampled system, in the setup of neuronal avalanches it
could well be “read” (or interpreted) as a *set* of smaller events of sizes s1, s2, ..., because
the binning of the data could introduce silent periods in between them. The *sum of these
s_k*is being denoted as X _{sub} in the current manuscript. While an analytical
understanding of P(X_sub) is certainly welcome, it would be highly desirable to attempt a
connection with the more difficult, but also more relevant in some contexts, probability
distribution of the smaller chunks P(s_k). Note that the apparent exponent reported in Ref.
[20] changes with the size of the time bin, a feature that is not captured in the framework of
the present manuscript. I'd like the authors to comment on this problem, particularly in
relation to previous references that have discussedit.

What is the status of a and b, as in “a family of scaling relations [defined by a and b] follows
for power-laws” (line 470 of the SlI)? Are they free parameters, can they be obtained from the
data, or what else? This should be carefully explained in the main text.



Section 2.2 shows results for three models: a branching model sitting on an fully connected
network, and a two-dimensional conservative sandpile model with either open or periodic
boundary conditions. First, it is important to point out that the avalanche size exponent for
the first is different from the last two, a fact that should be discussed (particularly in light of
the statement on line 79, which assumes gamma > 1). The exponent of the sandpile model
is only mentioned en passant in line 160 in an attempt to explain the absence of deviations
from the scaling prediction (“hairs”). Could the authors expand that explanation? Please
state the exponent values of the models in the slopes of Fig. 2 (accompanied by the
appropriate citations, since they are well known). In these models, the scaling proposed by
the authors seem to work very nicely, which is reassuring. However, can they reproduce e.g.
the results of the model in Ref. [10], which is very similar to a branching model, except that it
occurs in a topology with finite average degree (random and small world graphs included)?
Both a random graph and a fully connected graph give rise to the same mean -field
avalanche exponent, but arguably fully connected graphs are biologically less realistic and
typically have more pathological scaling issues (a crucial point since this is a man uscript
about scaling relations). Note also that the literature consensually regards the power laws of
the sandpile model to be strictly dependent on its microscopically conservative dynamics
(open boundary conditions notwithstanding) which, from a biological perspective, is another
highly non-realistic ingredient. So, to put it more directly, can the authors provide a
microscopically non-conservative model on a not-fully-connected graph which yields the
exponent observed in neuronal avalanches when subsampled? That would be a major
result, without which a much deeper discussion of the limitations of the scaling results would
be necessary. If the theory does not work in that more biologically acceptable scenario, why
is that?

Please note that the above discussion affects section 2.3 as well, where the authors refer to
“subcritical systems” in general, butin practice apply the theory to the branching model on a
fully connected graph only. Once more, it would be necessary to probe the authors’ theory in
a branching model with finite connectivity. In this context, | wonder whether the analytical
insights in Larremore et al. PRE 85 066131 (2012) for the statistical properties of avalanches
in networks could come to the authors’ help. Please comment.

Section 2.4 is very interesting in that the scaling analysis proposed by the authors is applied
to real data. However, insofar as there is no clear consensus as to which model best
reproduces the data (as far as 'm aware), the strength of the conclusions drawn from the
data hinges on the robustness of the scaling analysis with respect to different models (which
brings us back to the comments above). Please add the value of the observed exponents to
Fig. 3. Moreover, both the text and abstract seem to suggest that mature cultures are
generally critical, but a close inspection of Fig. S6 reveal supercritical bumps in P(s) in about
50% of the experiments (day 28 and day 35). Stating this explicitly does not cloud, in my
opinion, the beauty of the experimental collapses of those cultures which are presumably
critical. More problematic, on the other hand, is the fact that the scaling seems to work well
*even for the supercritical cases*. Could the authors elaborate on that?

| find that section 2.5 has some pedagogical value, in the sense that many physicists
immediately think of finite-size effects when faced with the issue of subsampling for the first
time. So making the distinction is certainly important. But finite -size scaling is, as the name
suggests, a scaling theory, and a very well established one. Isn’tit possible to connect those



long-known scaling relations with the ones proposed for subsampling, and then test them for
the models? As it stands, section 2.5 limits itself to showing numerically that changes in
system size or sampling size have different effects. Can’t this be extended to an analytical
approach, as done previously in the manuscript?

Finally, a careful reading of the calculations in the Supplementary Material suggests that the
analytical part of the current manuscript relies rather heavily on Ref. [3]. For the authors’ own
benefit, it would be important that the readers find somewhere in the paper a brief summary

of the advances that were made here in comparison to that reference.

In summary, | believe this manuscript makes significant progress towards an analytical
understanding of the problem of subsampling. However, the models used by the authors to
test the theory need to be expanded, including at least branching models on random graphs
with finite connectivity (even if only with annealed, finite -average-degree connectivity). These
are still safely in the mean-field realm where the authors’ method resides and is expected to
work, as they explicitly stated in the discussion. In my opinion, results of this test would be
interesting either way. If their scaling works there, do the results contradict those of Ref.
[10]? If it does not, then why not?

Minor points:

- | believe the abstract is mostly appropriate, except perhaps for the sentence below,

“we derive analytically a subsampling scaling framework that is applicable to different
observables, including distributions of ... node degrees, and of cluster sizes.”

where the authors mention “node degrees” and “cluster size”, which I'm not sure would be
obvious to a broader audience. So it'd help if authors could put them in context. This issue
reappears in lines 31-32 of the introduction. The reference to presumably critical
experimental cultures also deserves some amendment, as mentioned previously.

- Fig. 1: What do the points represent? Simulations with actual subsampling or just a plot of
the analytical solutions? Please clarify.

- Fig. 4: the horizontal log scale of the plots is difficult to understand
Regarding the Supplementary Material:

- | couldn’t find the references for the Supplementary Information, so 'm understanding the
numbers refer to the main bibliography (please confirm).

- In the deduction of Eq. S1 (and in the following equations as well) 'd suggest a change of
notation to clarify the two arguments of G_sub (zand p), since it's constantly compared to
the single-argument G(z). Perhaps G_sub(z;p)?

