Metal-Free C-H Alkylation of Heteroarenes with Alkyltrifluoroborates: A General Protocol for 1°, 2°, and 3° Alkylation

Jennifer K. Matsui, David N. Primer, Gary A. Molander*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323

*To whom correspondence should be addressed. E-mail: gmolandr@sas.upenn.edu

Supporting Information

General Considerations	S2
Comments regarding origins of starting materials,	
purification of solvents, and spectroscopic techniques.	
General Procedure for Photoredox Alkylation	S 3
General procedure for the photoredox-catalyzed Minisci	
coupling of alkyltrifluoroborates to various heteroarenes.	
Synthesis of Tertiary Alkyltrifluoroborate	835
Cyclic Voltammetry of Relevant Organoborons	S36
Spectra of Synthesized Compounds	837
Quantum Yield Data	S182
BF ₃ Studies with Alternate Radical Precursors	S184
DFT Calculations: Radical Association Studies	S185

GENERAL CONSIDERATIONS:

NMR Spectra (¹H, ¹³C, ¹⁹F) were performed at 298 K. ¹H NMR spectra were referenced to residual non-deuterated chloroform (δ 7.26) in CDCl₃, residual DMSO-*d*₅ (δ 2.50) in DMSO-*d*₆, acetone-*d*₅ (δ 2.09) in acetone-*d*₆, and residual MeCN-*d*₂ (δ 1.94) in MeCN-*d*₃. ¹³C NMR spectra were referenced to CDCl₃ (δ 77.2) and DMSO-*d*₆ (δ 39.5). Reactions were monitored by HPLC, GC/MS, ¹H NMR, and/or by TLC on silica gel plates (60 Å porosity, 250 µm thickness). TLC analysis was performed using hexanes/EtOAc as the eluant and visualized using UV light. Silica plugs utilized flash silica gel (60 Å porosity, 32–63 µm). Flash chromatography was accomplished using an automated system (visualizing at 254 nm, monitoring at 280 nm) with silica cartridges (60 Å porosity, 20–40 µm). Solvents were purified by use of drying cartridges through a solvent delivery system. Melting points (°C) are uncorrected.

Deuterated NMR solvents were either used as purchased (DMSO- d_6) or were stored over 4Å molecular sieves and/or K₂CO₃ (CDCl₃). Na₂SO₄, MgSO₄, MeOH, CH₂Cl₂, MeCN, pentane, Et₂O, trifluoroacetic acid, and K₂S₂O₈ were used as purchased. Heteroarenes were purchased from commercial suppliers and used without further purification. MeCN/H₂O was degassed thoroughly with N₂ and stored under N₂. The photocatalyst *N*-Me-9-mesityl acridinium tetrafluoroborate was donated by Pfizer and used without further purification.

GENERAL PROCEDURE

To a 4.0 mL vial, alkyltrifluoroborate (0.30 mmol, 1.0 equiv), heteroarene (0.30 mmol, 1.0 equiv), photocatalyst (6.2 mg, 0.015 mmol, 0.05 equiv), and $K_2S_2O_8$ (162.2 mg, 0.60 mmol, 2.0 equiv) were added. Open to air, a mixture of 3.0 mL MeCN/H₂O (1:1) was added, followed by trifluoroacetic acid (34.2 mg, 0.30 mmol, 1.0 equiv). The mixture was stirred under 26 W CFLs (GE FLE26HT3/2/D) for 5–48 h under a fan. The reaction mixture was quenched with saturated NaHCO₃ and extracted with CH₂Cl₂ (3 x 20 mL). The organic extracts were combined and concentrated on Celite. The crude mixture was purified by silica gel column chromatography.

HETEROARENE SCOPE WITH TERT-BUTYLTRIFLUOROBORATE

t-Bu

2-(*tert*-Butyl)quinoline (1a)

Physical state: 40 mg, 72% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.07 (d, J = 8.6 Hz, 2H), 7.77 – 7.75 (m, 1H), 7.68 – 7.64 (m, 1H), 7.54 – 7.52 (m, 1H), 7.49 – 7.46 (m, 1H), 1.48 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 169.4, 147.6, 136.0, 129.6, 129.1, 127.4, 126.6, 125.7, 118.3, 38.3, 30.3.

HRMS (ES+) m/z calc. for C₁₃H₁₆N [M+H] 186.1283, found 186.1280.

FT-IR (cm⁻¹, neat, ATR) 2961, 1619, 1601, 1565, 1504, 1364, 1138, 1103, 829, 756, 478.

2-(*tert*-Butyl)-4-methylquinoline (**1b**)

Reference: Gabriele, B.; Mancuso, R; Salerno, G.; Ruffolo, G.; Plastina, P. J. Org. Chem. 2007, 72, 6873.

Physical state: 57 mg, 95% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (d, J = 8.4 Hz, 1H), 7.93-7.90 (m, 1H), 7.66-7.64 (m, 1H), 7.49-7.27 (m, 1H), 7.34 (s, 1H), 2.67 (s, 3H), 1.47 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 169.1, 147.5, 143.7, 130.1, 128.8, 126.7, 125.5 123.5, 119.0, 38.1, 30.3, 19.1.

4-Bromo-2-(*tert*-butyl)quinoline (1c)

Physical state: 68 mg, 86% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 8.06-8.02 (m, 1H), 7.79 (s, 1H), 7.69 (dd J = 7.7, 7.6 Hz, 1H), 7.54 (dd, J = 7.7, 7.6 Hz, 1H), 1.45 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 169.5, 148.3, 134.0, 130.1, 130.0, 127.0, 126.5, 126.2, 122.5, 38.3, 30.2.

HRMS (ES+) m/z calc. for C₁₃H₁₅BrN [M+H] 264.0388, found 264.0397.

FT-IR (cm⁻¹, neat, ATR) 2957, 1585, 1488, 820, 756.

2-(*tert*-Butyl)-4-chloro-8-(trifluoromethyl)quinoline (1d)

Physical state: 78 mg, 70% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.38 (d, *J* = 8.4 Hz, 1H), 8.08 (d, *J* = 7.2 Hz, 1H), 7.68 (s, 1H), 7.61-7.59 (m, 1H), 1.47 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 170.5, 144.9, 142.6, 128.5 (q, *J* = 5.5 Hz), 128.3 (q, *J* = 29.1 Hz), 128.2, 125.3, 125.2, 123.1, 119.3, 38.9, 29.9.

HRMS (ES+) m/z calc. for C₁₄H₁₄ClF₃N [M+H] 288.0767, found 288.0762.

FT-IR (cm⁻¹, neat, ATR) 2965, 1592, 1489, 1463, 1293, 1145, 1118, 766.

3-(*tert*-Butyl)-1*H*-indazole (1e)

Reference: Li, P.; Wu, C.; Zhao, J.; Rogness, D. C.; Shi, F. J. Org. Chem. 2012, 77, 3149

Physical state: 41 mg, 80% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 10.07 (bs, 1H), 7.91 (d, *J* = 8.2 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.36-7.33 (m, 1H), 7.14-7.11 (m, 1H), 1.55 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 154.8, 142.1, 126.3, 122.3, 120.7, 120.0, 110.1, 34.0, 30.2.

HRMS (ES+) m/z calc. for C₁₁H₁₅N₂ [M+H] 175.1235, found 175.1229.

FT-IR (cm⁻¹, neat, ATR) 3146, 3112, 3073, 2963, 2928, 2900, 1342, 739.

CO₂Me t-Bu

Methyl 1-(*tert*-Butyl)isoquinoline-3-carboxylate (1g)

Physical state: 55 mg isolated, 77% yield, white solid (mp = 55 °C).

¹**H NMR** (500 MHz, CDCl₃) δ 11.64 (s, 1H), 8.50 – 8.45 (m, 2H), 7.72 – 7.70 (m, 2H), 4.06 (s, 3H), 1.64 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 171.8, 158.0, 155.4, 129.6, 129.3, 129.0, 128.8, 127.3, 124.3, 118.4, 52.9, 39.7, 31.2.

HRMS: submitted.

FT-IR (cm⁻¹, neat, ATR) 2953, 1661, 1450, 1337, 1242, 1164.

2-(*tert*-Butyl)quinoxaline (1h)

Physical state: 39 mg, 70% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.99 (s, 1H), 8.06 (dd, *J* = 8.0, 3.8 Hz, 2H), 7.71 (m, 2H), 1.52 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 163.8, 143.6, 141.8, 141.0, 129.8, 129.5, 129.1, 129.0, 37.4, 29.9.

HRMS (ES+) m/z calc. for C₁₂H₁₅N₂ [M+H] 186.1157, found 186.1158.

FT-IR (cm⁻¹, neat, ATR) 2963, 1558, 1492, 1464, 1365, 1237, 1155, 1128, 1097, 1014, 968, 761, 607.

2-(tert-Butyl)-3-chloroquinoxaline (1i)

Physical state: 28 mg isolated, 43% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.99 (s, 1H), 8.07 – 8.05 (m, 2H), 7.74 – 7.68 (m, 2H), 1.52 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 163.8, 143.6, 141.8, 141.0, 129.8, 129.5, 129.1, 129.0, 37.4, 29.9.

HRMS (ES+) m/z calc. for C₁₂H₁₅ClN₂ [M+H] 221.0846, found 221.0844.

FT-IR (cm⁻¹, neat, ATR) 2977, 1167, 1104, 1008, 761.

6-(*tert*-Butyl)nicotinonitrile (1j)

Physical state: 42 mg, 89% yield, yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 1.38 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 174.1, 151.7, 139.5, 119.3, 117.3, 106.9, 38.4, 30.0.

HRMS (ES+) m/z calc. for C₁₀H₁₃N₂ [M+H] 161.1079, found 161.1078.

FT-IR (cm⁻¹, neat, ATR) 2960, 2050, 1721, 1596.

2-(*tert*-Butyl)-4-(trifluoromethyl)pyridine (1k)

Reference: Stowers, K. J.; Fortner, K. C.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 6541.

Physical state: 58 mg, 95% yield, light yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.74 (d, *J* = 4.9 Hz, 1H), 7.53 (s, 1H), 7.31 (d, *J* = 5.0 Hz, 1H), 1.40 (d, *J* = 1.9 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 171.2, 149.7, 138.7 (q, *J* = 34.0 Hz), 123.4 (q, *J* = 271.0), 116.4 (q, *J* = 4.0 Hz), 114.8, 114.81, 38.0, 30.2.

¹⁹**F NMR** (477 MHz) δ -64.70.

1,1'-(4-(tert-Butyl)pyridine-2,6-diyl)bis(ethan-1-one) (11)

Physical state: 48 mg, 73% yield, clear oil.

¹H NMR (500 MHz, CDCl₃) δ 8.22 (s, 2H), 2.78 (s, 6H), 1.36 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 200.1, 162.9, 153.0, 122.0, 35.6, 30.6, 25.9.

HRMS (ES+) m/z calc. for C₁₃H₁₈NO₂ [M+H] 220.1338, found 220.1334.

FT-IR (cm⁻¹, neat, ATR) 2968, 2975, 1700, 1362, 1244, 1131, 610.

