Supplemental Information

S1 Data Filtering

Filtering of the MDS annotation from Chen et al. "The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development" *Cell*, 158-5, (2014) 1187-1198.

If the intervals [a, a'] and [b, b'] in a MIC DNA sequence correspond to the MDS annotations M and M' respectively, then M and M' are *intersecting* if [a, a'] intersects [b, b'] and *adjacent* if b = a' + 1 or a = b' + 1.

The dataset \mathcal{D} is filtered from Chen et al. (2014) in the following way:

Step 1. Merge any two MDS annotations that are consecutive in a MAC contig and overlap or are adjacent in a MIC contig.

Step 2. Remove any two MDS annotations that are non-consecutive in a MAC contig and overlap or are adjacent in a MIC contig.

Step 3. Remove all duplicate MDSs, e.g., MDSs that correspond to MAC contigs that produced from alternative MIC processing.

Three processed files are included at http://knot.math.usf.edu/data/scrambled_patterns/.

- 1. processed_annotation_of_oxy_tri.gff contains all of the processed data \mathcal{D} .
- 2. list_of_DOWs_related_to_MICMAC_maps.txt contains all rearrangement maps, corresponding double occurrence words, and the reduced double occurrence words.
- 3. result_of_repeatreturn_pattern_application.txt contains the list of all 176 words that stabilize to non-empty words after performing the iterative repeat/return removal.

S2 Extended Table of Rearrangement Patterns

Count	Reduced MIC pattern representative	
854	$M_1\overline{M}_2$	
307	M_2M_1	
79	$M_1 M_3 M_2$	
35	$M_1 M_3 M_2 M_4$	
34	$M_1 M_3 \overline{M}_2$	
27	$M_1 \overline{M}_2 M_3$	
24	$M_1 M_3 M_5 M_7 M_2 M_4 M_6 M_8$	
22	$M_1 M_3 M_5 M_2 M_4 M_6$	
21	$M_1 \overline{M}_3 M_2$	
18	$M_2M_4M_1M_3$	
17	$M_3\overline{M}_2M_1$	
16	$M_1 M_3 M_5 M_2 M_4$	
14	$\overline{M}_1 M_3 M_2$	
14	$\overline{M}_2 M_3 M_1$	
14	$M_1 M_3 \overline{M}_4 \overline{M}_2$	
14	$M_1 M_3 M_5 M_7 M_2 M_4 M_6$	
13	$M_2 \overline{M}_3 M_1$	
13	$M_3M_2\overline{M}_1$	
11	$M_1 M_3 M_5 M_7 M_9 M_2 M_4 M_6 M_8$	
11	$M_1 M_3 M_5 M_7 M_9 M_{11} M_2 M_4 M_6 M_8 M_{10} M_{12}$	
10	$M_1 M_3 M_5 M_7 M_9 M_{11} M_{13} M_2 M_4 M_6 M_8 M_{10} M_{12}$	
9	$M_3M_2M_1$	
9	$M_1 M_3 M_5 \overline{M}_6 \overline{M}_4 \overline{M}_2$	
9	$M_1 M_3 M_5 M_7 M_9 M_2 M_4 M_6 M_8 M_{10}$	
7	$M_1 M_3 M_5 \overline{M}_4 \overline{M}_2$	
7	$M_1 M_3 M_5 M_7 M_9 M_{11} M_{13} M_{15} M_2 M_4 M_6 M_8 M_{10} M_{12} M_{14} M_{16}$	
6	$\overline{M}_1 M_2 M_4 M_3$	
6	$M_1 M_3 M_5 M_7 M_9 M_{11} M_2 M_4 M_6 M_8 M_{10}$	
5	$M_2M_4M_3M_1$	
5	$M_3M_2M_4M_1$	
5	$M_1 M_3 M_5 M_7 M_9 \overline{M}_8 \overline{M}_6 \overline{M}_4 \overline{M}_2$	
5	$M_1 M_3 \dots M_{15} M_{17} M_2 M_4 \dots M_{16} M_{18}$	
5	$M_1 M_3 \dots M_{19} M_{21} M_2 M_4 \dots M_{18} M_{20}$	
5	$M_1 M_3 \dots M_{25} M_{27} M_2 M_4 \dots M_{24} M_{26}$	
4	$\overline{M}_1 M_2 M_4 \overline{M}_3$	
4	$M_1 M_3 \overline{M}_2 M_4$	
4	$M_1 \overline{M}_4 \overline{M}_2 M_3$	
4	$M_3M_5M_2M_4M_1$	
		Continued on next name