-In SI 1.2, the normalization constant of the power-law distributions is written as C_gamma
= 1/zeta(gamma). Please define zeta (presumably the Riemann zeta function, as defined



only later in S| 2).
- Lines 485-487 could be improved to eliminate two consecutive “Therefore”s.

- Following the sequence of the main text, shouldn’t Fig. S6 come before Fig. S5?



We want to thank both reviewers for raising important questions in their detailed comments. In our
revisions, we have now addressed all of them and supplemented the manuscript accordingly. Our
replies here are marked in blue.

The major changes are:

Improved definitions in the mathematical subsampling section.

Changed Figure 1, adding numerical subsampling results to it.

Expanding the discussion on the power-law exponents in the critical models.

Addition of two models, a sparsely connected branching network, and an integrate-and-fire

model (EHE). Both are discussed in details in Sl and referenced to in the text.

5. Addition of a detailed discussion of the binning in analysis of the neural recordings and models,
including a new panel in Fig. 3 and a specially dedicated section in the Sl.

6. Discussion of “bumps”, i.e. specific deviation from power law distributions observed in some of
the experimental recordings.

7. Development of a mathematical formalism that combines subsampling scaling with finite-size
scaling.

8. Development of a procedure for numerical optimization of subsampling scaling and verification
that the analytical results coincide with the numerical ones.

PwnNpE

There are also some minor changes improving the clarity and readability of the manuscript. All significant
changes and additions are highlighted in the text (blue color). We include the exact line numbers in the

reply to the referees.

In the following we address point by point the comments of the referees.

Reviewer #1 (Remarks to the Author):

In this manuscript, Levina and Priesemann aim to address the problem of subsampling, which has
plagued the field of neuronal avalanches for many years. Priesemann has previously published on this,
but the present work with Levina gives a firm analytical foundation to this problem and is therefore an
important new contribution. Their results are convincing and demonstrate to my satisfaction that they
have made great progress in this area, coming up with the correct equations to describe how power law
and exponential distributions will be affected by subsampling. Based on this method, they go on to show
that data collapse of the avalanche size distribution will occur only in models that are actually tuned to
be critical, and that such collapse will not occur in models that are not critical. They also clearly
demonstrate how the problem of subsampling is different from the problem of finite sized data. Finally,
they apply their method to a publicly-available data set of cultured networks (from Potter’s group) and
show that mature cultures show collapse, while young and still developing cultures do not.

| think that this is a very important new contribution, and clearly merits publication in Nature
Communications for two main reasons. First, this problem of subsampling has been known for about a
decade, but no clear solution has been presented until now. Here, this controversy is nearly solved, at
least for some of the main cases (power law and exponential distributions). Second, this area of criticality
in biological systems is receiving increased attention and is not confined merely to neuronal avalanches.



Criticality has been suggested in bacterial colonies, flocks of birds, and even human interactions. This
work is thus very broadly applicable and is likely to be well-cited.

Thank you very much for the clear summary and for your comments on our manuscript. Bellow we reply
to each comments and list in detail all changes and extensions we made to the manuscript.

That said, | have a few comments, questions and suggestions:

The problem of subsampling that you address is confined to limited spatial sampling (e.g., not having
enough electrodes to record all the neurons in the population). This is an enormous problem and
tackling it is a commendable task. But could you at least say a few words about how this problem is
related to two other issues? | am thinking of recording length and temporal binning. Your ability to
properly correct for subsampling assumes that the data were collected over a long period of time (at
least one hour), and this may be limited in many preparations (those that rely on Ca++ imaging, for
example in neuroscience). Must recordings be of some length (assuming some firing rate) for all of this
to work?

Our work addressed the question how spatial subsampling affects the cluster size distributions. It
assumes that a sufficient number of samples has been taken (e.g. sufficient recording length), that the
observed samples have been drawn randomly (i.e. in an unbiased manner), and it assumes an
unambiguous definition of the cluster, being it the node degree or the avalanche. These are important
requirements and are now stressed more clearly in the main text (line 77, line 243).

The length of the recording constrains the quality of the reconstructed distribution in the observed
(already subsampled) system. Indeed, if there are too few data points (avalanches), not much can be said
about the distribution. But as soon as there is enough data to obtain a reasonable estimation for the
distribution of the subsampled system, the whole theory will apply. Typically this requires at least a few
thousand avalanches. In the experimental data we analyzed, there were at least 10,000 avalanches,
typically a few 100,000 avalanches, thus more than sufficient to obtain smooth distributions over a three
orders of magnitude.

Somewhat related to this, the temporal binning of the data you used was at 1 ms. But many labs bin at 5
ms, or even longer bins. Can you comment on how these will affect your conclusions on subsampling? In
some sense, both of these issues are related to subsampling because they are also presenting limited
views of what is actually going on in the data.

Indeed, in many experiments the bin size has been found to affect the avalanche size distribution (e.g.
Beggs & Plenz, 2003, Priesemann et al. 2013]). This is because experimental systems often seem to lack a
true separation of time scales leading to avalanches blending into each other or potentially being cut,
and consequently the avalanche extraction via binning is ambiguous both in full system and under
subsampling (see Priesemann et al. 2014 for an in depth discussion).

Interestingly, the in vitro spike data we evaluated here were fairly invariant against changes in bin size,
when showing power laws, i.e. despite a 32 fold change in bin size, the slope remained unchanged (see
Fig. 3D, which we added). This was the case for all experiments showing power laws, and indicated the
presence of a separation of time scales (STS). A similar invariance was also reported for cortical slices
[Friedman et al. PRL 2012, Fig. S1 in their supplementary material]. Hence in this experiment, binning
had little impact on the collapse under subsampling scaling. This suggests that here the avalanche



definition is unambiguous in a large range of bin sizes. We added a figure panel to demonstrate this and
also discuss the potential ambiguities of avalanche definitions (Fig. 3 D, lines 243, Suppl. Information SI
5).