8-(*tert*-Butyl)-1,3,7-trimethyl-3,7-dihydro-1*H*-purine-2,6-dione (**1m**)

Physical state: 52 mg, 70% yield, white solid (173 °C).

¹H NMR (500 MHz, CDCl₃) δ 4.11 (s, 3H), 3.56 (s, 3H), 3.39 (s, 3H), 1.47 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 160.1, 155.8, 151.9, 147.1, 108.4, 34.3, 34.2, 29.7, 29.1, 28.0.

HRMS (ES+) m/z calc. for C₁₂H₁₉N₄O₂ [M+H] 251.1508, found 251.1505.

FT-IR (cm⁻¹, neat, ATR) 2974, 1699, 1656, 1543, 1492, 1428, 1364, 1240, 740.

2-(*tert*-Butyl)nicotinamide (1n)

Reference: Tada, M.; Yokoi, Y. J. Heterocyclic Chem. 1989, 26, 45.

Physical state: 36 mg, 67% yield, light yellow solid (mp = 94 °C).

¹**H** NMR (500 MHz, DMSO- d_6) δ 8.95 (d, J = 2.3 Hz, 1H), 8.17 – 7.99 (m, 2H), 7.51 (d, J = 8.2 Hz, 2H), 1.31 (s, 9H).

¹³C NMR (126 MHz, DMSO) δ 171.2, 166.5, 147.6, 135.6, 127.0, 118.5, 20.8, 14.1.

HRMS (ES+) m/z calc. for C₁₀H₁₅N₂O [M+H] 179.1184, found 179.1190.

FT-IR (cm⁻¹, neat, ATR) 3433, 2253, 2127, 1667, 1394, 1051, 1023, 820, 760.

2-(*tert*-Butyl)benzo[*d*]thiazole (10)

Physical state: 38 mg, 66% yield, yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.35 – 7.32 (m, 1H), 1.53 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 182.0, 153.4, 135.1, 125.9, 124.6, 122.8, 121.6, 38.5, 30.9.

HRMS (ES+) m/z calc. for C₁₁H₁₄NS [M+H] 192.0847, found 192.0847.

FT-IR (cm⁻¹, neat, ATR) 2965, 1513, 1438, 1044, 1008, 758.

2-(*tert*-Butyl)quinazolin-4(3*H*)-one (1**p**)

Reference: Li, Z.; Dong, J.; Chen, X.; Li, Q.; Zhou, Y.; Yin, S. -F. J. Org, Chem. 2015, 80, 9392.

Physical state: 54 mg, 90% yield, white solid (mp = 110-113 °C).

¹**H** NMR (500 MHz, CDCl₃) δ 11.40 (s, 1H), 8.29 (d, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 9.8 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 164.1, 162.3, 149.4, 134.6, 127.8, 126.4, 126.3, 120.7, 100.1, 37.6, 28.4.

HRMS (ES+) m/z calc. for C₁₂H₁₅N₂O [M+H] 203.1184, found 203.1183.

FT-IR (cm⁻¹, neat, ATR) 3189, 3079, 2968, 1667, 1611, 772.

N-Benzyl-2-(*tert*-butyl)-7*H*-purin-6-amine (**1q**)

Physical state: 67 mg, 79% yield, yellow solid (mp = 125-127 °C).

¹**H** NMR (500 MHz, CDCl₃) δ 8.45 (s, 1H), 7.44 – 7.41 (m, 2H), (dd, *J* = 7.5, 7.5 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 1H), 6.12 (bs, 1H), 4.89 (s, 2H), 1.53 (s, 9H) (highlighted proton not observed).

¹³C NMR (126 MHz, CDCl₃) δ 160.7, 154.2, 151.6, 138.7, 128.8, 128.7, 128.2, 127.6, 100.1, 33.9, 29.6, 27.8.

HRMS (ES+) m/z calc. for C₁₆H₂₀N₅ [M+H] 282.1719, found 282.1718.

FT-IR (cm⁻¹, neat, ATR) 2972, 1619, 1598, 1351, 1299.

(1*R*)-(2-(*tert*-Butyl)-6-methoxyquinolin-4-yl)(5-vinylquinuclidin-2-yl)methanol (1**r**)

Reference: Yardley, J. P.; Bright, R. E.; Rane, L.; Rees, R. W.; Russell, P. B.; Smith, H. J. Med. Chem. 1971, 14, 62.

Physical state: 62 mg, 54% yield, light yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (d, J = 9.2 Hz, 1H), 7.67 (s, 1H), 7.30 (d, J = 9.2 Hz, 1H), 7.20 (s, 1H), 5.73 (dt, J = 17.6, 9.0 Hz, 1H), 5.58 (s, 1H), 4.97 – 4.90 (m, 2H), 3.89 (s, 3H), 3.50 – 3.45 (m, 1H), 3.20 – 3.08 (m, 2H), 2.71 – 2.65 (m, 2H), 2.29 – 2.25 (m, 1H), 1.81 (s, 1H), 1.79 – 1.65 (m, 2H), 1.52 – 1.43 (m, 11H).

¹³C NMR (126 MHz, CDCl₃) δ 166.6, 157.4, 146.9, 143.8, 142.0, 131.9, 124.7, 120.9, 115.5, 114.6, 101.3, 72.6, 60.1, 57.3, 55.8, 43.5, 40.1, 38.1, 30.3, 28.1, 27.8, 21.6.

HRMS (ES+) m/z calc. for C₂₄H₃₂N₂O₂ [M+H] 381.2536, found 381.2543.

FT-IR (cm⁻¹, neat, ATR)2954, 1621, 1601, 1561, 1505, 1471, 1363, 1343, 1263, 1231, 1106, 1034, 911, 832, 734, 645.

SECONDARY AND TERTIARY ALKYLTRIFLUOROBORATE SCOPE

Methyl 1-(1-(Benzyloxy)-3-phenylpropyl)isoquinoline-3-carboxylate (2a)

Physical state: 71 mg, 58% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.88 (d, *J* = 8.5 Hz, 1H), 8.52 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.78 – 7.76 (m, 1H), 7.70 – 7.66 (m, 1H), 7.41 – 7.35 (m, 1H), 7.31 – 7.22 (m, 7H), 7.19 – 7.12 (m, 2H), 5.26 – 5.22 (m, 1H), 4.52 – 4.43 (m, 2H), 4.08 (s, 3H), 3.12 – 2.96 (m, 1H), 2.78 – 2.72 (m, 1H), 2.61 – 2.53 (m, 1H), 2.33 – 2.25 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 166.4, 161.5, 141.7, 140.2, 138.1, 136.5, 130.6, 129.1, 128.8, 128.4, 128.2, 128.1(9), 127.8, 127.7, 127.5, 126.2, 125.7, 124.2, 85.1, 71.5, 52.8, 37.8, 32.5.

HRMS (ES+) m/z calc. for C₂₇H₂₅NO₃Na [M+Na] 434.1732, found 434.1734.

FT-IR (cm⁻¹, neat, ATR) 3052, 2950, 1736, 1717, 1373, 1147, 1027, 908, 782, 490.

Methyl 1-(4,4-Difluorocyclohexyl)isoquinoline-3-carboxylate (2b)

Physical state: 32 mg, 35% yield, yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.43 (s, 1H), 8.22 (d, *J* = 7.8 Hz, 1H), 7.98 – 7.95 (m, 1H), 7.77 – 7.72 (m, 2H), 4.02 (s, 3H), 3.72 – 3.58 (m, 1H), 2.40 – 2.27 (m, 4H), 2.16 – 1.90 (m, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 166.7, 163.5, 163.5, 140.6, 136.1, 130.4, 129.4, 129.4, 129.3, 127.6, 125.2, 124.5, 123.3, 122.9, 121.4, 52.7, 39.7, 33.9, 33.7, 33.7, 33.5, 28.3, 28.2.

¹⁹**F NMR** (471 MHz, C₆D6) δ 2.26 (d, J = 235.5 Hz), 6.03 (d, J = 235.5 Hz).

HRMS (ES+) m/z calc. for C₁₇H₁₇F₂NO₃ [M+Na] 328.1125, found 328.1124.

FT-IR (cm⁻¹, neat, ATR) 2951, 1736, 1450, 1374, 1236, 1205, 1101, 956, 784.

Methyl 1-(Tetrahydro-2H-pyran-4-yl)isoquinoline-3-carboxylate (2c)

Physical state: 60 mg, 74% yield, white semi-solid.

¹**H** NMR (300 MHz, CDCl₃) δ 8.45 (s, 1H), 8.35 – 8.22 (m, 1H), 8.07 – 7.90 (m, 1H), 7.76 (dt, *J* = 5.4, 3.2 Hz, 2H), 4.20 (dd, *J* = 11.4, 2.6 Hz, 2H), 4.05 (s, 3H), 3.93 – 3.56 (m, 3H), 2.51 – 2.23 (m, 2H), 1.91 (dd, *J* = 13.4, 1.5 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.9, 163.9, 141.0, 140.9, 136.3, 130.4, 129.4, 127.7, 124.6, 122.9, 68.3, 52.8, 39.4, 32.0.

HRMS (ES+) m/z calc. for C₁₆H₁₇NO₃Na [M+Na] 294.1106, found 294.1111.

FT-IR (cm⁻¹, neat, ATR) 2962, 1589, 1489, 1387, 850.

Methyl 1-(1-Tosylpiperidin-4-yl)isoquinoline-3-carboxylate (2d)

Physical state: 84 mg, 66% yield, pale yellow solid (mp = dec \sim 195 °C).

¹**H** NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 8.11 (d, J = 8.5 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.74-7.66 (m, 4H), 7.37 (d, J = 8.0 Hz, 2H), 4.03 (s, 3H), 3.98 (d, J = 11.5 Hz, 2H), 3.53-3.48 (m, 1H), 2.62-2.52 (m, 2H), 2.48 (s, 3H), 2.45-2.32 (m, 2H), 2.05-2.03 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.5, 162.9, 143.3, 140.6, 133.3, 130.2, 129.5, 129.2, 129.1(9), 128.8, 127.8, 127.4, 124.1, 122.8, 52.6, 46.3, 39.1, 30.4, 21.5.

HRMS (ES+) m/z calc. for C₂₃H₂₅N₂O₄S [M+H] 425.1535, found 425.1531.

FT-IR (cm⁻¹, neat, ATR) 2962, 1589, 1489, 1387, 850.

Methyl 1-(1-(*tert*-Butoxycarbonyl)piperidin-4-yl)isoquinoline-3-carboxylate (2e)

Physical state: 41 mg, 51% yield, white semi-solid.

¹**H** NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 8.25 (d, J = 7.3 Hz, 1H), 8.06 – 7.89 (m, 1H), 7.84 – 7.64 (m, 2H), 4.32 (m, 2H), 4.02 (s, 3H), 3.72 (t, J = 11.4 Hz, 1H), 2.99 (m, 2H), 2.03 (m, 4H), 1.49 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.8, 164.1, 154.9, 140.8, 136.3, 130.5, 129.4, 127.8, 124.6, 122.9, 79.6, 58.5, 52.8, 40.2, 31.2, 28.7.

HRMS (ES+) m/z calc. for C₂₁H₂₇N₂O₄ [M+H] 371.1971, found 371.1984.

