Nitrate Absorption by Barley

II. INFLUENCE OF NITRATE REDUCTASE ACTIVITY¹

Received for publication July 10, 1974 and in revised form March 31, 1975

K. PRASAD RAO AND D. WILLIAM RAINS

Department of Agronomy and Range Science, University of California, Davis, California 95616

ABSTRACT

The influence of protein synthesis and nitrate reductase activity on nitrate absorption by barley (*Hordeum vulgare* L.) was investigated. Cycloheximide decreased nitrate absorption. Pretreatment studies showed that cycloheximide affects either energy transfer or nitrate reductase activity or both.

Illumination increased plant capacity for nitrate absorption, possibly through increased energy supply and/or increased nitrate reductase activity. There was a positive correlation between nitrate reductase activity and light. Inhibiting the development of nitrate reductase activity by tungstate decreased nitrate absorption.

At least two nitrate transport systems are thus proposed in barley: one operating in the dark, with little nitrate reductase activity detectable; and one closely correlated with nitrate reductase activity. Total absorption is the sum of dark absorption and absorption facilitated by nitrate reductase.

Nitrate reductase and nitrite reductase are known to be responsible for the reduction of NO_3^- to NH_4^+ form (5), and NR^2 is inducible by NO_3^- . Light enhances NO_3^- absorption which in turn is followed by an enhanced NR induction (1). Inhibitors of protein synthesis, such as CHI, effectively suppress NR formation. Cycloheximide also considerably decreases the absorption of NO_3^- (10, 20, 21) and other ions (4).

If NR is linked to NO_3^- absorption, the relative dependence might be determined by using various NR-inducing conditions as well as NR suppressors, such as CHI or WO₄. This aspect was studied with special emphasis on the effect of CHI on $NO_3^$ absorption, and also the relationship between NR activity in shoots and its effect on NO_3^- absorption by roots.

MATERIALS AND METHODS

Six-day-old barley (*Hordeum vulgare* L. var. Arivat) seedlings were prepared and treated as detailed elsewhere (17).

Illumination Studies. For studying illumination effects on NO_3^- absorption, the seedlings were grown in the dark at 25 C for 4 days in 0.2 mM CaSO₄ solution. Two days before the absorption studies they were transferred to a growth chamber at about 5000 ft-c. The light experiments were done in the same chamber at 30 C, where as the dark experiments were done in a water bath also at 30 C, which was covered with a black plastic sheet. Other conditions are detailed in the respective results sections. In vitro NR activity was assayed as described by Schrader *et al.* (19).

RESULTS

Effects of NO₃⁻ Pretreatment and CHI on NO₃⁻ Absorption. Pretreatment with NO₃⁻ for 2 hr increased NO₃⁻ absorption about 50% over that of the control (Table I). Various combinations of CHI and NO₃⁻ were used to determine the relationship of NO₃⁻ absorption and protein synthesis.

Pretreatment Studies. Table I presents data on treatments A through D. The concentration of CaSO₄ in all the pretreatment and absorption solutions in this series was 5 mm. A: When CHI was present in the absorption solution, the amount of NO₃⁻ absorbed by CaSO₄-pretreated seedlings was 60% less than that of the seedlings placed in a CHI free solution. B: The seedlings were pretreated for 2 hr in 0.5 mM KNO₃ and then transferred to solutions containing either NO_3^- alone or NO_3^- + CHI. There was a significant increase in NO_3^{-} absorption in the absence of CHI, whereas in the presence of CHI the absorption was decreased by 40%. C: Seedlings were pretreated with 10 mM CHI for 2 hr and then exposed to solutions containing either NO₃⁻ alone or NO₃⁻ + CHI. Absorption was nearly normal without added CHI, but decreased by 60% with CHI. D: Seedlings were pretreated with NO₃⁻ + CHI, and NO₃⁻ absorption was measured in the presence or absence of CHI in the absorption solutions. In the presence of CHI the absorption was decreased by 80% as compared to 60% in the absence of CHI.

Nitrate absorption was also studied as a function of pretreatment time in either NO_3^- alone or NO_3^- + CHI (Fig. 1). Nitrate alone enhanced absorption, whereas NO_3^- + CHI produced a

Table I. Effect of NO₃⁻ Pretreatment and CHI on NO₃⁻ Absorption

Pretreatment solutions: A: 5 mM CaSO₄; B: 5 mM CaSO₄ + 0.5 mM KNO₃; C: 5 mM CaSO₄ + 10 mM CHI; D: 5 mM CaSO₄ + 10 mM CHI + 0.5 mM KNO₃. Pretreatment time was 2 hr. Absorption solutions contained 0.5 mM KNO₃, 5 mM CaSO₄, and CHI (where present) at 10 mM. Absorption time was 3 hr. Temperture of both pretreatment and absorption was 30 C.