When doing data collapse, there are generally two ways that one could proceed. First, you can get the
analytically expected parameters (as you did) and then show that they produce a reasonable collapse
when inspected by eye. Second, you can conduct a collapse by minimizing some type of error after
searching through different parameter values. In this manuscript, you did the former but not the latter. |
see that your plots look “pretty good” but | would also like to see some type of independent
corroboration of their quality. Can you show that deviating from the parameter values you have chosen
will actually increase the distance between the curves? There are now some toolboxes out there that
claim to do automated collapse by minimization of error.

Thank you for this suggestion. It is indeed a logical, independent corroboration. We implemented a
numerical procedure similar to that of Marchall et al. 2016, with an additional step of transforming the
distribution first to a log-log space. This step is necessary to not underweight the tails. We used the L1
norm to avoid an over-weighting of large deviations generated by the small number of samples in the
(more noisy) tail. Our numerical results are in agreement with the analytic solution. We added a detailed
section to the SI 8 (“Numerical estimation of optimal scaling”) and refer to the results in the main text
(lines 298).

Minor:

In supplementary figure 1, what is ASMC? Don’t you mean BTWC? Or BTW with periodic boundary
Conditions?

Thank you for pointing this out. We indeed meant to write BTWC, not ASM (“Abelian Sandpile Model”),
which is an alternative name of the BTW we used earlier.

In the supplementary figures, it looks like there is a “supercritical bump” in some of the files, even
though they show what appears to be good collapse. Can you explain this apparent discrepancy?

This is indeed an important observation, which we omitted to discuss in the previous version of the
manuscript, and we thank the reviewer for pointing this out. We added a whole section to the SI and
summarize it in the results (line 255, and Sl 6 “Detailed discussion of the experimental results”). We
kindly refer the reviewer to that section. In brief, at first glance, the bumps are reminiscent of
supercritical systems. However, supercritical neural models typically show bumps at system or sampling
size (s = N), not at those very large sizes as here (s = 5.000). We thus suggest that the bumps are more
likely to originate from neurophysiological finite size effects (see Sl 6 for the full line of argumentation).



Reviewer #2 (Remarks to the Author):

| have read with interest the manuscript by A. Levina and V. Priesemann. It brings an interesting
analytical understanding to the problem of subsampling, which has deservedly received considerable
attention in the literature of neuronal avalanches. Specifically, the paper assumes that events X originally
described by a probability distribution P(X) are sampled with a probability p, rendering events X_sub
whose effective probability distribution is P_sub(X_sub). Scaling relations relating P_sub to P and p are
derived, some of which had been previously published by Stumpf et al PNAS 2005 (Ref. [3] of the
manuscript). | find that the paper is relevant and mostly well written. There are, however, essential
points that | would like to see discussed before the manuscript could be considered suitable for
publication in Nature Communications.

Thank you very much for the clear summary and for thoroughly reviewing of our manuscript. Addressing
the issues you raised significantly improved our manuscript. Bellow we list in detail all changes and reply

to the comments.

To start with, | suggest the authors provide simple examples of the mathematical quantities upon which
they are going to develop all their calculations (N_0, N, X, X_sub etc). One can understand them in
retrospect, once the calculations are advanced, but the manuscript could read much better and gain
much more traction if the description of the problem was clearer from the start. Lines 59 and 64 have
unclear expressions, such as “N_0 that represents the number of events in a cluster”, or “each event or
component of every cluster is independently observed”. Since a “cluster” has not been properly defined,
the above sentences, as they stand, hinder more than they help. Perhaps one simple example preceding
them would suffice.

Thank you for pointing this out. We added more detailed explanation, including examples, to the main
text as proposed (line 65, and line 75). More technical expressions were moved to the supplementary

information.

Most importantly, the authors’ mathematical description of subsampling leave aside, as far as | can
understand, a very important aspect of subsampling, namely, the time-dependent nature of the
underlying processes. Consider, for instance, neuronal avalanches, whose sizes are defined as the
number of events (e.g. local field potential large-enough deviations) that occur in between silent epochs.
To properly define what a silent epoch is, data is usually binned using some characteristic time of the
system. In Ref. [20], for instance, this characteristic time is the inter-event interval tau. It turns out that
tau itself depends on the level of subsampling: clearly, one is prone to wait longer for an event when
measuring with a couple of electrodes than with hundreds of them. Therefore, using the authors’
notation, if an event of size X=s occurs in the fully sampled system, in the setup of neuronal avalanches it
could well be “read” (or interpreted) as a *set* of smaller events of sizes s1, s2, ..., because the binning
of the data could introduce silent periods in between them. The *sum of these s_k* is being denoted as
X_{sub} in the current manuscript. While an analytical understanding of P(X_sub) is certainly welcome, it
would be highly desirable to attempt a connection with the more difficult, but also more relevant in
some contexts, probability distribution of the smaller chunks P(s_k).



We agree that the issue of an unambiguous avalanche extraction from neural recordings, e.g. by binning,
is crucial and subsampling further complicates it. And indeed, for our derivation of scaling under
subsampling, we assume that an avalanche of the full system translates to exactly one avalanche
(potentially of size zero) under subsampling. We added a statement about this to the subsampling
definition, so that this point is not missed (line 77, and in more detail in line 243, and SI 5 “Avalanche
definition, binning, and subsampling scaling”).

The main aim of this paper, however, is to derive how to infer P(s) of the full system under subsampling.
Derive how ‘cutting’ of one avalanche and potentially also ‘merging’ of subsequent avalanches affects
the distribution it is a whole new topic of large importance. We believe that it requires an independent
paper, because a theory of cutting and merging involves a number of parameters and assumptions: The
cutting behavior depends on the avalanche shape, the merging on the inter-avalanche-intervals, and all
these results will depend on the choice of bin size. We will certainly tackle this project as a next step, but
for now would like to concentrate on the main result of the current paper, namely how to infer P(s) of
the full system under subsampling - assuming an unambiguous avalanche or cluster definition. If the
more appropriate avalanche extraction mechanism will be found, our results can be applied without any
changes.