FT-IR (cm⁻¹, neat, ATR) 2962, 1589, 1489, 1387, 850.

Methyl 1-(1-Hydroxy-3-phenylpropan-2-yl)isoquinoline-3-carboxylate (2f)

Physical state: 20 mg, 20% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.78 – 7.75 (m, 1H), 7.72 – 7.68 (m, 1H), 7.34 – 7.18 (m, 5H), 5.65 (d, J = 10.1 Hz, 1H), 4.19 (d, J = 11.3 Hz, 1H), 4.05 (s, 3H), 3.98 – 3.93 (m, 1H), 3.88 – 3.84 (m, 1H), 3.39 – 3.34 (m, 1H), 3.12 – 3.07 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 166.2, 165.4, 140.1, 139.6, 136.3, 131.1, 129.9, 129.5, 129.4, 128.7, 128.0, 126.5, 125.0, 123.2, 63.1, 53.0, 44.4, 38.1.

HRMS (ES+) m/z calc. for C₂₀H₂₀NO₂ [M+H] 322.1443, found 322.1452.

FT-IR (cm⁻¹, neat, ATR) 1734, 1451, 1244, 1207, 749, 702.

Methyl 1-(Tetrahydrofuran-3-yl)isoquinoline-3-carboxylate (2g)

Physical state: 43.7 mg, 34% yield, colorless oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.45 (s, 1H), 8.27 (d, J = 7.2 Hz, 1H), 8.00 – 7.93 (m, 1H), 7.80 – 7.70 (m, 2H), 4.42 – 4.32 (m, 2H), 4.25 – 4.15 (m, 2H), 4.08 – 3.96 (m, 4H), 2.79 – 2.57 (m, 1H), 2.53 – 2.31 (m, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 166.5, 161.2, 136.0, 134.0, 130.4, 129.4, 129.0, 128.4, 124.8, 123.0, 112.7, 77.2, 68.8, 52.6, 43.4, 32.1.

HRMS (ES+) m/z calc. for C₁₅H₁₆NO₃ [M+H] 258.1130, found 258.1140.

FT-IR (cm⁻¹, neat, ATR) 2987, 2870, 1208, 1063, 861, 837.

Methyl 1-(1-(tert-Butoxycarbonyl)azetidin-3-yl)isoquinoline-3-carboxylate (2i)

¹**H** NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.01 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.82 - 7.71 (m, 2H), 4.64 - 4.45 (m, 5H), 4.05 (s, 3H), 1.47 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.3, 159.7, 156.3, 140.3, 135.9, 130.7, 129.7, 129.2, 127.7, 124.3, 123.4, 79.4, 52.6, 33.0, 28.3.

HRMS (ES+) m/z calc. for C₁₉H₂₃N₂O₄ [M+H] 343.1658, found 343.1666.

FT-IR (cm⁻¹, neat, ATR) 2987, 2870, 1208, 1063, 861, 837.

CO₂Me

Methyl 1-Cyclopropylisoquinoline-3-carboxylate (2j)

Physical state: 21 mg, 31% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.54 – 8.44 (m, 1H), 8.36 (s, 1H), 8.01 – 7.89 (m, 1H), 7.76 – 7.73 (m, 2H), 4.01 (s, 3H), 2.75 (tt, *J* = 8.5, 4.9 Hz, 1H), 1.37 – 1.34 (m, 2H), 1.17 – 1.13 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.9, 162.5, 140.7, 135.8, 130.6, 129.5, 129.4, 129.0, 125.6, 122.3, 52.9, 14.4, 9.3.

HRMS (ES+) m/z calc. for C₁₄H₁₃NO₂ [M+H] 228.1025, found 228.1019.

FT-IR (cm⁻¹, neat, ATR) 2951, 1737, 1321, 1269, 1244, 988.

Methyl 1-((3*r*,5*r*,7*r*)-Adamantan-1-yl)isoquinoline-3-carboxylate (2**k**)

Physical state: 43.4 mg, 45% yield, off-white solid (mp = 210-212 °C)

¹**H NMR** (500 MHz, CDCl₃) δ 11.63 (s, 1H), 8.73 – 8.71 (m, 1H), 8.58 – 8.38 (m, 1H), 7.71 – 7.70 (m, 2H), 4.08 (s, 3H), 2.38 (s, 6H), 2.21 (s, 3H), 1.89 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 171.6, 157.4, 155.1, 129.5, 129.1, 128.6, 128.4, 126.8, 124.2, 118.5, 52.7, 42.2, 41.9, 37.0, 29.1.

HRMS (ES+) m/z calc. for C₂₁H₂₄NO₂ [M+H] 322.1807, found 322.1797.

FT-IR (cm⁻¹, neat, ATR) 2951, 1737, 1321, 1269, 1244, 988.

Methyl 1-(1-(Pyridin-2-yl)piperidin-4-yl)isoquinoline-3-carboxylate (21)

Physical state: 75 mg, 72% yield, yellow solid (mp = 154-157 °C).

¹**H NMR** (500 MHz, CDCl₃) δ 8.42 (s, 1H), 8.31 (s, 1H), 8.20 (s, 1H) 7.98 (d, J = 3.5 Hz, 1H), 7.76 – 7.74 (m, 2H), 7.49 – 7.45 (m, 1H), 6.74 (d, J = 8.5 Hz, 1H), 6.60-6.59 (m, 1H), 4.52 (d, J = 12.5 Hz, 2H), 4.00 (s, 3H), 3.82-3.80 (m, 1H), 3.12 (t, J = 12.5 Hz, 2H), 2.34-2.26 (m, 2H), 2.10-2.04 (m, 2H).

¹³**C** NMR (126 MHz, CDCl₃) δ 166.9, 164.3, 159.6, 148.1, 140.9, 137.5, 136.3, 130.4, 129.4, 129.4, 127.8, 124.8, 122.9, 112.8, 107.4, 52.8, 45.8, 40.7, 31.2.

HRMS (ES+) m/z calc. for C₂₁H₂₂N₃O₂ [M+H] 348.1712, found 348.1714.

FT-IR (cm⁻¹, neat, ATR) 2962, 1589, 1489, 1387, 850.

TERTIARY EXAMPLES

1,3,9-Trimethyl-8-(2-methyl-1-phenylpropan-2-yl)-3,9-dihydro-1H-purine-2,6-dione (1v)

Physical state: 52 mg, 53% yield, pale yellow solid (mp = 101-103 °C).

¹**H NMR** (500 MHz, CDCl₃) δ 7.23-7.21 (m, 3H), 6.88-6.85 (m, 2H), 3.80 (s, 3H), 3.56 (s, 3H), 3.41 (s, 3H), 3.03 (s, 2H), 1.51 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 158.7, 155.5, 146.9(4), 146.9(1), 137.4, 129.8, 128.1, 126.7, 107.7, 48.2, 39.4, 33.8, 29.5, 27.8, 27.2.

HRMS (ES+) m/z calc. for C₁₇H₂₃N₄O₂ [M+H] 327.1821, found 327.1820.

FT-IR (cm⁻¹, neat, ATR) 3055, 2987, 1758, 1699, 1656, 1422, 1040, 896, 733, 703.

2-(2-Methyl-1-phenylpropan-2-yl)benzo[d]thiazole (1w)

Physical state: 52 mg, 53% yield, pale yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.2 Hz, 1H), 7.86 (dd, *J* = 8.0, 0.5 Hz, 1H), 7.53 – 7.44 (m, 1H), 7.41 – 7.32 (m, 1H), 7.27 – 7.12 (m, 3H), 7.09 – 6.98 (m, 2H), 3.18 (s, 2H), 1.52 (s, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 180.7, 153.2, 137.6, 134.8, 130.4, 127.8, 126.3, 125.7, 124.5, 122.7, 121.4, 49.5, 42.2, 28.0.

HRMS (ES+) m/z calc. for C₁₇H₁₈NS [M+H] 268.1160, found 268.1168.

FT-IR (cm⁻¹, neat, ATR) 3028, 2927, 1505, 1495, 1385, 1280, 1005, 743, 687.

PRIMARY ALKYLTRIFLUOROBORATE COUPLING

Methyl 1-((Cyclopentyloxy)methyl)isoquinoline-3-carboxylate (3a)

Physical state: 72 mg, 84% yield, clear viscous oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.52 (s, 1H), 8.45 (d, *J* = 7.7 Hz, 1H), 7.94 (d, *J* = 7.4 Hz, 1H), 7.74 (s, 2H), 5.10 (s, 2H), 4.13 (s, 1H), 4.04 (s, 3H), 1.52 (m, 8H).

¹³C NMR (126 MHz, CDCl₃) δ 166.5, 158.6, 140.3, 136.3, 130.9, 129.6, 129.1, 128.6, 126.7, 124.7, 82.3, 77.4, 77.2, 76.9, 72.5, 53.0, 32.4, 23.6.

HRMS (ES+) m/z calc. for C₁₇H₂₀NO₃ [M+H] 286.1443, found 286.1454.

FT-IR (cm⁻¹, neat, ATR) 2952, 1737, 1334, 1246, 1110, 1096, 791.

Methyl 1-((2-(Trimethylsilyl)ethoxy)methyl)isoquinoline-3-carboxylate (3b)

Physical state: 61 mg, 86% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.53 (s, 1H), 8.47 (d, *J* = 7.9 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.78 – 7.71 (m, 2H), 5.13 (s, 2H), 4.04 (s, 3H), 3.76 – 3.55 (m, 2H), 1.11 – 0.90 (m, 2H), -0.03 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 166.5, 158.4, 140.4, 136.3, 130.9, 129.6, 129.0, 128.6, 126.6, 124.7, 73.5, 68.5, 52.9, 18.5, -1.3.

HRMS (ES+) m/z calc. for C₁₇H₂₃NO₃Si [M+Na] 340.1345, found 340.1347.

FT-IR (cm⁻¹, neat, ATR) 2951, 1740, 1719, 1247, 1208, 860.

Methyl 1-(((3-Methylbut-3-en-1-yl)oxy)methyl)isoquinoline-3-carboxylate (3c)

Physical state: 55 mg, 64% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 8.49 (d, J = 8.2 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.78 – 7.70 (m, 2H), 5.16 (s, 2H), 4.74 (s, 1H), 4.70 (s, 1H), 4.04 (s, 3H), 3.68 (t, J = 6.9 Hz, 2H), 2.32 (t, J = 6.9 Hz, 2H), 1.68 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.4, 158.2, 142.8, 140.3, 136.3, 131.0, 129.6, 129.0, 128.6, 126.6, 124.8, 111.7, 74.2, 69.4, 53.0, 37.9, 22.7.

HRMS (ES+) m/z calc. for C₁₇H₁₉NO₃Na [M+Na] 308.1263, found 308.1263.

FT-IR (cm⁻¹, neat, ATR) 2950, 1738, 1450, 1295, 1209, 1109.