Reduced Rearrangement Patterns occurring in O. trifallax

Continued on next page

Count	Reduced MIC pattern representative
4	$M_1 M_3 M_5 M_7 \overline{M}_8 \overline{M}_6 \overline{M}_4 \overline{M}_2$
4	$M_1 M_3 \dots M_{13} M_{15} M_2 M_4 \dots M_{12} M_{14}$
4	$M_1 M_3 \dots M_{19} M_{21} M_2 M_4 \dots M_{20} M_{22}$
4	$M_1 M_3 \dots M_{21} M_{23} M_2 M_4 \dots M_{20} M_{22}$
4	$M_1 M_3 \dots M_{23} M_{25} M_2 M_4 \dots M_{22} M_{24}$
3	$M_1 M_3 M_5 M_7 \overline{M}_6 \overline{M}_4 \overline{M}_2$
3	$M_2 M_4 M_6 \overline{M}_7 \overline{M}_5 \overline{M}_3 M_1$
3	$M_1 M_3 M_5 M_7 M_9 M_{11} \overline{M}_{10} \overline{M}_8 \overline{M}_6 \overline{M}_4 \overline{M}_2$
3	$M_1 M_3 \dots M_{15} M_{17} M_2 M_4 \dots M_{14} M_{16}$
3	$M_1 M_3 \dots M_{27} M_{29} M_2 M_4 \dots M_{28} M_{30}$
2	$M_1 \overline{M}_2 \overline{M}_4 M_3$
2	$M_1 M_3 M_5 \overline{M}_2 \overline{M}_4$
2	$M_2M_4M_3M_5M_1$
2	$M_1\overline{M}_2M_5\overline{M}_3\overline{M}_6M_4$
2	$M_2 M_4 M_6 M_1 M_3 M_5$
2	$M_3 M_5 M_2 M_4 M_6 M_1$
2	$M_2 M_1 M_3 \overline{M}_6 \overline{M}_7 M_5 \overline{M}_4$
2	$M_2 M_4 M_6 M_3 M_5 M_7 M_1$
2	$M_4 M_6 M_2 M_5 M_7 \overline{M}_3 \overline{M}_1$
2	$M_2 M_4 M_6 M_8 M_1 M_3 M_5 M_7$
2	$M_2 M_6 M_8 M_4 M_7 M_9 \overline{M}_5 \overline{M}_3 \overline{M}_1$
2	$M_1 M_3 M_5 M_7 M_9 M_{11} \overline{M}_{12} \overline{M}_{10} \overline{M}_8 \overline{M}_6 \overline{M}_4 \overline{M}_2$
2	$M_2 M_4 M_6 M_8 M_{10} M_{12} M_1 M_3 M_5 M_7 M_9 M_{11}$
2	$M_1 M_3 M_5 M_7 M_9 M_{11} M_{13} \overline{M}_{12} \overline{M}_{10} \overline{M}_8 \overline{M}_6 \overline{M}_4 \overline{M}_2$
2	$M_1 M_3 \dots M_{11} M_{13} M_2 M_4 \dots M_{12} M_{14}$
2	$M_1 M_3 \dots M_{15} M_{17} \overline{M}_{18} \overline{M}_{16} \dots \overline{M}_4 \overline{M}_2$
2	$M_1 M_3 \dots M_{17} M_{19} M_2 M_4 \dots M_{16} M_{18}$
2	$M_1 M_3 \dots M_{17} M_{19} M_2 M_4 \dots M_{18} M_{20}$
2	$M_1 M_3 M_5 M_2 M_4 \dots M_{20} M_{22} M_7 M_9 \dots M_{21} M_{23}$
2	$M_1 M_3 \dots M_{27} M_{29} M_2 M_4 \dots M_{26} M_{28}$
2	$\underline{M_1}M_3\ldots \underline{M_{29}}M_{31}M_2\underline{M_4}\ldots \underline{M_{28}}M_{30}$
2	$M_1 M_3 M_5 \dots M_{19} M_{21} \overline{M}_{37} \overline{M}_{35} \dots \overline{M}_{25} \overline{M}_{23} M_2 M_4 \dots M_{34} M_{36}$
2	$M_1 M_3 \dots M_{37} M_{39} \dots M_2 M_4 \dots M_{38} M_{40}$
273	Other

