Figure S1.

A

*Hs*RIβ RRR R G G V S Α 101 Ε CeKIN-2 GRR т G I S Α Е 99 G wt GGTGGACGCAGAACCGGAATCTCT *cau1*(R92H) CAC *ce179*(R92C) TGC

B

pkaPS prediction results

Results																						
Description Position Score			Sequence			Profile	T 1	T ₂	T ₃	T ₄	T5	To	T ₇	Ts	T ₉	T10	TII	T ₁₂	T ₁₃	T14		
t7	2	0.28		*MTSSSR	GYQRVDSS	GDGGSLLA	MEEE	0.31	ļ.				-0.02	-0.01								
	13	0.31	*MTSS	SRGYQRVI	SGDGGS	LLMEEEGD	NPHEALLHR	0.53		-0.02	-0.02		-0.02	-0.01		-0.01			-0.12			
	81	0.96	MDDRVTE	PEGFHRR	QRRSGHED	DIDDESDDB	ESKDEDEEEEE	T 1.11		-0.01			-0.04	-0.05	-0.03		-0.02					
	444	0.68	VLVSELY	NLMQKRA	RNMSREAF	IVENLYV	SKHIIPFIPTI	I 1.42		-0.01						-0.01	-0.01		-0.10	-0.09	-0.36	-0.15
	502	0.64		TSSSAID	MQSCRFCH	ISRYSLNR	AFK*	0.96		-0.02	-0.02				-0.06	-0.01	-0.13		-0.01	-0.06		-0.01
Summa	ry		65																			
Submitted sequences: 1																						
Submitt	ed S/T r	esidu	es: 67																			
Number	of pred	licted	sites: 5																			

Figure S1. Analyses of the *C. elegans* KIN-2 amino acid sequence. (A) The inhibitory pseudosubstrate domains of the regulatory subunit of KIN-1/PKA (RI β /KIN-2) from human and *C. elegans* are aligned. The nucleotide exchanges that result in the R⁹²H and R⁹²C substitution in the *cau1* and *ce179* alleles, respectively, are shown. (B) An *in silico* search for putative PKA phosphorylation sites was performed with the *pkaPS* tool adjusted for scores > 0 (http://mendel.imp.univie.ac.at /sat/pkaPS, (NEUBERGER *et al.* 2007)). Five putative PKA-specific phosphorylation sites were predicted along the amino acid sequence of TWK-7, of which the amino acid residues Ser⁸¹, Ser⁴⁴⁴ and Ser⁵⁰² were evaluated as highly specific.

Figure S2. The body lengths and the absolute values of amplitudes and wavelengths during spontaneous crawling. (A) The body lengths of non-transgenic and transgenic animals are depicted. Non-transgenic and transgenic $G\alpha_s$ worms as well as the wild-type and *twk-7(null)* overexpressing the wild-type form of TWK-7 allele in GABAergic neurons are smaller than non-transgenic *twk-7(nf120)* and wild-type animals. In contrast, non-transgenic and transgenic $G\alpha_{q/0}$ mutants have body lengths that are similar to those of non-transgenic wild-type animals. (B) The absolute amplitudes and (C) wavelengths of transgenic and non-transgenic *C. elegans* strains with alterations in the $G\alpha_s$ and *twk-7* background during spontaneous crawling. For the measurement of wave parameters, N = 3 independent experiments with n = 15 worms per trial were evaluated. *p < 0.05; **p < 0.01; ***p < 0.001 (Student's *t*-test).