Methyl 1-((((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)methyl)isoquinoline-3-carboxylate (3d)

Physical state: 65 mg, 61% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.53 (s, 1H), 8.46 (d, J = 7.7 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.79 – 7.70 (m, 2H), 5.30 (d, J = 11.3 Hz, 1H), 5.04 (d, J = 11.3 Hz, 1H), 4.04 (s, 3H), 3.28 (td, J = 10.5, 4.1 Hz, 1H), 2.07 – 2.03 (m, 1H), 1.67 – 1.54 (m, 2H), 1.43 – 1.17 (m, 3H), 0.97 – 0.75 (m, 9H), 0.43 (d, J = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.6, 158.9, 140.3, 136.3, 130.9, 129.4, 129.2, 128.6, 127.0, 124.8, 79.3, 71.3, 52.9, 48.5, 40.4, 34.6, 31.6, 25.3, 23.1, 22.5, 21.1, 15.7.

HRMS (ES+) m/z calc. for C₂₂H₂₉NO₃Na [M+Na] 378.2047, found 378.2045.

FT-IR (cm⁻¹, neat, ATR) 2954, 2869, 1722, 1244, 1108, 984, 907, 688, 646.

Methyl 1-(3-(Benzyloxy)propyl)isoquinoline-3-carboxylate (3e)

Physical state: 52 mg, 56% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.45 (s, 1H), 8.21 (d, *J* = 8.3 Hz, 1H), 8.03 (d, *J* = 7.4 Hz, 2H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.74 (t, *J* = 7.5 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.0 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 4.41 (t, *J* = 6.4 Hz, 2H), 4.04 (s, 3H), 3.46 (t, *J* = 7.9 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.8, 166.8, 162.5, 140.8, 136.1, 133.0, 133.0, 130.7, 130.6, 129.7, 129.7, 129.52, 129.1, 128.5, 125.6, 123.1, 100.1, 77.4, 77.2, 76.9, 64.9, 64.8, 62.6, 53.0, 35.3, 29.4, 29.0, 26.4, 25.4.

HRMS (ES+) m/z calc. for C₁₉H₁₇NO₃ [M+Na] 308.1287, found 308.1283.

FT-IR (cm⁻¹, neat, ATR) 2951, 1716, 1315, 1275, 1246, 712.

Methyl 1-Isobutylisoquinoline-3-carboxylate (3f)

Physical state: 45 mg, 62% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.43 (s, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.71 (m, 2H), 4.03 (s, 3H), 3.25 (d, J = 7.3 Hz, 2H), 2.32 (m, 1H), 0.98 (d, J = 6.7 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 166.9, 162.5, 140.8, 136.1, 130.5, 129.2, 129.0, 129.0, 125.9, 122.8, 52.9, 44.1, 29.8, 22.9.

HRMS (ES+) m/z calc. for C₁₅H₁₇NO₂Na [M+Na] 266.1157, found 266.1161.

FT-IR (cm⁻¹, neat, ATR) 2955, 1737, 1718, 1294, 1242, 1205.

Methyl 1-Benzylisoquinoline-3-carboxylate (3g)

Physical state: 56 mg, 67% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.51 (s, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.64 – 7.60 (m, 1H), 7.27 – 7.20 (m, 4H), 7.19 – 7.13 (t, J = 7.0 Hz, 1H), 4.78 (s, 2H), 4.07 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 166.7, 160.9, 140.8, 139.2, 136.4, 130.7, 129.6, 129.0, 128.8, 128.7, 128.7, 126.5, 126.4, 123.7, 53.0, 42.6.

HRMS (ES+) m/z calc. for C₁₈H₁₆NO₂ [M+H] 278.1181, found 278.1171.

FT-IR (cm⁻¹, neat, ATR) 2949, 1736, 1568, 1438, 1242, 1208, 1150, 1106, 742, 692.

Methyl 1-Phenethylisoquinoline-3-carboxylate (**3h**)

Physical state: 28 mg, 32% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.47 (s, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.78 – 7.66 (m, 2H), 7.32 – 7.15 (m, 5H), 4.06 (s, 3H), 3.76 – 3.62 (m, 2H), 3.28 – 3.15 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.8, 166.8, 162.0, 141.8, 140.8, 136.1, 130.7, 129.5, 129.1, 128.6, 126.2, 125.5, 123.2, 53.0, 37.4, 35.6 (one aryl carbon peak overlaps).

HRMS (ES+) m/z calc. for C₁₉H₁₈NO₂ [M+H] 314.1157, found 314.1157.

FT-IR (cm⁻¹, neat, ATR) 2949, 1737, 1716, 1240, 1208, 749.

Methyl 1-(3-Phenylpropyl)isoquinoline-3-carboxylate (**3i**)

Physical state: 76% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.44 (s, 1H), 8.06 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.76 - 7.68 (m, 2H), 7.35 - 7.26 (m, 2H), 7.25 - 7.16 (m, 3H), 4.05 (s, 3H), 3.48 - 3.27 (m, 2H), 2.81 (t, J = 7.7 Hz, 2H), 2.26 - 2.19 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.8, 162.8, 142.1, 140.8, 136.1, 130.6 129.4, 129.0, 128.7, 128.5, 128.5, 126.0, 125.6, 123.1, 53.0, 36.1, 35.2, 31.6.

HRMS (ES+) m/z calc. for C₂₀H₂₀NO₂ [M+H] 306.1494, found 306.1492.

FT-IR (cm⁻¹, neat, ATR) 2949, 1736, 1716, 1242, 1209, 747.

Methyl 1-(4-(2-Bromophenyl)butyl)isoquinoline-3-carboxylate (**3j**)

Physical state: 67 mg, 56% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.44 (s, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.75 – 7.70 (m, 2H), 7.51 (d, J = 8.0 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.03 (s, 1H), 4.04 (s, 3H), 3.42 (t, J = 8.1 Hz, 2H), 2.85 – 2.76 (m, 2H), 2.01 – 1.90 (m, 2H), 1.85 – 1.76 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.8, 162.9, 141.7, 140.8, 136.1, 132.9, 130.6, 130.5, 129.4, 129.0, 128.5, 127.6, 125.7, 124.6, 123.0, 53.0, 36.2, 35.7, 30.2, 29.8.

HRMS (ES+) m/z calc. for C₂₁H₂₀BrNO₂ [M+Na] 420.0575, found 420.0576.

FT-IR (cm⁻¹, neat, ATR) 2946, 1735, 1438, 1239, 1207, 1020, 748.

Methyl 1-(3-(Phenylthio)propyl)isoquinoline-3-carboxylate (3k)

Physical state: 50 mg, 49% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.44 (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.76 – 7.70 (m, 1H), 7.70 – 7.64 (m, 1H), 7.36 (d, J = 7.7 Hz, 2H), 7.31 – 7.21 (m, 2H), 7.19 – 7.14 (m, 1H), 4.04 (s, 3H), 3.58 – 3.46 (m, 2H), 3.11 (t, J = 7.0 Hz, 2H), 2.30 – 2.21 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.7, 161.9, 140.7, 136.5, 136.1, 130.7, 129.6, 129.4, 129.0, 128.5, 126.1 125.6, 123.2, 53.0, 34.4, 33.6, 29.0 (one aryl peak overlaps).

HRMS (ES+) m/z calc. for C₂₀H₂₀NO₂S [M+H] 338.1215, found 338.1198.

FT-IR (cm⁻¹, neat, ATR) 2950, 1737, 1716, 1449, 1325, 1294, 1243, 1210.

Methyl 1-(3,3,3-Trifluoropropyl)isoquinoline-3-carboxylate (31)

Physical state: 15 mg, 18% yield, viscous oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.20 (d, *J* = 8.6 Hz, 1H), 8.06 – 7.93 (m, 1H), 7.86 – 7.74 (m, 2H), 4.05 (s, 3H), 3.68 – 3.57 (m, 2H), 2.96 – 2.77 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.5, 158.7, 140.6, 136.0, 131.1, 130.1, 129.3, 128.4, 124.8, 123.7, 53.1, 32.5 (q, *J* = 29.0 Hz), 29.0, 27.4.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -66.42.

HRMS (ES+) m/z calc. for C₁₄H₁₂F₃NO₂Na [M+Na] 306.0718, found 306.0721.

FT-IR (cm⁻¹, neat, ATR) 3071, 1715, 1240, 1126.

Methyl 1-(But-3-en-1-yl)isoquinoline-3-carboxylate (**3p**)

Physical state: 40 mg, 55% yield, crystalline powder (mp = 54–57 °C).

¹**H** NMR (500 MHz, CDCl₃) δ 8.44 (s, 1H), 8.21 (d, *J* = 7.9 Hz, 1H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.76 - 7.68 (m, 2H), 6.05 - 5.90 (m, 1H), 5.12 (d, *J* = 17.0 Hz, 1H), 5.01 (d, *J* = 10.2 Hz, 1H), 4.04 (s, 3H), 3.47 (t, *J* = 8.2 Hz, 2H), 2.70 - 2.60 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.7, 162.3, 140.8, 137.8, 136.1, 130.6, 129.5, 129.1, 128.5, 125.6, 123.1, 115.3, 53.0, 35.0, 33.8.

HRMS (ES+) m/z calc. for C₁₅H₁₅NO₂ [M+Na] 264.1000, found 264.0998.

FT-IR (cm⁻¹, neat, ATR) 1748, 1656, 1596, 1157.

4-Methyl-2-((2-(Trimethylsilyl)ethoxy)methyl)quinoline (4a)

Reference: Molander, G. A.; Colombel, V.; Braz, V. Org. Lett. 2011, 13, 1852.

Physical state: 62 mg, 77% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.3 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.55 – 7.51 (m, 1H), 7.46 (s, 1H), 4.74 (s, 2H), 3.72 – 3.63 (m, 2H), 2.71 (s, 3H), 1.11 – 1.03 (m, 2H), -0.03 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 159.3, 147.5, 145.0, 129.7, 129.3, 127.7, 126.1, 123.8, 120.2, 74.1, 68.6, 19.0, 18.5, -1.2.

FT-IR (cm⁻¹, neat, ATR) 2953, 1603, 1249, 1101, 850, 836, 757.

1-(4-Methylquinolin-2-yl)-3-phenylpropyl benzoate (**4b**)

Physical state: 48 mg, 42% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 7.7 Hz, 2H), 8.10 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.3 Hz, 1H), 7.72 – 7.69 (m, 1H), 7.62 – 7.59 (m, 1H), 7.56 – 7.52 (m, 1H), 7.51 – 7.47 (m, 2H), 7.34 (s, 1H), 7.30 – 7.12 (m, 5H), 6.20 (dd, J = 8.3, 5.1 Hz, 1H), 2.90 – 2.78 (m, 2H), 2.69 (s, 3H), 2.60 – 2.45 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 166.1, 159.7, 147.6, 145.3, 141.5 133.3, 130.3, 130.0, 129.4, 128.8, 128.6, 128.4, 127.8, 126.5, 126.4, 126.1, 123.8, 119.1, 36.9, 32.1, 19.1.

HRMS (ES+) m/z calc. for C₂₆H₂₃NO₂ [M+Na] 404.1626, found 404.1630.

FT-IR (cm⁻¹, neat, ATR) 1719, 1602, 1451, 1270, 1111, 1070, 1027, 713.