In models, avalanches can easily be defined unambiguously by making use of the separation of time
scales (STS), which is often seen as necessary condition for self-organized criticality (e.g. Dickman et al.
Braz. J. of Phys. 2000): Pauses introduced by subsampling are typically much shorter than those between
avalanches. As a consequence, intermediate bin sizes do not cut or merge avalanches. This invariance of
avalanche distributions against changes in bin size thus can indicate a STS.

Interestingly, the in vitro spike data we evaluated here were fairly invariant against changes in bin size,
when showing power laws, i.e. despite a 32 fold change in bin size, the slope remained unchanged (see
figure 3D, which we added). This was the case for all experiments showing power laws, and indicated the
presence of a separation of time scales (STS). A similar invariance was also reported for cortical slices
[Friedman et al. PRL 2012, supplementary material Fig. S1]. Hence in this experiment, binning had little
impact on the collapse under subsampling scaling. This suggests that here the avalanche definition is
unambiguous in a large range of bin sizes. We added a figure panel to demonstrate this and discuss the
potential ambiguities with avalanche definitions (Fig. 3D, line 243, and SI 5 “Avalanche definition,
binning, and subsampling scaling”).

Note that the apparent exponent reported in Ref. [20] changes with the size of the time bin, a feature
that is not captured in the framework of the present manuscript. I'd like the authors to comment on this
problem, particularly in relation to previous references that have discussed it.

We investigated the impact of the bin size on the power-law slope and found that in vitro spike data we
evaluated were fairly invariant against changes in bin size, probably because of an underlying STS (see
above): when showing power laws, the slope remained unchanged, despite a 32 fold change in bin size
(see figure 3D, which we added).

For the models, which have a STS, we observed exactly the same effect: With very small bin sizes the
distributions still changed, but with sufficiently large bin sizes the distributions were invariant and
showed exactly the same power law slope as the fully sampled system. We added a figure to
demonstrate this (see Figure S7A, SI 5 “Avalanche definition, binning, and subsampling scaling”).



What is the status of a and b, as in “a family of scaling relations [defined by a and b] follows for power-
laws” (line 470 of the SI)? Are they free parameters, can they be obtained from the data, or what else?
This should be carefully explained in the main text.

Indeed, if P(s) follows a perfect power law (i.e. without cutoff) one of the variables, a or b, can be chosen
freely. The other variable is constrained by the relation between a, b and \gamma (Eq. 4). We made this
more clear in the main text and the Sl (line 125, and Sl around equation SI 14).

Section 2.2 shows results for three models: a branching model sitting on a fully connected network, and
a two-dimensional conservative sandpile model with either open or periodic boundary conditions. First,
it is important to point out that the avalanche size exponent for the first is different from the last two, a
fact that should be discussed (particularly in light of the statement on line 79, which assumes gamma >
1). The exponent of the sandpile model is only mentioned en passant in line 160 in an attempt to explain
the absence of deviations from the scaling prediction (“hairs”). Could the authors expand that
explanation? Please state the exponent values of the models in the slopes of Fig. 2 (accompanied by the
appropriate citations, since they are well known).

Indeed, it is precisely because of the different exponents of the 2D BTW and BM that we chose these
different models. We now state the exponents explicitly, including references, in the main text (lines
157, specifically line 169 and 181). We also derive the absence of the “hairs” for power laws with slope
approaching unity from above adding exact computations to the SI (SI 1.3 “Power-law exponent close to
unity”).

In these models, the scaling proposed by the authors seems to work very nicely, which is reassuring.
However, can they reproduce e.g. the results of the model in Ref. [10], which is very similar to a
branching model, except that it occurs in a topology with finite average degree (random and small world
graphs included)?

This is an important and interesting question, thank you for raising it. Indeed, Ribeiro et al. study a
network that is very similar to one of our examples, the branching network, and vary the topology from
local via a specific small-world like topology to random, all with separation of time scales. The crucial
difference between our models is the binning for defining the avalanches. As you pointed put earlier,
selecting very small bin size (in the study of Ribeiro et al it was fixed to one time step, the smallest time
constant in the network) can cut avalanches under subsampling, resulting in the apparent subcritical
behavior. We now reproduced their approach, i.e. using a bin size of one step, using the BM with sparse,
annealed topology, and found the same results (Fig. S7C, section SI 5 “Avalanche definition, binning, and
subsampling scaling”).

Importantly, in the models only a sufficiently large bin-size recovers the critical distribution (because of
avoiding cutting avalanches, see above), and allows for a collapse under subsampling scaling (Fig. S7).

For this study, we were particularly interested in the time-scale separated case to disentangle the
avalanche extraction problem from the subsampling problem and thus have a ground truth solution for
perfectly extracted avalanches, and more general clusters (e.g. node degrees). We added a discussion



about the difference to the Ribeiro et al. (SI 5 “Avalanche definition, binning, and subsampling scaling”).
We also demonstrated that our results hold for the sparse randomly connected branching model (see
corresponding replies below).

Both a random graph and a fully connected graph give rise to the same mean-field avalanche exponent,
but arguably fully connected graphs are biologically less realistic and typically have more pathological
scaling issues (a crucial point since this is a manuscript about scaling relations). Note also that the
literature consensually regards the power laws of the sandpile model to be strictly dependent on its
microscopically conservative dynamics (open boundary conditions notwithstanding) which, from a
biological perspective, is another highly non-realistic ingredient. So, to put it more directly, can the
authors provide a microscopically non-conservative model on a not-fully-connected graph which yields
the exponent observed in neuronal avalanches when subsampled? That would be a major result, without
which a much deeper discussion of the limitations of the scaling results would be necessary. If the theory
does not work in that more biologically acceptable scenario, why is that?

Indeed, the random and fully connected networks are very similar in terms of the mean-field behavior
and precisely this reasoning led us to use fully connected networks in the previous version of the
manuscript. To demonstrate that deviations from a mean-field are not essential for our results, we
extend the branching model, including also sparse random connectivity (k=4, annealed, Fig. S6). We
additionally considered the EHE model (originally a non-leaky integrate-an-fire fully connected network,
Eurich et al, PRE 2002), here implemented both in a fully-connected version as well as with 10% random
network topology (section S| 4, Fig. S5). In all models, the subsampling scaling works as derived
analytically, demonstrating its generality.