 Table 1: Reduced scrambled rearrangement patterns of O. trifallax listed in order of frequency.

DOW	Reduced Pattern	Count	DOW	Reduced Pattern	Count
123213	$M_1 \overline{M}_4 \overline{M}_2 M_3$	4	123231	$M_2 M_4 M_3 M_1$	5
	$M_1 M_3 \overline{M}_2 M_4$	4		$M_1 \overline{M}_4 M_3 \overline{M}_2$	1
	$\overline{M}_2 M_4 M_3 M_1$	1		$M_2 M_4 M_3 \overline{M}_1$	1
	$\overline{M}_2\overline{M}_4M_3M_1$	1		$M_2 \overline{M}_4 M_3 M_1$	1
	$M_1 \overline{M}_3 M_4 M_2$	1		$M_3M_1M_4M_2$	1
	$\overline{M}_3 M_2 M_4 M_1$	1		$M_1 M_4 M_3 \overline{M}_2$	0
	$M_1 M_4 M_3 M_2$	0		$M_1 \overline{M}_3 M_4 \overline{M}_2$	0
	$\overline{M}_1 M_4 M_3 M_2$	0		$\overline{M}_1 M_4 \overline{M}_3 M_2$	0
	$M_1 \overline{M}_4 M_3 M_2$	0		$M_2 \overline{M}_3 M_4 M_1$	0
	$\overline{M}_1\overline{M}_4M_3M_2$	0		$\overline{M}_2 M_4 M_1 \overline{M}_3$	0
	$\overline{M}_1 M_4 \overline{M}_2 M_3$	0		$M_3M_1\overline{M}_4M_2$	0
	$M_1 \overline{M}_3 \overline{M}_4 M_2$	0	123123	$M_1 M_3 M_2 M_4$	35
	$M_2 M_4 M_1 \overline{M}_3$	0		$M_2 M_4 M_1 M_3$	18
	$M_3M_1M_4\overline{M}_2$	0		$M_3 M_2 M_4 M_1$	5
	$M_2 M_4 \overline{M}_1 \overline{M}_3$	0		$M_3 M_2 \overline{M}_4 M_1$	1
	$M_2 \overline{M}_4 M_1 \overline{M}_3$	0		$M_1 M_4 \overline{M}_2 \overline{M}_3$	1
	$M_4 M_2 \overline{M}_3 M_1$	0		$M_1 M_3 M_2 \overline{M}_4$	0
	$M_1 M_3 \overline{M}_2 \overline{M}_4$	0		$\overline{M}_1 M_3 M_2 \overline{M}_4$	0
	$M_1 \overline{M}_3 M_2 \overline{M}_4$	0		$M_2 M_4 \overline{M}_1 M_3$	0
	$M_1 M_4 \overline{M}_2 M_3$	0		$M_2 \overline{M}_4 \overline{M}_1 M_3$	0
121323	$M_1 \overline{M}_2 \overline{M}_4 M_3$	2		$M_3 M_2 M_4 \overline{M}_1$	0
	$\overline{M}_1 M_4 M_2 \overline{M}_3$	1	122313	$M_2 M_1 M_4 \overline{M}_3$	1
	$M_2M_1M_4M_3$	1		$M_2\overline{M}_1M_4\overline{M}_3$	1
	$M_1 M_4 M_2 \overline{M}_3$	0		$M_3 \overline{M}_4 M_2 M_1$	1
	$\overline{M}_3 M_4 M_2 M_1$	0		$M_1 M_4 \overline{M}_3 M_2$	0
	$M_1 \overline{M}_2 M_4 M_3$	0		$M_1 \overline{M}_2 M_4 \overline{M}_3$	0
	$\overline{M}_1\overline{M}_2M_4M_3$	0		$\overline{M}_1 M_4 \overline{M}_3 M_2$	0
	$M_3 \overline{M}_2 M_4 M_1$	0	121233	$\overline{M}_1 M_2 M_4 M_3$	6
	$M_1 \overline{M}_4 M_2 \overline{M}_3$	0		$\overline{M}_1 M_2 \overline{M}_4 M_3$	0
	$\overline{M}_1\overline{M}_2M_4M_3$	0		$M_4 M_3 \overline{M}_2 M_1$	0
	$M_1 \overline{M}_2 \overline{M}_4 M_3$	0		$M_1 \overline{M}_2 M_3 \overline{M}_4$	0
	$M_1 \overline{M}_2 \overline{M}_3 M_4$	0	123321	$M_1 M_3 \overline{M}_4 \overline{M}_2$	14
	$M_4 M_3 M_2 \overline{M}_1$	0		$M_2 M_4 \overline{M}_3 M_1$	1
	$M_4 M_3 M_2 M_1$	0	123312	$M_1 M_3 \overline{M}_4 M_2$	1
122133	$\overline{M}_1 M_2 M_4 \overline{M}_3$	4	122331	$\overline{M}_2 M_1 M_4 \overline{M}_3$	0