2-((But-3-en-1-yloxy)methyl)quinoline (**4c**)

Physical state: 24 mg, 38% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.64 – 7.61 (m, 1H), 7.54 – 7.51 (m, 1H), 5.92 – 5.84 (m, 1H), 5.15 – 5.06 (m, 2H), 4.82 (s, 2H), 3.65 (t, J = 6.6 Hz, 2H), 2.45 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 159.6, 147.7, 136.9, 135.3, 129.7, 129.1, 127.8, 127.7, 126.4, 119.5, 116.7, 74.6, 70.5, 34.4.

HRMS (ES+) m/z calc. for C₁₄H₁₆NO [M+H] 214.1232, found 214.1234.

FT-IR (cm⁻¹, neat, ATR) 2858, 1601, 1506, 1428, 1359, 1106, 996, 916, 829, 784, 755, 618.

2-Octylquinoline (4d)

Physical state: 32 mg, 44% yield, yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.80 (d, J = 4.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.71 – 7.68 (m, 1H), 7.57 – 7.54 (m, 1H), 7.23 (d, J = 4.3 Hz, 1H), 3.09 – 3.04 (m, 2H), 1.80 – 1.73 (m, 2H), 1.47 – 1.41 (m, 2H), 1.40 – 1.17 (m, 8H), 0.88 (t, J = 6.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 150.4, 148.9, 148.5, 130.4, 129.1, 127.8, 126.3, 123.8, 120.9, 32.3, 32.0, 30.3, 29.9, 29.6, 29.4, 22.8, 14.2.

HRMS (ES+) m/z calc. for C₁₇H₂₄N [M+H] 242.1909, found 242.1904.

FT-IR (cm⁻¹, neat, ATR) 2924, 2855, 1592, 1508, 1463, 760.

2-((2*R*)-2-Methylcyclopentyl)quinoline (**4e**)

Physical state: 38 mg, 60% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.08 – 8.04 (m, 2H), 7.77 (d, J = 8.1 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.49 – 7.45 (m, 1H), 7.31 (d, J = 8.6 Hz, 1H), 2.90 – 2.84 (m, 1H), 2.33 – 2.17 (m, 2H), 2.09 – 1.93 (m, 2H), 1.92 – 1.77 (m, 2H), 1.45 – 1.37 (m, 1H), 1.01 (d, J = 6.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 165.6, 148.1, 136.2, 129.3, 129.2, 127.6, 127.1, 125.7, 120.4, 57.3, 42.5, 35.2, 34.3, 24.5, 19.0.

HRMS (ES+) m/z calc. for C₁₅H₁₈N [M+H] 212.1439, found 212.1444.

FT-IR (cm⁻¹, neat, ATR) 3050, 2946, 1601, 1255.

1,1'-(3-Phenethylpyridine-2,6-diyl)bis(ethan-1-one) (4f)

Physical state: 52 mg, 65% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.22 – 7.18 (m, 3H), 3.33 – 3.30 (m, 2H), 2.93 – 2.90 (m, 2H), 2.75 (s, 3H), 2.73 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 201.8, 199.4, 151.1, 150.6, 142.0, 141.0, 140.9, 128.8, 128.6, 126.4, 123.7, 37.4, 35.4, 28.4, 25.7.

HRMS (ES+) m/z calc. for C₁₇H₁₈NO₂ [M+H] 268.1338, found 268.1339.

FT-IR (cm⁻¹, neat, ATR) 1699, 1358, 1296, 700.

2-(1-(Benzyloxy)-2-phenylethyl)benzo[*d*]thiazole (4g)

Physical state: 52 mg, 53% yield, colorless oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.07 – 8.00 (m, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.43 – 7.36 (m, 5H), 7.35 – 7.31 (m, 1H), 7.28 – 7.24 (m, 2H), 7.17 (d, J = 7.8 Hz, 3H), 4.85 (dd, J = 8.3, 4.8 Hz, 1H), 4.70 (d, J = 11.4 Hz, 1H), 4.52 (d, J = 11.4 Hz, 1H), 2.93 – 2.82 (m, 1H), 2.82 – 2.71 (m, 1H), 2.41 – 2.29 (m, 1H), 2.29 – 2.19 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 175.4, 153.3, 141.3, 137.6, 135.1, 128.7, 128.6(5), 128.5(7), 128.3, 128.1, 126.1(5), 126.1(3), 125.3, 123.2, 122.1, 79.0, 72.3, 38.9, 31.7.

HRMS (ES+) m/z calc. for C₂₃H₂₃NOS [M+H] 360.1422, found 360.1420.

FT-IR (cm⁻¹, neat, ATR) 3027, 2922, 2861, 1516, 1495, 1093, 1027, 1014, 758, 697.

3-Isopropyl-1*H*-indazole (**4h**)

Physical state: 33 mg, 69% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 9.84 (bs, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.45 – 7.42 (m, 1H), 7.38 – 7.35 (m, 1H), 7.15 – 7.12 (m, 1H), 3.44 (sept, J = 7.0 Hz, 1H), 1.48 (d, J = 7.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 152.8, 141.6, 126.7, 121.4, 120.8, 120.2, 109.9, 27.9, 22.3.

HRMS (ES+) m/z calc. for $C_{10}H_{12}N_2$ [M+] 160.1000, found 160.1001.

FT-IR (cm⁻¹, neat, ATR) 3189, 2968, 1623, 1501, 1349, 742.

2-Isopropylquinazolin-4(3*H*)-one (4i)

Reference: Shen, G.; Zhou, H.; Sui, Y.; Liu, Q.; Zou, K. Tetrahedron Lett. 2016, 57, 587

Physical state: 45 mg, 79% yield, white solid (mp = 123 °C).

¹**H NMR** (500 MHz, CDCl₃) δ 11.64 (s, 1H), 8.30 (d, J = 7.9 Hz, 1H), 7.79 – 7.72 (m, 2H), 7.47 – 7.45 (m, 1H), 3.06 (sept, J = 7.0 Hz, 1H), 1.45 (d, J = 7.0 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 164.4, 161.0, 149.6, 134.8, 127.5, 126.4, 126.4, 120.9, 35.1, 20.6.

HRMS (ES+) m/z calc. for C₁₁H₁₂N₂ONa [M+Na] 211.0847, found 211.0851.

FT-IR (cm⁻¹, neat, ATR) 2970, 2932, 1622, 1609, 1472, 1384, 1252, 772.

2-((1*R*,2*R*)-2-Methylcyclohexyl)quinazolin-4(3*H*)-one (**4j**)

Physical state: 30 mg, 41% yield, white powder (mp = 89-93 °C).

¹**H** NMR (500 MHz, CDCl₃) δ 11.48 (s, 1H), 8.29 (d, J = 7.9 Hz, 1H), 7.80 – 7.71 (m, 2H), 7.48 – 7.46 (m, 1H), 2.39 – 2.33 (m, 1H), 2.05 – 1.96 (m, 2H), 1.92 – 1.73 (m, 4H), 1.57 – 1.49 (m, 1H), 1.43 – 1.35 (m, 1H), 1.26 – 1.12 (m, 1H), 0.88 (d, J = 6.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 164.1, 159.9, 149.6, 134.8, 127.5, 126.4, 120.9, 100.1, 52.9, 35.2, 35.2, 31.5, 26.2, 26.1, 20.6.

HRMS (ES+) m/z calc. for C₁₅H₁₉N₂O [M+H] 243.1497, found 243.1500.

FT-IR (cm⁻¹, neat, ATR) 2926, 1668, 1471, 773.

1,3,7-Trimethyl-8-((2S)-2-methylcyclopentyl)-3,7-dihydro-1*H*-purine-2,6-dione (**4**k)

Physical state: 31 mg, 37%, light yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 3.93 (s, 3H), 3.56 (s, 3H), 3.40 (s, 3H), 2.67 – 2.63 (m, 1H), 2.50 – 2.40 (m, 1H), 2.14 – 2.01 (m, 2H), 1.96 – 1.76 (m, 4H), 1.02 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 157.6, 155.5, 152.0, 148.4, 107.4, 44.8, 41.3, 34.6, 32.4, 31.7, 29.9, 28.0, 24.2, 19.2.

HRMS (ES+) m/z calc. for C₁₄H₂₁N₄O₂ [M+H] 277.1658, found 277.1661.

FT-IR (cm⁻¹, neat, ATR) 2954, 1703, 1661, 1543, 1436, 1221, 1041, 981, 747.

(1*R*)-(2-Isopropyl-6-methoxyquinolin-4-yl)(5-vinylquinuclidin-2-yl)methanol (**4**I)

Physical state: 82 mg, 75% yield, light yellow solid (mp = 145 °C).

¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (d, J = 9.1 Hz, 1H), 7.52 (s, 1H), 7.22 (d, J = 9.1 Hz, 1H), 7.07 (s, 1H), 5.80 (s, 1H), 5.73 – 5.60 (m, 1H), 5.00 – 4.92 (m, 2H), 3.81 – 3.73 (m, 4H), 3.26 – 3.08 (m, 3H), 2.85 – 2.75 (m, 3H), 2.42 – 2.35 (m, 1H), 1.90 – 1.80 (m, 2H), 1.65 – 1.60 (m, 1H), 1.49 – 1.39 (m, 1H), 1.34 (d, J = 6.9 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 164.7, 157.6, 146.3, 143.8, 140.1, 131.3, 124.7, 121.5, 116.5, 115.8, 100.6, 60.2, 60.1, 56.2, 55.9, 43.7, 39.0, 37.2, 27.7, 26.4, 22.7, 20.2.

HRMS (ES+) m/z calc. for C₂₃H₃₀N₂O₂ [M+H] 367.2361, found 367.2394.

FT-IR (cm⁻¹, neat, ATR) 2962, 1674, 1620, 1236.

LIGAND FUCNTIONALIZATION

2,9-Di-*tert*-butyl-1,10-phenanthroline (5b)

Reference: Xu, C.; Zhang, L.; Dong, C.; Xu, J.; Pan, Y.; Li, Y.; Zhang, H.; Li, H.; Yu, Z.; Xu, L. *Adv. Synth. Catal.* **2016**, *358*, 567.

Physical state: 38 mg, 42% yield, white semi-solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 2H), 7.84 – 7.48 (m, 4H), 1.60 (s, 18H).

¹³C NMR (126 MHz, CDCl₃) δ 169.4, 145.0, 136.0, 127.0, 125.5, 119.7, 38.8, 30.4.

HRMS (ES+) m/z calc. for C₂₀H₂₅N [M+H] 293.2018, found 293.2020.

FT-IR (cm⁻¹, neat, ATR) 2962, 1589, 1489, 1387, 850.

2,9-Di-*tert*-butyl-4,7-diphenyl-1,10-phenanthroline (5d)

Reference: Sugihara, S.; Okada, T.; Hiratani, K. Anal. Sci. 1993, 9, 593.

Physical state: 152 mg, 68% yield, yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 (s, 2H), 7.63 (s, 2H), 7.56 – 7.43 (m, 10H), 1.64 (s, 18H).

¹³C NMR (126 MHz, CDCl₃) δ 168.8, 148.4, 145.7, 139.2, 129.9, 128.6, 128.2, 124.9, 123.1, 120.1, 38.9, 30.5.