Pretreatment	Absorption Solution	No ₃ ⁻ Absorbed	
		µmoles g ⁻¹ fresh wt	
Α			
Control	NO ₃ -	7.95	
Control	$NO_3^- + CHI$	3.00	
В			
NO ₃ -	NO_3^-	12.50	
NO ₃ -	$NO_3^- + CHI$	7.90	
С			
CHI	NO ₃ -	10.15	
СНІ	$NO_3^- + CHI$	4.50	
D			
$CHI + NO_3^{-}$	NO ₃ -	2.32	
$CHI + NO_3^-$	$NO_3^- + CHI$	1.60	

¹ Research was supported in part by Kearney Research Foundation. ² Abbreviations: NR, nitrate reductase; CHI, cycloheximide; DNP, 2,4-dinitrophenol.

progressive decrease that was greater still when the absorption solutions also contained CHI.

Nitrate Absorption as a Function of NO₃⁻ and Light Pretreatment. Figure 2 shows the interaction between light and NO₃⁻. Seedlings pretreated with 0.5 mm NO₃⁻ in the dark for 2 days absorbed more NO₃⁻ than the ones pretreated with light alone. Nitrate plus light treatment, however, produced a substantially greater increase than the NO₃⁻ treatment in the dark.

FIG. 1. Effect of NO_3^- and NO_3^- + CHI pretreatment on NO_3^- absorption. KNO₃, 0.5 mm; CaSO₄, 5 mm; CHI, 10 mm; temperature, 30 C; absorption time. 3 hr. Pretreatment and absorption in NO_3^- (\bullet); pretreatment in NO_3^- + CHI and absorption in NO_3^- (Δ); pretreament and absorption in NO_3^- + CHI (X).

FIG. 2. Nitrate absorption as a function of NO_3^- + light pretreatment. Light intensity was approximately 5000 ft-c. KNO₃, 0.5 mM; CaSO₄, 5 mM.

In all treatments, roots contained more NO_3^- than shoots (Fig. 3a). In light-treated seedlings, the NO_3^- concentration in the shoots was less than that in the shoots of the dark-treated seedlings. This indicates that more NO_3^- was reduced by the shoots in light than by those in the dark, which is reflected by the higher NR activity in light than in the dark (Fig. 3b).

Absorption of NO_3^- was studied as a function of time in darkand light-grown seedlings pretreated for 2 days with 0.5 mM KNO₃. The four treatments are detailed in the legend to Figure 4. The light-grown seedlings absorbed about 50% more $NO_3^$ than the dark-grown, irrespective of whether the absorption was in the light or in the dark.

Effect of WO_4 on NO_3^- Absorption. Nitrate absorption was studied in seedlings exposed to solutions of 0.5 mM KNO_3

FIG. 3. A: Distribution of NO_3^- among the roots and shoots. Shaded histogram indicates dark treatment. B: Nitrate reductase activity in the roots and shoots. Shaded histogram indicates dark treatment. Experimental conditions were as in Fig. 2.

FIG. 4. Nitrate absorption as a function of time by seedlings grown in light or dark. KNO_3 , 0.5 mM; $CaSO_4$, 5 mM; temperature 30 C. Absorption in light (Δ, \blacktriangle) ; absorption in dark (\bigcirc, \bullet) .

containing 0 to 100 μ M WO₄. Even at 100 μ M WO₄, there was no appreciable effect on NO₃⁻ absorption (Fig. 5).

This study was pursued further by first letting the NR enzyme system develop in the presence or absence of 100 μ M WO₄, followed by absorption of NO₃⁻ with or without WO₄. For this experiment, the seedlings were grown 3 days in dark and 3 days in light in 0.2 mM CaSO₄. Before transfer to light (about 3500 ftc), 0.5 mM KNO₃ and \pm 100 μ M WO₄ were added. The leaves were analyzed for NR activity before and after absorption. The absorption solutions contained 0.5 mM KNO₃, 5 mM CaSO₄, and \pm 100 μ M WO₄. The presence of WO₄ during the induction period completely inhibited NR activity (Table II), but WO₄ inhibited only 15% of the activity of the already induced NR system, while decreasing NO₃⁻ absorption by 60%.