Whether the generation of power-law distributions is possible in “not local energy conserving” model
(for example, for SOC) is a matter of a long-standing debate, and to our knowledge, there is no decisive
point so far. Our study aims at understanding the subsampling effects in data and verifying it in the
existing models. Developing a new model will be very ambitious goal outside of the scope of the present
manuscript. However, we implemented a non-conservative model of integrate-and-fire neurons (Eurich
et al, PRE 2002), which is truly critical in the conservative limit, but for any finite system size it dissipates
energy with every spike. This model is known to produce power-law distributions for avalanche sizes
with slope approximately -1.5. We additionally modified the original, fully connected network to be 10%
randomly connected. In both cases, subsampling scaling leads to a good collapse of the distributions. Our
results are described in section 4 of the Sl and mentioned in the main text (line 171).

Please note that the above discussion affects section 2.3 as well, where the authors refer to “subcritical
systems” in general, but in practice apply the theory to the branching model on a fully connected graph
only. Once more, it would be necessary to probe the authors’ theory in a branching model with finite
connectivity. In this context, | wonder whether the analytical insights in Larremore et al. PRE 85 066131
(2012) for the statistical properties of avalanches in networks could come to the authors’ help. Please
comment.

We performed additional simulations on a sparsely randomly connected branching model. We consider
Markov matrix (sum of all outgoing connections is equal 1) and thus the largest eigenvalue of our matrix



is 1 leading to a critical network, in accord with Larremore et al. computations. As expected from the
mean-field approximation, our approach worked the same on the random network as on the fully
connected one. We include the results from the sparsely connected network in the Sl (Fig. S6, section S|
4) and also discuss them in the main text (line 171).

Section 2.4 is very interesting in that the scaling analysis proposed by the authors is applied to real data.
However, insofar as there is no clear consensus as to which model best reproduces the data (as far as I'm
aware), the strength of the conclusions drawn from the data hinges on the robustness of the scaling
analysis with respect to different models (which brings us back to the comments above).

There is indeed no “best model” for neuronal avalanches yet, despite more than 10 years of ongoing
research. For this reason we investigated how our subsampling scaling performs on different models of
different universality classes, to demonstrate the model independence and generality. In this
resubmission we expanded the variety of the models, and now the manuscript shows results for the
branching model on different topologies, the BTW with different boundary conditions, and a non-
conservative integrate-and-fire network (EHE). Altogether, we showed that scaling approach is a model-

independent view of the neuronal (or any other) subsampled data.

Please add the value of the observed exponents to Fig. 3. Moreover, both the text and abstract seem to
suggest that mature cultures are generally critical, but a close inspection of Fig. S6 reveal supercritical
bumps in P(s) in about 50% of the experiments (day 28 and day 35). Stating this explicitly does not cloud,
in my opinion, the beauty of the experimental collapses of those cultures which are presumably critical.
More problematic, on the other hand, is the fact that the scaling seems to work well *even for the
supercritical cases*. Could the authors elaborate on that?

We added the values of the exponents to Fig. 3, it is approximately -2 for all cultures exhibiting power
law behavior. Concerning the bumps, this is an important observation, we thank the reviewer for
pointing this out, and we expanded on the description of the results and Sl (line 255, and Sl 6 “Detailed
discussion of the experimental results “).

In the following we address the two questions, whether to expect a collapse here, and whether the
bump indicates supercriticality. We added an in depth discussion, mainly identical with the detailed reply
below, to the section Sl 6, and a short summary of it the main text (line 255).

Regarding the questions whether the distributions observed here are expected to collapse, the answer is
straight forward: The avalanches in the tail make only a tiny fraction of all observed avalanches (about 2
in 10.000), while the other 99.98 % avalanches follow a power law for about 3 orders of magnitude. (It is
the log-log scale together with the logarithmic binning that might make the bumps appear more
prominent than they are.) With only 0.02% of avalanches not following a power law, a decent collapse is
to be expected for the power law. The collapse of the bumps itself is a manifestation of the activity
spread during the large avalanches that hit the sampled set proportionally to the number of sampled
units.

For the origin of the bumps, there are a number of potential explanations, which we discuss one after
the other. The hypothesis that they indicate a slightly supercritical state is one of them.

We see different potential explanations for the bump appearance:



1) Biological finite size effects in a critical system

Assume the neural cultures were precisely at a critical point and the distribution of the
avalanche sizes is a perfect power law without cutoff. Then the probability P,um, to observe an
avalanche larger than si..s is given by the Hurwitz zeta function. What happens in a biological
system with these avalanches? Their size cannot go to infinity, because some biological
mechanisms (like, for example depletion of synaptic resources, shortage of Ca*" or even
homeostatic mechanisms) would limit their maximal size. Thus all avalanches larger than some
Strans (iN our data syans = 3000) are distributed around a characteristic, biologically determined
size, which in case of our data is about s = 5000. In agreement with this hypothesis, the number
of the avalanches observed in the “bump” agrees with the probability Pyymp for perfectly critical
system. Thus the data support our hypothesis that the bump represents the collection of all
avalanches that would, in an ideal system, be larger than 3000. (Note that all sizes s given here
are the sizes observed under subsampling).

2) Criticality alternates with a state that gives rise to large avalanches.
The in vitro neural networks we analyzed could in principle alternate between different states.
While in one state, which comprises about 99.98 % of the avalanches, the system is critical, in
the other state it displays unusually large avalanches that run multiple times over the entire
system and give rise to population bursts, i.e. they manifest as the observed bumps. (Note that
the bumps make only about 0.02 % of the avalanches and are of size s \approx 5000). How many
“burst avalanches” are generated, might depend on the individual culture (some showing none
at all), and it could be pure coincidence that the fraction of burst avalanches is in agreement
with the fraction expected for the avalanche tail (see hypothesis 1).