2-(*tert*-Butyl)-6-(2,4-difluorophenyl)pyridine (5f)

Physical state: 61 mg, 82% yield, light yellow oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.61 (d, *J* = 5.1 Hz, 1H), 7.96 (m, 1H), 7.72 (s, 1H), 7.28 - 7.22 (m, 1H), 6.99 (t, *J* = 8.4 Hz, 1H), 6.91 (m, 1H), 1.36 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 163.2 (dd, J = 250.5, 12.1 Hz), 160.6 (dd, J = 252.0, 11.9 Hz), 160.6, 149.8, 132.4 (dd, J = 9.7, 4.6 Hz), 124.5 (dd, J = 12.0, 3.9 Hz), 122.6, 121.5 (d, J = 8.9 Hz), 119.7, 111.9 (dd, J = 21.0, 3.8 Hz), 104.4 (m), 35.0, 30.7.

HRMS (ES+) m/z calc. for C₁₅H₁₆F₂N [M+H] 248.1251, found 248.1241.

FT-IR (cm⁻¹, neat, ATR) 2949, 1736, 1716, 1242, 1209, 747, 700.

6-(*tert*-Butyl)-2,2':6',2"-terpyridine (**5h**)

Physical state: 64 mg, 74% yield, yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.75 (s, 1H), 8.71 – 8.60 (m, 3H), 8.45 (m, 2H), 7.94 (m, 1H), 7.86 (m, 1H), 7.33 (dt, *J* = 6.7, 3.5 Hz, 2H), 1.43 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 160.9, 156.3, 155.6, 149.3, 149.3, 138.1, 137.0, 137.0, 123.9, 121.3, 121.1, 121.1, 121.0, 120.9, 118.2, 35.1, 30.7.

HRMS (ES+) m/z calc. for: submitted.

FT-IR (cm⁻¹, neat, ATR) 2963, 1602, 1579, 1548, 1456, 1391, 820, 770.

HETEROARENE WITH FUNCTION HANDLES

Br OBn

4-((Benzyloxy)methyl)-5-bromopyrimidine (6a)

Physical state: 42 mg, 50% yield, clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 9.13 (s, 1H), 8.77 (s, 1H), 7.43 – 7.30 (m, 5H), 4.73 (s, 2H), 4.71 (s, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 164.1, 158.9, 157.1, 137.4, 128.7, 128.2, 128.2, 120.3, 73.7, 71.1.

HRMS (ES+) m/z calc. for C₁₂H₁₂BrN₃O [M+H] 279.0133, found 279.0135.

FT-IR (cm⁻¹, neat, ATR) 2860, 1560, 1454, 1388, 1360, 1216, 1097, 1036, 738, 698.

ratio = ~ 3.53 : 1

3-Bromo-4-methyl-2-(1-tosylpiperidin-4-yl)pyridine and 5-bromo-4-methyl-2-(1-tosylpiperidin-4-yl)pyridine (**6b**)

Physical state: 69 mg, 57% yield, white amorphous solid (mp = 120-122 °C).

¹**H** NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H – minor isomer), 8.31 (d, J = 4.8 Hz, 1H – major isomer), 7.72 – 7.67 (m, 3H – both isomers), 7.38 – 7.33 (m, 2H - both isomers), 7.01 (d, J = 4.8 Hz, 1H – major isomer), 6.99 (s, 2H – minor isomer), 3.94 (m, 2H – both isomers), 3.16 (m, 1H – both isomers), 2.61 – 2.34 (m, 8H – both isomers), 2.12 – 1.79 (m, 4H – both isomers).

¹³C NMR (126 MHz, CDCl₃) δ 161.0, 147.6, 147.1, 129.5, 127.7, 127.6, 123.94, 122.91, 121.68, 46.37, 41.60, 29.77, 23.46, 21.44. (major peaks)

HRMS (ES+) m/z calc. for C₁₈H₂₂BrN₂O₂S [M+H] 408.0585, found 409.0586.

FT-IR (cm⁻¹, neat, ATR) 3052, 2915, 2801, 1351, 1331, 1160, 927, 726, 648, 548.

3-Bromo-4-methyl-2-phenethylpyridine (6c)

Physical state: 50 mg, 60% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.33 (d, J = 4.8 Hz, 1H), 7.30 (d, J = 4.4 Hz, 4H), 7.21 (p, J = 4.1 Hz, 1H), 7.03 (d, J = 4.8 Hz, 1H), 3.37 – 3.22 (m, 2H), 3.05 (dd, J = 10.2, 6.7 Hz, 2H), 2.43 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 159.9, 147.9, 147.2, 141.9, 128.6, 128.5, 126.1, 124.3, 123.9, 40.4, 34.8, 23.6.

HRMS (ES+) m/z calc. for C₁₄H₁₄BrN [M+H] 276.0388, found 276.0388.

FT-IR (cm⁻¹, neat, ATR) 1727, 1591, 1435, 1281, 1258, 1084, 738, 698.

4-Chloro-2-phenethylquinoline (6d)

Physical state: 38 mg, 47% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.3 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.76 (t, J = 7.7 Hz, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.35 (s, 1H), 7.30 (t, J = 7.5 Hz, 2H), 7.22 (dd, J = 15.9, 8.7 Hz, 2H), 3.29 – 3.23 (m, 2H), 3.16 (dd, J = 9.7, 6.3 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 161.9, 149.0, 142.7, 141.3, 130.5, 129.4, 128.6, 126.9, 126.3, 125.2, 124.1, 121.7, 40.9, 35.8.

HRMS (ES+) m/z calc. for C₁₇H₁₅ClN [M+H] 268.0893, found 268.0896.

FT-IR (cm⁻¹, neat, ATR) 3062, 3027, 1589, 1493, 1149, 866, 759, 698.

4-Bromo-3-isopropylisoquinoline (6e)

Physical state: 30 mg, 40% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 8.24 – 8.18 (m, 2H), 7.79 – 7.76 (m, 1H), 7.67 – 7.64 (m, 1H), 3.91 (sept, J = 6.8 Hz, 1H), 1.43 (d, J = 6.8 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 166.1, 143.8, 135.0, 130.9, 127.9, 127.7, 127.0, 125.2, 117.7, 31.2, 22.3.

HRMS (ES+) m/z calc. for C₁₂H₁₃BrN [M+H] 250.0231, found 250.0224.

FT-IR (cm⁻¹, neat, ATR) 2965, 2929, 1565, 1387, 1240, 1009, 928.

4-Bromo-1-isopropylisoquinoline (6f)

Physical state: 22 mg, 29% yield, clear oil.

¹**H** NMR (500 MHz, CDCl₃) δ 8.51 (s, 1H), 8.35 (d, J = 8.5 Hz, 1H), 7.62 – 7.59 (m, 1H), 7.52 – 7.49 (m, 1H), 7.43 (d, J = 8.5 Hz, 1H), 4.08 (sept, J = 6.8 Hz, 1H), 1.55 (d, J = 6.8 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 166.8, 143.2, 136.3, 129.9, 127.1, 126.9, 126.3, 125.9, 125.1, 31.3, 22.4.

HRMS (ES+) m/z calc. for C₁₂H₁₄BrN [M+H] 250.0231, found 250.0224.

FT-IR (cm⁻¹, neat, ATR) 2965, 1556, 1502, 1388, 1246, 765.

CAMPTOTHECIN ANALOGUES

(*S*)-4-Ethyl-4-hydroxy-11-isopropyl-1,12-dihydro-14*H*-pyrano[3',4':6,7]indolizino[1,2*b*]quinoline-3,14(4*H*)-dione (**7a**)

Reference: Miao, Z. et al. J. Med. Chem. 2013, 56, 7902.

Physical state: 67 mg, 57% yield, light yellow solid (mp = 192 °C).

¹**H** NMR (500 MHz, CDCl₃) δ 8.25 - 8.20 (m, 2H), 7.79 - 7.76 (m, 1H), 7.70 - 7.61 (m, 2H), 5.74 (d, *J* = 16.1 Hz, 1H), 5.38 (s, 2H), 5.30 (d, *J* = 16.1 Hz, 1H), 4.05 - 3.92 (m, 1H), 3.90 (bs, 1H), 1.94 - 1.84 (m, 2H), 1.56 (d, *J* = 8.3 Hz, 6H), 1.03 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 174.1, 157.7, 152.5, 150.4, 149.9, 149.5, 146.6, 130.9, 130.1, 127.8, 126.9, 125.5, 123.9, 118.5, 98.0, 72.9, 66.5, 50.4, 31.8, 21.7, 21.6, 8.0.

HRMS (ES+) m/z calc. for C₂₃H₂₂N₂O₄ [M+Na] 413.1477, found 413.1460.

FT-IR (cm⁻¹, neat, ATR) 3320, 2971, 1748, 1657, 1157, 727.

(*S*)-11-((Benzyloxy)methyl)-4-ethyl-4-hydroxy-1,12-dihydro-14*H*-pyrano[3',4':6,7]indolizino[1,2-*b*]quinoline-3,14(4*H*)-dione (**7b**)

Physical state: 23 mg, 33% yield, yellow oil.

¹**H NMR** (500 MHz, CDCl₃) δ 8.22 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.80 -7.76 (m, 1H), 7.69 - 7.59 (m, 2H), 7.42 - 7.34 (m, 5H), 5.75 (d, J = 16.2 Hz, 1H), 5.42 (s, 2H), 5.31 (d, J = 16.2 Hz, 1H), 5.18 (s, 2H), 4.78 (s, 2H), 3.78 (s, 1H), 1.95 - 1.86 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 174.1, 157.8, 152.8, 150.1, 149.1, 146.5, 139.4, 137.1, 130.7, 130.3, 128.9, 128.5, 128.1, 128.1, 127.2, 126.0, 123.5, 118.8, 97.9, 73.9, 72.9, 67.2, 66.6, 51.0, 31.8, 8.0.

HRMS (ES+) m/z calc. for C₂₈H₂₅N₂O₅ [M+H] 469.1763, found 469.1774.

FT-IR (cm⁻¹, neat, ATR) 2987, 2870, 1208, 1063, 861, 837.

SYNTHESIS OF TERTIARY ALKYLTRIFLUOROBORATE

Potassium Trifluoro(2-methyl-1-phenylpropan-2-yl)borate (1u)

Synthesized using Silas' procedure from (2-bromo-2-methylpropyl)benzene (*J. Am. Chem. Soc.* **2016**, *138*, 6139) in 70% yield (~85% purity by mass), 840 mg white crystalline solid (mp = 170 -172 °C).

¹**H NMR** (500 MHz, acetone-d₆) δ 7.16 – 7.13 (m, 2H), 7.08 – 7.05 (m, 3H), 2.52 (s, 2H), 0.63 (s, 6H). Peaks at 0.75 and 0.13 correspond to EtBF₃K generated during borylation procedure.

¹³C NMR (126 MHz, acetone-d₆) δ 142.1, 130.5, 126.6, 124.2, 44.5, 22.5 (carbon α to boron not observed due to quadrupolar relaxation).

¹⁹**F NMR** (470.7 MHz, acetone-d₆) δ -153.1 (product), -142.7 (EtBF₃K).

¹¹**B** NMR (128.4 MHz, acetone- d_6) δ -6.43.

HRMS (ES+) m/z calc. for $C_{10}H_{13}BF_3^{-}$ [M-] calc. 201.0198, found: submitted.