DISCUSSION

Effect of CHI on NO_3^- Absorption. The increased NO_3^- absorption from NO_3^- pretreatment in this and other studies (Table I and refs. 6, 12) suggests that the synthesis of components which facilitate NO_3^- absorption depends on NO_3^- entering the root. It has been well established that NR is induced by NO_3^- (1, 7, 22), and CHI inhibits its induction (15, 20). Though CHI is considered as an inhibitor of protein synthesis, under suitable conditions it stimulates O_2 uptake in a manner similar to DNP (4). The inhibitory effect of CHI on ion absorption (Table I and refs. 10, 20) is probably mediated via interference with energy transfer and oxidative phosphorylation (11, 14).

Nitrate absorption in barley shows induction-type kinetics, a lag phase followed by an accelerated phase (17). Cycloheximide inhibits the development of the accelerated phase (10), and it also exponentially decreases the already induced NO_3^- transport system (18). Hence, we cannot rule out the possibility that CHI may be preventing the development of the NO_3^- transport system, through or in addition to the interference with energy transfer.

The effect of CHI on NO_3^- absorption is substantial when NO_3^- is present with CHI (Table I and Fig. 1). In this case CHI

FIG. 5. Effect of WO_4 on NO_3^- absorption. KNO_3 , 0.5 mM; CaSO₄, 5 mM; temperature, 30 C.

Table II. Effect of WO ₄ on N	D_3^- Absorption and N	R Activity
--	--------------------------	------------

The concentration of NO_3^- and WO_4 (where present) in both pretreatment and absorption solutions were 0.5 mM and 100 μ M, respectively. Calcium was present at 5 mM throughout.

Treatment			NR Activity in Leaves	
Pretreatment	Absorption solution	sorbed	Before ab- sorption	After absorp- tion
	· · · · · ·	µmoles g ⁻¹ 3 hr ⁻¹	µmoles NO2 ⁻ g ⁻¹ hr ⁻¹	
$NO_3^- + WO_4$	NO ₃ -	6.66	0.00	0.00
$NO_3^- + WO_4$	$NO_3^- + WO_4$	5.36	0.00	0.00
$NO_3^ WO_4$	NO ₃ -	12.35	5 20	5.76
$NO_3^ WO_4$	$NO_3^- + WO_4$	5.19	3.28	4.68

would inhibit the NR activity (15, 20), in addition to disrupting the energy transfer and the development of the NO_3^- transport system. No matter what the mechanism of CHI inhibition, it interferes with NO_3^- absorption.

Effect of Light on NO₃⁻ Absorption and Reduction. Barley seedlings exposed to light absorbed more NO₃⁻ than the seedlings kept in the dark (Fig. 2). When no NO_3^- was present during illumination, the seedlings did not develop any significant amount of NR activity to influence absorption. Therefore, the enhanced absorption after illumination might be due to an increased supply of energy for transport of ions through ATP supplied by photophosphorylation (13, 16). When NO_3^- was present during illumination, the seedlings developed substantial NR activity (Fig. 3b), and NO_3^- absorption was twice that of the plants grown in the absence of NO_3^- (Fig. 2 and refs 3, 22). This enhanced absorption may be due to a rapid reduction of the available NO_3^- in the tissue, which subsequently increases the total NO_3^- absorbed. Ben Zioni *et al.* (2) proposed a mechanism to explain how the NO₃⁻ reduction in the shoots may influence the absorption of NO₃⁻ by the roots. They suggested that after KNO₃ is translocated to the shoots from the roots, a stoichiometric amount of malate is produced for the amount of NO₃⁻ reduced in the shoots. After the malate is synthesized, part of it moves down to the root system as K-malate, where it is oxidized, yielding KHCO₃, which exchanges for KNO₃ in the external medium. Thus, NO₃⁻ reduction in the shoots promotes preferential uptake of NO_3^- by the roots.

Effect of WO₄ on NO₃⁻ Absorption and Reduction. Though WO₄, an analog of Mo, does not effect the existing NR activity (23), it does inhibit any further development of functional NR (Table II and refs. 8, 9). Also in short term experiments WO₄ has no apparent effect on NO₃⁻ absorption by the seedlings with no detectable NR (Fig. 5 and Table II) and yet it inhibits the enhanced absorption by the seedlings with active NR. IT does so without any appreciable inhibition of either *in vitro* (Table II) or *in vivo* NR activity (data not shown).

How does WO₄ affect NO₃⁻ absorption without affecting the NR system? This question leads to the speculation that there are at least two different NO₃⁻ absorption systems: one positively correlated with NR, and one independent of the NR system. It is the first system which is in some way affected by WO₄. Without understanding the exact mode of action of WO₄ on the absorption mechanisms, it is difficult at present to explain the effect of WO₄ on NO₃⁻ absorption.