Table 2: The number of reduced patterns having four MDSs observed in *O. trifallax*, grouped by their associated double occurrence word.

S3 Nested Repeat-Return Removal Algorithm

```
1: Get DOW from the contig and store it in RDOW variable
 2: Remove all loops from RDOW
 3: Put RDOW in the ascending order
 4: repeat
        prevWord \leftarrow RDOW
 5:
 6:
        ListOfSets_1 \leftarrow empty \ list, \ ListOfSets_2 \leftarrow empty \ list
        i \leftarrow 1
 7:
        while i < length(RDOW) do
 8:
            if RDOW[i+1] = RDOW[i] + 1 then
 9:
                letterSet \leftarrow \{RDOW[i]\}
10:
                i \leftarrow i + 1
11:
                letterSet \leftarrow letterSet \cup \{RDOW[i]\}
12:
                while RDOW[i+1] = RDOW[i] + 1 do
13:
                    i \leftarrow i + 1
14:
                    letterSet \leftarrow letterSet \cup \{RDOW[i]\}
15:
                end while
16:
                Add letterSet to ListOfSets_1
17:
            else if RDOW[i+1] = RDOW[i] - 1 then
18:
                letterSet \leftarrow \{RDOW[i]\}
19:
                i \leftarrow i + 1
20:
                letterSet \leftarrow letterSet \cup \{RDOW[i]\}
21:
                while RDOW[i+1] = RDOW[i] - 1 do
22:
23:
                    i \leftarrow i + 1
                    letterSet \leftarrow letterSet \cup \{RDOW[i]\}
24:
                end while
25:
                Add letterSet to ListOfSets_2
26:
27:
            end if
            i \leftarrow i + 1
28:
        end while
29:
30:
        intersection_1 \leftarrow \emptyset, intersection_2 \leftarrow \emptyset
31:
        for all letterSet_i, letterSet_j in ListOfSets_1 with i \neq j do
32:
            if |letterSet_i \cap letterSet_i| \geq 2 then
33:
                intersection_1 \leftarrow intersection_1 \cup (letterSet_i \cap letterSet_i)
34:
            end if
35:
        end for
        for all letterSet_i in ListOfSets_1 and letterSet_j in ListOfSets_2 do
36:
37:
            if |letterSet_i \cap letterSet_i| \geq 2 then
38:
                intersection_2 \leftarrow intersection_2 \cup (letterSet_i \cap letterSet_i)
            end if
39:
        end for
40:
41:
        lettersToRemove \leftarrow intersection_1 \cup intersection_2
        for all letter a in RDOW do
42:
```