FT-IR (cm⁻¹, neat, ATR) 2970, 2928, 2861, 1467, 1225, 1019, 945, 749, 702.

CYCLIC VOLTAMMETRY OF ORGANOBORON REAGENTS

Electrochemical measurements were recorded on a CH Instruments: Model 600E Series Electrochemical Analyzer (observed in 0.002 M MeCN; $[N(Bu)_4](PF_6) = 0.1$ M; Ag/AgCl = electrode; reported in SCE based on a ferrocene internal standard).

Of the organoboron reagents examined, only the potassium cyclohexyltriolborate XX (~1.1 V vs SCE) and potassium cyclohexyltrifluoroborate (~1.5 V vs SCE) exhibited oxidations within the solvent window of MeCN. These potentials have been reported previously by Akita and coworkers (*Adv. Synth. Cat.* **2012**, *354* (*18*), 3414). No features were observed for oxidation of the cyclohexyl boronic acid, MIDA, and pincaol boronates.
¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)quinoline (1a)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)quinoline (1a)

¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)-4-methylquinoline (**1b**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)-4-methylquinoline (**1b**)

¹H (CDCl₃, 500 MHz) spectra of 4-bromo-2-(*tert*-butyl)quinoline (**1c**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-bromo-2-(*tert*-butyl)quinoline (1c)

¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)-4-chloro-8-(trifluoromethyl)quinoline (1d)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)-4-chloro-8-(trifluoromethyl)quinoline (1d)

¹H (CDCl₃, 500 MHz) spectra of 3-(*tert*-butyl)-1*H*-indazole (1e)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 3-(*tert*-butyl)-1*H*-indazole (1e)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(*tert*-butyl)isoquinoline-3-carboxylate (**1g**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(*tert*-butyl)isoquinoline-3-carboxylate (1g)

¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)quinoxaline (**1h**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)quinoxaline (**1h**)

¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)-3-chloroquinoxaline (1i)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)-3-chloroquinoxaline (1i)

¹H (CDCl₃, 500 MHz) spectra of 6-(*tert*-butyl)nicotinonitrile (**1j**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 6-(*tert*-butyl)nicotinonitrile (1j)

¹⁹F (CDCl₃, 477 MHz) spectra of 2-(*tert*-Butyl)-4-(trifluoromethyl)pyridine (1k) with fluorobenzene

¹H (CDCl₃, 500 MHz) spectra of 1,1'-(4-(*tert*-butyl)pyridine-2,6-diyl)bis(ethan-1-one) (11)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 1,1'-(4-(*tert*-butyl)pyridine-2,6-diyl)bis(ethan-1-one) (11)

¹H (CDCl₃, 500 MHz) spectra of 8-(*tert*-butyl)-1,3,7-trimethyl-3,7-dihydro-1*H*-purine-2,6-dione (**1m**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 8-(*tert*-butyl)-1,3,7-trimethyl-3,7-dihydro-1*H*-purine-2,6-dione (**1m**)

¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)nicotinamide (1n)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)nicotinamide (1n)

¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)benzo[*d*]thiazole (10)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)benzo[*d*]thiazole (10)

¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)quinazolin-4(3*H*)-one (**1p**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)quinazolin-4(3*H*)-one (**1p**)

¹H (CDCl₃, 500 MHz) spectra of *N*-benzyl-2-(*tert*-butyl)-7*H*-purin-6-amine (**1q**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of *N*-benzyl-2-(*tert*-butyl)-7*H*-purin-6-amine (1q)

¹H (CDCl₃, 500 MHz) spectra of (1R)-(2-(*tert*-butyl)-6-methoxyquinolin-4-yl)(5-vinylquinuclidin-2-yl)methanol (1r)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of (1*R*)-(2-(*tert*-butyl)-6-methoxyquinolin-4-yl)(5-vinylquinuclidin-2-yl)methanol (1**r**)

¹H (CDCl₃, 500 MHz) spectra of 1,3,9-trimethyl-8-(2-methyl-1-phenylpropan-2-yl)-3,9-dihydro-1H-purine-2,6-dione (**1v**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 1,3,9-trimethyl-8-(2-methyl-1-phenylpropan-2-yl)-3,9-dihydro-1H-purine-2,6-dione (1v)

¹H (CDCl₃, 500 MHz) spectra of 2-(2-methyl-1-phenylpropan-2-yl)benzo[d]thiazole (1w)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(2-methyl-1-phenylpropan-2-yl)benzo[d]thiazole (**1w**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(1-(benzyloxy)-3-phenylpropyl)isoquinoline-3-carboxylate (2a)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(4,4-difluorocyclohexyl)isoquinoline-3-carboxylate (**2b**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(4,4-difluorocyclohexyl)isoquinoline-3-carboxylate (2b)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(tetrahydro-2H-pyran-4-yl)isoquinoline-3-carboxylate (**2c**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(tetrahydro-2H-pyran-4-yl)isoquinoline-3-carboxylate (2c)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(1-tosylpiperidin-4-yl)isoquinoline-3-carboxylate (2d)

¹³C (CDCl₃, 125.8 MHz) spectra of methyl 1-(1-tosylpiperidin-4-yl)isoquinoline-3-carboxylate (2d)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(1-(*tert*-butoxycarbonyl)piperidin-4-yl)isoquinoline-3-carboxylate (**2e**)

¹³C (CDCl₃, 125.8 MHz) spectra of methyl 1-(1-(*tert*-butoxycarbonyl)piperidin-4-yl)isoquinoline-3-carboxylate (2e)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(1-hydroxy-3-phenylpropan-2-yl)isoquinoline-3-carboxylate (**2f**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(1-hydroxy-3-phenylpropan-2-yl)isoquinoline-3-carboxylate (**2f**)

¹H NMR (CDCl₃, 500 MHz) spectrum of methyl 1-(tetrahydrofuran-3-yl)isoquinoline-3-carboxylate (2g)

DNP-IV-179C-126.04 136.04 130.39 129.38 129.02 128.39 124.84 -112.74 77.18 76.93 76.67 76.83 68.81 --52.55 4 -32,05 13C NMR -3000 4 ,CO₂Me -2500 -2000 -1500 -1000 -500 a hirotalistik in the state of the second وأرواق أندران الأرانية والمرتب أوراقه وأشريها أتلذ ويورجه فبالمأطوة والتشأخذة وبالرديد ويعدونها وادأت أتش 110 100 f1 (ppm) 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10 0 -10

¹C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(tetrahydrofuran-3-yl)isoquinoline-3-carboxylate (2g)

¹H NMR (CDCl₃, 500 MHz) spectrum of methyl 1-(1-(*tert*-butoxycarbonyl)azetidin-3-yl)isoquinoline-3-carboxylate (2i)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(1-(*tert*-butoxycarbonyl)azetidin-3-yl)isoquinoline-3-carboxylate (2i)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-cyclopropylisoquinoline-3-carboxylate (**2j**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-cyclopropylisoquinoline-3-carboxylate (**2j**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-((3r, 5r, 7r)-adamantan-1-yl)isoquinoline-3-carboxylate (2k)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-((3*r*,5*r*,7*r*)-adamantan-1-yl)isoquinoline-3-carboxylate (2**k**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(1-(pyridin-2-yl)piperidin-4-yl)isoquinoline-3-carboxylate (21)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(1-(pyridin-2-yl)piperidin-4-yl)isoquinoline-3-carboxylate (21)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-((cyclopentyloxy)methyl)isoquinoline-3-carboxylate (**3a**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-((cyclopentyloxy)methyl)isoquinoline-3-carboxylate (**3a**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-((2-(trimethylsilyl)ethoxy)methyl)isoquinoline-3-carboxylate (**3b**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-((2-(trimethylsilyl)ethoxy)methyl)isoquinoline-3-carboxylate (**3b**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(((3-methylbut-3-en-1-yl)oxy)methyl)isoquinoline-3-carboxylate (**3c**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(((3-methylbut-3-en-1-yl)oxy)methyl)isoquinoline-3-carboxylate (**3c**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-((((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)isoquinoline-3-carboxylate (**3d**)

 13 C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-((((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)isoquinoline-3-carboxylate (**3d**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(3-(benzyloxy)propyl)isoquinoline-3-carboxylate (**3e**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(3-(benzyloxy)propyl)isoquinoline-3-carboxylate (3e)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-isobutylisoquinoline-3-carboxylate (**3f**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-isobutylisoquinoline-3-carboxylate (**3f**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-benzylisoquinoline-3-carboxylate (**3g**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-benzylisoquinoline-3-carboxylate (**3g**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-phenethylisoquinoline-3-carboxylate (**3h**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-phenethylisoquinoline-3-carboxylate (**3h**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(3-phenylpropyl)isoquinoline-3-carboxylate (**3i**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(3-phenylpropyl)isoquinoline-3-carboxylate (3i)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(4-(2-bromophenyl)butyl)isoquinoline-3-carboxylate (**3j**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(4-(2-bromophenyl)butyl)isoquinoline-3-carboxylate (**3**j)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(3-(phenylthio)propyl)isoquinoline-3-carboxylate (**3**k)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(3-(phenylthio)propyl)isoquinoline-3-carboxylate (**3k**)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(3,3,3-trifluoropropyl)isoquinoline-3-carboxylate (**3**I)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(3,3,3-trifluoropropyl)isoquinoline-3-carboxylate (**3**I)

¹H (CDCl₃, 500 MHz) spectra of methyl 1-(but-3-en-1-yl)isoquinoline-3-carboxylate (**3p**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 1-(but-3-en-1-yl)isoquinoline-3-carboxylate (**3p**)

¹H (CDCl₃, 500 MHz) spectra of 4-methyl-2-((2-(trimethylsilyl)ethoxy)methyl)quinoline (**4a**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-methyl-2-((2-(trimethylsilyl)ethoxy)methyl)quinoline (4a)

¹H (CDCl₃, 500 MHz) spectra of 1-(4-methylquinolin-2-yl)-3-phenylpropyl benzoate (**4b**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 1-(4-methylquinolin-2-yl)-3-phenylpropyl benzoate (4b)

¹H (CDCl₃, 500 MHz) spectra of 2-((but-3-en-1-yloxy)methyl)quinoline (**3c**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-((but-3-en-1-yloxy)methyl)quinoline (3c)

¹H (CDCl₃, 500 MHz) spectra of 2-octylquinoline (**3d**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-octylquinoline (**3d**)

¹H (CDCl₃, 500 MHz) spectra of 2-((2R)-2-methylcyclopentyl)quinoline (**3e**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-((2*R*)-2-methylcyclopentyl)quinoline (**3e**)

¹H (CDCl₃, 500 MHz) spectra of 1,1'-(3-phenethylpyridine-2,6-diyl)bis(ethan-1-one) (**3f**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 1,1'-(3-phenethylpyridine-2,6-diyl)bis(ethan-1-one) (**3f**)

¹H (CDCl₃, 500 MHz) spectra of 2-(1-(benzyloxy)-2-phenylethyl)benzo[*d*]thiazole (**3g**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(1-(benzyloxy)-2-phenylethyl)benzo[*d*]thiazole (**3g**)