LITERATURE CITED

- BEEVERS, L., L. E. SCHRADER, D. FLESHER, AND R. H. HAGEMAN. 1965. The role of light and nitrate in the induction of nitrate reductase in radish cotyledons and maize seedlings. Plant Physiol. 40: 691-698.
- BEN ZIONI, A., Y. VAADIA, AND S. H. LIPS. 1971. Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol. Plant. 24: 288-290.
- CHEN, T. M. AND S. K. RIES. 1969. Effect of light and temperature on nitrate uptake and nitrate reductase activity in rye and oat seedlings. Can. J. Bot. 47: 341-343.
- ELLIS, R. J. AND I. R. MACDONALD. 1970. Specificity of cycloheximide in higher plant systems. Plant Physiol. 46: 227-232.
- FOWDEN, L. 1965. Origins of the amino acids. In: J. Bonner and J. E. Varner, eds., Plant Biochemistry. Academic Press. New York. pp. 361-390.
- FROTA, J. N. E. AND T. C. TUCKER. 1972. Temperature influence on ammonium and nitrate absorption by lettuce. Soil Sci. Soc. Am. Proc. 36: 97-100.
- HAGEMAN, R. H. AND D. FLESHER. 1960. Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. Plant Physiol. 34: 700-708.
- HEIMER, Y. M. AND P. FILNER. 1971. Regulation of nitrate assimilation pathway in cultured tobacco cells. III. The nitrate uptake system. Biochim. Biophys. Acta. 230: 362-372.

- 9. HEIMER, Y. M., J. L. WRAY, AND P. FILNER. 1969. The effect of tungstate on nitrate assimilation in higher plant tissues. Plant Physiol. 44: 1197-1199.
- JACKSON, W. A., D. FLESHER, AND R. H. HAGEMAN. 1973. Nitrate uptake by dark-grown corn seedlings: some characteristics of apparent induction. Plant Physiol. 51: 120-127.
- MACDONALD, I. R., J. S. D. BACON, D. VAUGHAN, AND R. J. ELLIS. 1966. The relation between ion absorption and protein synthesis in beet discs. J. Exp. Bot. 17: 822-837.
- MINOTTI, P. L., D. C. WILLIAMS, AND W. A. JACKSON. 1968. Nitrate uptake and reduction as affected by calcium and potassium. Soil Sci. Soc. Am. Proc. 32: 692-698.
- NOBEL, P. S. 1969. Light dependent potassium uptake by *Pisum sativum* leaf fragments. Plant Cell Physiol. 10: 597-605.
- ORDIN, L. AND L. JACOBSON. 1955. Inhibition of ion absorption and respiration in barley roots. Plant Physiol. 30: 21-27.
- PLAUT. Z. 1974. Nitrate reductase activity of wheat seedlings during exposure to and recovery from water stress and salinity. Physiol. Plant. 30: 212–217.
- RAINS, D. W. 1968. Kinetics and energetics of light-enhanced potassium absorption by corn leaf tissue. Plant Physiol. 43: 394-400.
- 17. RAO, K. P. AND D. W. RAINS. 1976. Nitrate absorption by barley; I. Kinetics and energetics. Plant Physiol. 57: 55-58.
- SCHLOEMER, R. H. AND R. H. GARRETT. 1974. Nitrate transport system in Neurospora crassa. J. Bacteriol. 118: 259-269.
- SCHRADER, L. E., G. L. RITENOUR, G. L. EILRICH, AND R. H. HAGEMAN. 1968. Some characteristics of nitrate reductase from higher plants. Plant Physiol. 43: 930-940.
- SHEN, T. C. 1969. The induction of nitrate reductase and the preferential assimilation of ammonium in germinating rice seedlings. Plant Physiol. 44: 1650-1655.
- STEWARD, G. R. 1968. The effect of cylcoheximide on the induction of nitrate and nitrite reductase in *Lemna minor* L. Phytochemistry 7: 1139-1142.
- TRAVIS, R. L., W. R. JORDAN, AND R. C. HUFFAKER. 1970. Light and nitrate requirements for induction of nitrate reductase activity in *Hordeum vulgare*. Physiol. Plant. 23: 678-685.
- 23. WRAY, J. L. AND P. FILNER. 1970. Structural and functional relationships of enzyme activities induced by nitrate in barley. Biochem. J. 119: 715-725.