- 43: **if** *a* is in *lettersToRemove* **then**
- 44: Remove a from RDOW
- 45: end if
- 46: **end for**
- 47: Remove all loops from *RDOW*
- 48: Put *RDOW* in the ascending order
- 49: **until** *prevWord* = *RDOW* or *RDOW* = *empty word*

S4 Proof that the S3 Algorithm Removes Maximal Repeat-Return Words

Let $w = a_1 a_2 \cdots a_{2n}$ be an assembly word. Note that w may be represented uniquely as w = uvwhere u is a maximal sequence of the form

$$i(i+1)\cdots(i+j-1) \text{ or } i(i-1)\cdots(i-j+1)$$
 (*)

for some $i, j \in [n]$ and v is a word. Consider the recursive construction where $w_0 = w$ and $w_{k-1} = u_k w_k$ where u_k is the maximal length sequence defined above (\star) , and w_k is eventually an empty set. This results in a finite set $\{u_1, \ldots, u_p\}$. Define the binary operation \wedge such that, given two words x and y,

 $x \wedge y = \begin{cases} \{a \mid a \in x, a \in y\}, & x \text{ and } y \text{ have at least two letters in common} \\ \emptyset, & \text{otherwise} \end{cases}$

and the set

$$R = \bigcup_{k,l \in [p], k \neq l} (u_k \wedge u_l).$$

Claim 1. R is the set of letters that form all maximal sub-repeats and sub-returns of w.

Proof. Let $x \in R$, then $\exists u_i, u_j$, such that $x \in u_i \wedge u_j$, and we note that $u_i \wedge u_j$ consists of consecutive symbols that correspond to a sub-repeat/sub-return of w. Hence, x is a part of some maximal sub-repeat/sub-return of w.

Let x be a letter of some maximal sub-repeat/sub-return v of w, then there is a letter $y \in v$ such that y is next to x in v. So, y = x + 1, or y = x - 1 and WLOG assume y = x + 1. Consider the first occurrence of v inside w. We claim that x and y belong to the same u_k . Assume otherwise, then we have $x \in u_k$ and $y \in u_{k+1}$. Since y = x + 1, then u_k can not be a singleton. Also, u_k can not be of the form $i(i+1)\cdots(x-1)x$, since otherwise u_k can be extended by appending y = (x+1)to u_k , but u_k is maximal. So, x can only belong to u_k of the form $(i)(i-1)\cdots(x+1)x$. Hence, $x + 1 = y \in u_k$, and we also have that $y \in u_{k+1}$, so y already appears twice in w and there is yet another occurrence of y in w. Thus, x and y belong to the same u_k during the first occurrence of v inside w. For the second occurrence of v inside w, we have that either x is before y (i.e. v is a sub-repeat), or y is before x (i.e. v is a sub-return). If x is before y, then the similar argument shows that x and y belong to the same u_l . Assume that y is before x and $y \in u_l$, $x \in u_{l+1}$. Then, since y = x + 1, we have that u_l can not be a singleton. Also, u_l can not be of the form $i(i-1)\cdots(y+1)y$, since otherwise u_l can be extended by appending x=y-1 to u_l , but u_l is maximal. Thus, u_l can only be of the form $i(i+1)\cdots(y-1)y$. Hence, $y-1=x \in u_l$, and $x \in u_{l+1}$, so x appears twice in w as a letter of u_l and u_{l+1} . Also, $x \in u_k$ (which is disjoint from u_l), so x appears 3 times in w. Therefore, x and y belong to the same u_l , so $x \in u_k \land u_l \neq \emptyset$, since there are at least two letters (x and y) in u_k and $u_l \Rightarrow x \in R$.