¹H (CDCl₃, 500 MHz) spectra of 3-Isopropyl-1*H*-indazole (**3h**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 3-isopropyl-1*H*-indazole (**3h**)

¹H (CDCl₃, 500 MHz) spectra of 2-isopropylquinazolin-4(3*H*)-one (**3**i)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-isopropylquinazolin-4(3*H*)-one (**3**i)

¹H (CDCl₃, 500 MHz) spectra of 2-((1R,2R)-2-methylcyclohexyl)quinazolin-4(3H)-one (**3j**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-((1*R*,2*R*)-2-methylcyclohexyl)quinazolin-4(3*H*)-one (**3**j)

¹H (CDCl₃, 500 MHz) spectra of 1,3,7-trimethyl-8-((2*S*)-2-methylcyclopentyl)-3,7-dihydro-1*H*-purine-2,6-dione (**3**k)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 1,3,7-trimethyl-8-((2*S*)-2-methylcyclopentyl)-3,7-dihydro-1*H*-purine-2,6-dione (**3**k)

¹H (CDCl₃, 500 MHz) spectra of (1*R*)-(2-isopropyl-6-methoxyquinolin-4-yl)(5-vinylquinuclidin-2-yl)methanol (4l)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of (1*R*)-(2-isopropyl-6-methoxyquinolin-4-yl)(5-vinylquinuclidin-2-yl)methanol (**4**)

¹H (CDCl₃, 500 MHz) spectra of 2,9-di-*tert*-butyl-1,10-phenanthroline (**5b**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2,9-di-*tert*-butyl-1,10-phenanthroline (**5b**)

¹H (CDCl₃, 500 MHz) spectra of 2,9-di-*tert*-butyl-4,7-diphenyl-1,10-phenanthroline (**5d**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2,9-di-*tert*-butyl-4,7-diphenyl-1,10-phenanthroline (5d)

¹H (CDCl₃, 500 MHz) spectra of 2-(*tert*-butyl)-6-(2,4-difluorophenyl)pyridine (**5f**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 2-(*tert*-butyl)-6-(2,4-difluorophenyl)pyridine (**5f**)

¹H (CDCl₃, 500 MHz) spectra of 6-(*tert*-butyl)-2,2':6',2"-terpyridine (**5h**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 6-(*tert*-butyl)-2,2':6',2"-terpyridine (**5h**)

¹H (CDCl₃, 500 MHz) spectra of 4-((benzyloxy)methyl)-5-bromopyrimidine (6a)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-((benzyloxy)methyl)-5-bromopyrimidine (6a)

¹H NMR (CDCl₃, 500 MHz) spectrum 3-bromo-4-methyl-2-(1-tosylpiperidin-4-yl)pyridine and 5-bromo-4-methyl-2-(1-tosylpiperidin-4-yl)pyridine (**6b**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 3-bromo-4-methyl-2-(1-tosylpiperidin-4-yl)pyridine and 5-bromo-4-methyl-2-(1-tosylpiperidin-4-yl)pyridine (**6b**)

¹H (CDCl₃, 500 MHz) spectra of 3-bromo-4-methyl-2-phenethylpyridine (6c)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 3-bromo-4-methyl-2-phenethylpyridine (6c)

¹H (CDCl₃, 500 MHz) spectra of 4-chloro-2-phenethylquinoline (**6d**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-chloro-2-phenethylquinoline (**6d**)

¹H (CDCl₃, 500 MHz) spectra of 4-bromo-3-isopropylisoquinoline (**6e**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-bromo-3-isopropylisoquinoline (6e)

¹H (CDCl₃, 500 MHz) spectra of 4-bromo-1-isopropylisoquinoline (**6f**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-bromo-1-isopropylisoquinoline (6f)

¹H (CDCl₃, 500 MHz) spectra of (S)-4-ethyl-4-hydroxy-11-isopropyl-1,12-dihydro-14H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H)-dione (**7a**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of (*S*)-4-ethyl-4-hydroxy-11-isopropyl-1,12-dihydro-14*H*-pyrano[3',4':6,7]indolizino[1,2-*b*]quinoline-3,14(4*H*)-dione (**7a**)

¹H (CDCl₃, 500 MHz) spectra of (S)-11-((benzyloxy)methyl)-4-ethyl-4-hydroxy-1,12-dihydro-14*H*-pyrano[3',4':6,7]indolizino[1,2-*b*]quinoline-3,14(4*H*)-dione (**7b**)

 13 C NMR (CDCl₃, 125.8 MHz) spectrum of (S)-11-((benzyloxy)methyl)-4-ethyl-4-hydroxy-1,12-dihydro-14H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H)-dione (**7b**)

¹H NMR (acetone-d₆, 500 MHz) spectrum of Potassium trifluoro(2-methyl-1-phenylpropan-2-yl)borate (1u)

¹³C NMR (acetone-d₆, 125.8 MHz) spectrum of Potassium trifluoro(2-methyl-1-phenylpropan-2-yl)borate (1u)

¹⁹F NMR (acetone-d₆, 470.7 MHz) spectrum of Potassium trifluoro(2-methyl-1-phenylpropan-2-yl)borate (1u)

¹¹B NMR (acetone-d₆, 128.4 MHz) spectrum of Potassium trifluoro(2-methyl-1-phenylpropan-2-yl)borate (1u)

¹H NMR (CD₃CN, 500 MHz) spectrum of quinoline + BF₃

¹H NMR (CD₃CN, 500 MHz) spectrum of quinoline + TFA + BF₃

¹³C NMR (CD₃CN, 125.8 MHz) spectrum of quinoline

¹³C NMR (CD₃CN, 125.8 MHz) spectrum of quinoline + TFA

¹³C NMR (CD₃CN, 125.8 MHz) spectrum of quinoline + TFA + BF₃

Determination of Quantum Yield

The quantum yield was determined using the following equation (reference: El Khatib, M.; Serafim, R. A. M.; Molander, G. A. *Angew. Chem. Int. Ed.* **2016**, *55*, 254):

$$\phi = \frac{mmol \ of \ product}{(photon \ flux)(t)(f)}$$

The following reaction was used to determine quantum yield:

The absorbance of 9-mesityl-10-methylacridinium perchlorate was measured in MeCN/H₂O (1:1). Subsequently, the reaction (with remaining reagents) was irradiated at a wavelength where the photocatalyst absorbs and the ϕ_{Fe2+} has been reported (reference: Demas, J. N.; Bowman, W. D.; Zalewski, E. F.; Velapoidl, R. A. *J. Phys. Chem.* **1981**, *85*, 2766). At 407 nm, the absorbance (A) was 0.71805:

 $f = 1 - 10^{-A}$

 $f = 1 - 10^{-0.71805} = 0.8086$

The lights of the laboratory were shut off, and photocatalyst, heteroarene, persulfate, and MeCN/H₂O were added to the cuvette. Trifluoroacetic acid and trifluoroborate were added last and then the cuvette was capped with a PTFE stopper. Ar was bubbled through the reaction for 300 s, and under Ar, the sample was stirred and irradiated (406 nm, slit width = 10.0 cm) for 3600 s. After irradiation, the crude mixture was diluted with EtOAc and passed through a silica plug. The filtrate was concentrated. ¹H NMR was used to determine the yield (3.160 x 10^{-6} mol after 3600 s).

Standard ferrioxalate actinometry was used to determine the photon flux of the spectrophotometer. Potassium ferrioxalate hydrate was used to determine formation of Fe^{2+} by observing formation of $[Fe(phen)_3]^{2+}$ after addition of 1,10-phenanthroline. A 0.15 M solution of ferrioxalate was prepared by dissolving 501 mg of potassium ferrioxalate hydrate in 6.8 mL of 0.05 M H₂SO₄, and this solution was stored in the dark. A buffered solution of phen was prepared by dissolving 11.1 mg phen and 2.5 g NaOAc in 11.1 mL of 0.5 M H₂SO₄, and this solution was also stored in the dark.

Absorbance of non-irradiated sample: A solution of phen (0.35 mL) was added to ferrioxalate solution (2.0 mL) in a vial that was covered with foil. The vial was capped and allowed to rest for 1 h before being transferred to a cuvette. The absorbance of the non-irradiated solution was measured to be 0.5875.

Absorbance of irradiated sample: The solution of ferrioxalate (2.0 mL) was stirred and irradiated for 90 s at 406 nm with a slit width of 10.0 nm. After irradiation, the buffered solution of phen (0.35 mL) was added to the cuvette and allowed to rest for 1 h in the dark. The absorbance was then found to be 2.3697.

Calculations:

mol Fe²⁺ =
$$\frac{(V)(\Delta A)}{(1)(\varepsilon)} = \frac{(0.00235 L)(2.3607 - 0.58752)}{(1 cm)(11,110 mol^{-1}cm^{-1})} = 3.751 \times 10^{-7}$$

photon flux = $\frac{mol Fe^{2+}}{\phi(Fe^{2+})(t)(f)} = \frac{3.751 \times 10^{-7}}{(1.188)(90 s)(1.00)} = 3.508 \times 10^{-9} \text{ einstein/s}$

 $\phi = \frac{mmol \ of \ product}{(photon \ flux)(t)(f)} = \frac{3.160 \times 10^{-6} \ mol}{(3.508 \times 10^{-9}\frac{\varepsilon}{c})(3600 \ s)(0.8086)} = 0.31$

The quantum yield supports a closed catalytic pathway.

BF3 Studies with Alternate Radical Precursors

Reactions were performed on 0.1 mmol scale under standard conditions (containing 10% internal standard, 4,4'-di-*tert*-butylbiphenyl) where the alkylation partner was replaced by the respective sulfinate or carboxylic acid precursors. For the reactions with added BF₃, an etherate solution (48% by weight) was added to the reaction mixture after addition of all the other reagents. After 24 hours, the reaction was quenched by addition of equal volume of 1.0 M K₂CO₃. The resultant mixture was extracted 3 times with CH₂Cl₂. The aqueous layer was inspected by TLC to confirm full extraction. An aliquot of the CH₂Cl₂ layer was then placed on the GCMS, and the ratio of C2/C4 alkylation was determined by integration.

Comparison to other radical precursors

DFT Calculations: Radical Association with BF₃

$BF_3 \rightarrow Et + BF_3$	
G _{rel} 3.6 0.0	K _{eq} 4.6x10 ²
[6.0] [0.0]	[2.5X10 ⁴]
$BF_3 \rightarrow iPr + BF_3$	
G _{rel} 3.2 0.0	K _{eq} 2.1x10 ²
[5.8] [0.0]	[1.7X10 ⁴]
\rightarrow BF_3 $\leftarrow tBu + BF_3$	
G _{rel} 2.5 0.0	K _{eq} 0.7x10 ²
[6.1] [0.0]	[2.9X10 ⁴]
$\xrightarrow{CO_2H} \stackrel{\bullet}{\longrightarrow} tBu \stackrel{\bullet}{} tBu \stackrel{+}{} CO_2H$	
G _{rel} -10.1 0.0	K _{eq} 3.8x10 ⁻⁸
[-36.1] [0.0]	[3.6X10 ⁻²⁷]

Calculations were performed using: um06/6-311+G(d,p), smd:water //ub3lyp/6-31g(d) [ub3lyp/6-31g(d)].