3) A novel form of slight supercriticality in a finite system.

While it is straight forward to identify “subcriticality” (no avalanches covering the full system
size, no power law behavior of distributions, but a prominent exponential tail), it is much trickier
to identify “supercriticality” in neural systems by pure observation, potentially because
supercriticality in the thermodynamic limit implies a non-zero fraction of infinite avalanches, but
in finite systems it depends on the type of system how these infinite avalanches manifest. For
supercritical systems in neuroscience, the bump in P(s) occurs typically at N, i.e. the system size
or the number of sampled neurons [e.g. Eurich 2002]. However, here in all experiments where
the bump is observed, it is around 80 times N (i.e. s \approx 5000 from sampling up to 60
electrodes). In fact, a unit spikes about 80 times in a single of these large avalanches. Thus the
bumps do not indicate supercritical behavior resembling that of previous studies. However, it
could indicate a novel form of supercritical behavior on a finite system.

Distinguishing between these potential causes of the bump would need additional experimental
investigations that are outside of the scope of present manuscript. The main goal of our work here is to
provide a method to extrapolate distributions from a subsampled system to understand the behavior of
the full system. An absence of a collapse under subsampling scaling makes it (currently) impossible to
infer the distribution in the full system. In the experiments evaluated here, the presence of the data



collapse in the more mature networks predicts a power-law distribution for P(s) of the full neural system
that spans approximately 6 orders of magnitude. Whether such power laws are, however, sufficient to
infer criticality, is under debate. Additional established methods, e.g. shape collapse (Friedman et al. PRL
2012), could help to further test this question.

| find that section 2.5 has some pedagogical value, in the sense that many physicists immediately think of
finite-size effects when faced with the issue of subsampling for the first time. So making the distinction is
certainly important. But finite-size scaling is, as the name suggests, a scaling theory, and a very well
established one. Isn’t it possible to connect those long-known scaling relations with the ones proposed
for subsampling, and then test them for the models? As it stands, section 2.5 limits itself to showing
numerically that changes in system size or sampling size have different effects. Can’t this be extended to
an analytical approach, as done previously in the manuscript?

Thank you for this comment. Indeed, it was important for us to emphasize the difference of subsampling
scaling and finite-size scaling (FSS). Following your suggestion we extended our analysis and derived a
combined subsampling-finite-size scaling that allows for critical systems to extrapolate from arbitrary
subsampling of arbitrary system size to any other subsampling of any other system size. We also
performed numerical simulations to test the obtained scaling relationship. We added a paragraph and a
figure (Fig. 5) to the main text (section 2.5 “Subsampling versus finite size scaling”, line 286) and an
entire section treating the derivations to the Sl (section SI 7 “Combining subsampling scaling and finite-
size scaling”).

Finally, a careful reading of the calculations in the Supplementary Material suggests that the analytical
part of the current manuscript relies rather heavily on Ref. [3]. For the authors’ own benefit, it would be
important that the readers find somewhere in the paper a brief summary of the advances that were
made here in comparison to that reference.

We agree that it is very important to attribute the results properly, and we are sorry that it has not been
as clear as we intended. We expanded this topic now both in the main text and to the SI (line 52, 116,
first paragraph in the SlI). The main point of difference is that in [3] the question of which distribution
change and which keep their classes under subsampling was investigated. We extend the study of
Stumpf et al. [3] and develop formalism allowing to infer the original distribution from the subsampling,
also in the case where an exact solution is not possible.

In summary, | believe this manuscript makes significant progress towards an analytical understanding of
the problem of subsampling. However, the models used by the authors to test the theory need to be
expanded, including at least branching models on random graphs with finite connectivity (even if only
with annealed, finite-average-degree connectivity). These are still safely in the mean-field realm where
the authors’ method resides and is expected to work, as they explicitly stated in the discussion. In my
opinion, results of this test would be interesting either way.

Thank you for this summary. We followed your suggestions and included additional models (the sparsely
connected BM, and the 10% and fully connected EHE for its non-conservative dynamics). For all of them,
as predicted by the analytical computations, scaling results stay unchanged.



If their scaling works there, do the results contradict those of Ref. [10]? If it does not, then why not?

We refer to our replies above. In brief: We get the same results as Ribeiro et al. when applying very small
bin sizes (so that avalanches are cut). As a consequence, the subsampled system can be mistaken as
subcritical, and thus scaling does not lead to a collapse. Our approach requires an unambiguous
definition of avalanches (one avalanche in the fully system translates to one under subsampling).

Minor points:

- | believe the abstract is mostly appropriate, except perhaps for the sentence below,

“we derive analytically a subsampling scaling framework that is applicable to different observables,
including distributions of ... node degrees, and of cluster sizes.”

where the authors mention “node degrees” and “cluster size”, which I'm not sure would be obvious to a
broader audience. So it'd help if authors could put them in context. This issue reappears in lines 31-32 of
the introduction. The reference to presumably critical experimental cultures also deserves some
amendment, as mentioned previously.

Thank you very much for the comment. We now removed the term “cluster” in abstract and
introduction, because it is a term used in different contexts without a clear definition. We then introduce
it in the results section thoroughly. Regarding the term “degree” of the node, it is mentioned as an
example of additional application area and its understanding is not necessary for the understanding of
the article, however we believe it is sufficiently well known and it broadens set of potential readers.

- Fig. 1: What do the points represent? Simulations with actual subsampling or just a plot of the
analytical solutions? Please clarify.

Indeed, in the original submission we plotted exact analytical solutions. Following your question, we
decided to add direct numerical simulations. Now points represent the numerical simulations and lines
analytical solutions, a small jitter originated from finite numerical sampling is visible in the numerical
part. We changed the Figure 1 and it’s caption to make the data origin clear.

- Fig. 4: the horizontal log scale of the plots is difficult to understand
We have reduced the number of ticks in all figures of the main manuscript and hope that now the axis
scale is easier to read.

Regarding the Supplementary Material:



- | couldn’t find the references for the Supplementary Information, so I'm understanding the numbers
refer to the main bibliography (please confirm).
This is correct. We now prepared a separate bibliography for the Sl.

- In the deduction of Eq. S1 (and in the following equations as well) I'd suggest a change of notation to
clarify the two arguments of G_sub (z and p), since it’s constantly compared to the single-argument G(z).
Perhaps G_sub(z;p)?

Thank you, we changed the notation as you suggested.

- In SI 1.2, the normalization constant of the power-law distributions is written as C_gamma =
1/zeta(gamma). Please define zeta (presumably the Riemann zeta function, as defined only later in Sl 2).
Yes, it is indeed the Riemann zeta function. We now specify it early on in the text (SI 1.2).

- Lines 485-487 could be improved to eliminate two consecutive “Therefore”s.
Thank you for noticing, we improved the style and restructured this part of the text.

- Following the sequence of the main text, shouldn’t Fig. S6 come before Fig. S5?

We now ordered all figures and all the Sl according to their appearance in the main text. The only
exception is SI 5, which is the mentioned briefly in the beginning of the results, but is of importance only
later.



Reviewers' comments:
Reviewer #1 (Remarks to the Author):

| find that the authors have done a good job of responding to the issues that | have raised. |
appreciate their efforts to verify the analytical exponents numerically, and the results were
encouraging. The more extensive comments by reviewer 2 also seemed to be addressed.
The process of accounting for combined finite size and subsampling effects is very nice and
adds value to the manuscript. Overall, this is a timely and accurate piece of work.

Reviewer #2 (Remarks to the Author):

The revised version of the manuscript shows considerable improvement over the previous
one. Most of the questions posed have been answered. There are, however, some issues
that remain and others that have emerged in light of their response. Those should be
addressed before | could consider the manuscript acceptable for publication.

First, | believe the manuscript would read better if authors included slopes with the values of
the exponents in all the figures where power laws appear. That includesfigures 2, 5, S1, S5,
S6, S7 and S8. In Fig. 4, the exponent in the vertical axis is unclear (it looks like a nu, but it
might well be a gamma) and its value should be added to the figure caption (I could only find
it in the SI).

Second, I've noticed that notation can be confusing at times. Consider, for instance, Fig. 2A.
If s is the size of avalanches in the subsampled system, shouldn’tthe vertical axis be P_sub
instead of p(s)? (incidentally, | see p(s) instead of P(s) with a capital “P”, isn’t that confusing
with sampling parameter p?). | suspect this confusion in notation (P_sub(s) versus P(s))
recurs throughout the manuscript, so I'd urge authors to check carefully and amend figures
accordingly.

Third, and most importantly, | find that the discussion about the bin size in Section SI 5 is too
interesting and importantto be relegated to the supplementary material. | would therefore
encourage the authors to move at least part of it to the main text. Figure S7, for instance, is
particularly interesting in that it helps understand Fig. 3. In regard to that discussion, | also
have a few questions:

- The issue of bin size for the branching model is focussed on the sparse connectivity
variant. But does it occur as well in the fully connected variant? Please comment. For
instance, | didn’t find the bin size used to obtain the avalanches for the (fully connected)
branching model of Figs. 2, 4 and 5. Please clarify. Bin size information is also missing from
Fig. S6. Since it precedes the discussion presented in Fig. S7, it gets confusing (after
reading Sl 5 and appreciating Fig. S7, |went back to Fig. S6 but didn’t find the bin size).

- The paper also lacks an explicit comparison between the results of Fig. S7 and those of



Ref. [9], whose claims it directly addresses. The authors should not miss the opportunity to
advance a discussion raised in the literature.

- Finally, in the context of Fig. 3D the authors mention that “the approximate invariance of
P(s) against changes in the bin size indicates a separation of time scales in the experimental
preparation”. In apparent contradiction with that claim, however, Ref. [12] displays in its Fig.
3 a (now famous) family of P(s) curves with the power law exponent changing continuously
with the value of the bin size. Could the authors comment on that difference?

| commend the authors for their notable effort in improving the manuscript. | believe that they
will be able to satisfactorily address the points above.

As one last remark, there are several minor corrections thatl list belowfor the authors’
considerations:

Line 88: Authors still refer to N_0, which has not been defined in the maintext. N_0
reappears stillundefined in line 104. | know what N_0 is, but in the spirit of a journal with a
general audience, it wouldn’t hurt to define it.

Line 102: “... is not a power law but only approachingitin the limit of...”

Line 107, Eq. (2): | assume the logarithmis in the natural base, but that could be made
explicit (or perhaps use “In” instead)

Caption of Fig. 3: “In panels A, B, and C bin size 1 ms”
Fig. 3: for consistency with Fig. S8, please add “c” to the vertical axis (and define it).

Lines 269 and 270: remove comma from “... data affected by both, subsampling and finite
system size effects”

Supplementary information:

Line 1: “... we in detail derive ...”

Lines 94 and 95: “... and make use the geometric series”
Line 175: remove comma from “... both, the classical fully...”
Line 216: “... to demonstrated the impact ...”

Line 307: “... subsampling sclaing relations”

Line 336: remove comma from “... both, the BM and...”



We thank both reviewers for their kind remarks and questions. We are convinced that our combined

efforts greatly improved the manuscript making it now ready for publication.

In the present revision we addressed all the comments of the Reviewer 2: moved the section 5 from
supplementary to the main text, added one panel to the figure and did minor corrections.
All significant changes are highlighted in the text (blue color).

Reviewer #1 (Remarks to the Author):

| find that the authors have done a good job of responding to the issues that | have raised. | appreciate
their efforts to verify the analytical exponents numerically, and the results were encouraging. The more
extensive comments by reviewer 2 also seemed to be addressed. The process of accounting for
combined finite size and subsampling effects is very nice and adds value to the manuscript. Overall, this
is a timely and accurate piece of work.

We thank the referee for the kind comments and support in improving the manuscript.

Reviewer #2 (Remarks to the Author):

The revised version of the manuscript shows considerable improvement over the previous one. Most of
the questions posed have been answered. There are, however, some issues that remain and others that
have emerged in light of their response. Those should be addressed before | could consider the
manuscript acceptable for publication.

Thank you for the encouragement. We revised the manuscript in accordance with your comments and
questions.

First, | believe the manuscript would read better if authors included slopes with the values of the
exponents in all the figures where power laws appear. That includes figures 2, 5, S1, S5, S6, S7 and S8.
We included slopes for all the figures mentioned, either as a dashed line in the figure, or if there was no

sufficient space available, we denoted the slope in the figure legend.

In Fig. 4, the exponent in the vertical axis is unclear (it looks like a nu, but it might well be a gamma) and
its value should be added to the figure caption (I could only find it in the SI).

Thank you. We changed the font and now it is clear that we mean \gamma (i.e. the power-law
exponent). We also added to the figure caption the values of \gamma for both models. (Note, that now
it is Fig. 5)

Second, I've noticed that notation can be confusing at times. Consider, for instance, Fig. 2A. If s is the size
of avalanches in the subsampled system, shouldn’t the vertical axis be P_sub instead of p(s)?
(incidentally, | see p(s) instead of P(s) with a capital “P”, isn’t that confusing with sampling parameter



p?). | suspect this confusion in notation (P_sub(s) versus P(s)) recurs throughout the manuscript, so I'd
urge authors to check carefully and amend figures accordingly.

Thank you! Indeed, the y-label in Fig. 2 should have been P(s). Before, we had used P(s) instead of
P_sub(s) whenever the distinction was not of importance. Now, to improve the consistency, we changed
the P(s) to P_sub(s) in all figures, figure legends, and in the text, wherever appropriate.

Third, and most importantly, | find that the discussion about the bin size in Section SI 5 is too interesting
and important to be relegated to the supplementary material. | would therefore encourage the authors
to move at least part of it to the main text. Figure S7, for instance, is particularly interesting in that it
helps understand Fig. 3. In regard to that discussion, | also have a few questions:

We transferred the former section SI 5 and Figure S7 to the main text (now section 2.4 and figure 3,
respectively). The text of SI 5 was kept almost unchanged, apart from reordering the paragraphs to
better fit the section into the flow of the main text. All significant changes are marked blue.

The issue of bin size for the branching model is focused on the sparse connectivity variant. But does it
occur as well in the fully connected variant? Please comment.

Yes, the same principle holds for the fully connected BM. We added a figure panel (Fig. 3 D) to
demonstrate this.

For instance, | didn’t find the bin size used to obtain the avalanches for the (fully connected) branching
model of Figs. 2, 4 and 5. Please clarify. Bin size information is also missing from Fig. S6. Since it precedes
the discussion presented in Fig. S7, it gets confusing (after reading SI 5 and appreciating Fig. S7, | went
back to Fig. S6 but didn’t find the bin size).

All the simulated models were implemented with a separation of time scales (see section 2.4, the
smallest inter-avalanche-interval (1Al) is longer than the longest avalanche). Hence any bin size that is
larger than the longest avalanche can be used for an unambiguous definition of clusters or avalanches
under arbitrary subsampling. Thus in all the figures you mentioned, the results hold for any bin size with
max(avalanche duration) < bin size < min(IAl).

We added this information about the choice of bin size now to the methods (“4.2.4 Avalanche extraction
in the models”) and expanded on the definition in the main text (line 79 “For neural avalanches...”).

The paper also lacks an explicit comparison between the results of Fig. S7 and those of Ref. [9], whose
claims it directly addresses. The authors should not miss the opportunity to advance a discussion raised
in the literature.

We now explicitly refer to the results by Ribeiro et al [9], mentioning that because of a too small bin size
(bin size 1 time step), the critical BM under subsampling did not show a power law (line 268). The same
holds for our own previous study (Priesemann et al. 2014).

Finally, in the context of Fig. 3D the authors mention that “the approximate invariance of P(s) against
changes in the bin size indicates a separation of time scales in the experimental preparation”. In
apparent contradiction with that claim, however, Ref. [12] displays in its Fig. 3 a (now famous) family of
P(s) curves with the power law exponent changing continuously with the value of the bin size. Could the

authors comment on that difference?



Indeed, a change in P(s) with bin size is often observed for neural avalanche distributions obtained from
local field potentials (LFP) both in Ref.[12] Beggs & Plenz 2003, and in many subsequent studies. The
data we analyze here is from spikes in developing cultures. Our results show that this neural system has
an approximate separation of time scales (STS). One probable explanation would be that LFP recordings
have less STS. The study of the possible causes of less STS in LFP recordings would be an interesting topic
for a separate research project that we are planning to pursue. We now discuss this issue briefly in the
main text (line 257).

| commend the authors for their notable effort in improving the manuscript. | believe that they will be
able to satisfactorily address the points above.
We thank the reviewer for the time and efforts spent on helping us to improve the manuscript

As one last remark, there are several minor corrections that | list below for the authors’ considerations:

Line 88: Authors still refer to N_0, which has not been defined in the main text. N_0 reappears still
undefined in line 104. | know what N_0 is, but in the spirit of a journal with a general audience, it
wouldn’t hurt to define it.

We totally agree, we added the definition of N_0 at the first appearance point.

Line 102: “... is not a power law but only approaching it in the limit of...”
Thank you.

Line 107, Eq. (2): | assume the logarithm is in the natural base, but that could be made explicit (or
perhaps use “In” instead)
To avoid confusions, we replaced all “log” by “In”

Caption of Fig. 3: “In panels A, B, and C bin size 1 ms”
Thank you. We added the sentence to the figure legend.

Fig. 3: for consistency with Fig. S8, please add “c” to the vertical axis (and define it).
Thank you. “c” denotes the total number of avalanches when sampling with all electrodes. We have
added this information, and the precise number of avalanches, to the figure legend.

Lines 269 and 270: remove comma from “... data affected by both, subsampling and finite system size
effects”
Thank you.



