
Supplemental Information

S1 Data Filtering

Filtering of the MDS annotation from Chen et al. “The Architecture of a Scrambled

Genome Reveals Massive Levels of Genomic Rearrangement during Development”

Cell, 158-5, (2014) 1187-1198.

If the intervals [a, a′] and [b, b′] in a MIC DNA sequence correspond to the MDS annotations

M and M ′ respectively, then M and M ′ are intersecting if [a, a′] intersects [b, b′] and adjacent if

b = a′ + 1 or a = b′ + 1.

The dataset D is filtered from Chen et al. (2014) in the following way:

Step 1. Merge any two MDS annotations that are consecutive in a MAC contig and

overlap or are adjacent in a MIC contig.

Step 2. Remove any two MDS annotations that are non-consecutive in a MAC contig

and overlap or are adjacent in a MIC contig.

Step 3. Remove all duplicate MDSs, e.g., MDSs that correspond to MAC contigs that

produced from alternative MIC processing.

Three processed files are included at http://knot.math.usf.edu/data/scrambled_patterns/.

1. processed annotation of oxy tri.gff contains all of the processed data D.

2. list of DOWs related to MICMAC maps.txt contains all rearrangement maps, corresponding

double occurrence words, and the reduced double occurrence words.

3. result of repeatreturn pattern application.txt contains the list of all 176 words that stabilize

to non-empty words after performing the iterative repeat/return removal.

1

http://knot.math.usf.edu/data/scrambled_patterns/
http://knot.math.usf.edu/data/scrambled_patterns/processed_annotation_of_oxy_tri.gff
http://knot.math.usf.edu/data/scrambled_patterns/list_of_DOWs_related_to_MIC-MAC_maps.txt
http://knot.math.usf.edu/data/scrambled_patterns/result_of_repeat-return_pattern_application.txt

S2 Extended Table of Rearrangement Patterns

Reduced Rearrangement Patterns occurring in O. trifallax

Count Reduced MIC pattern representative

854 M1M2

307 M2M1

79 M1M3M2

35 M1M3M2M4

34 M1M3M2

27 M1M2M3

24 M1M3M5M7M2M4M6M8

22 M1M3M5M2M4M6

21 M1M3M2

18 M2M4M1M3

17 M3M2M1

16 M1M3M5M2M4

14 M1M3M2

14 M2M3M1

14 M1M3M4M2

14 M1M3M5M7M2M4M6

13 M2M3M1

13 M3M2M1

11 M1M3M5M7M9M2M4M6M8

11 M1M3M5M7M9M11M2M4M6M8M10M12

10 M1M3M5M7M9M11M13M2M4M6M8M10M12

9 M3M2M1

9 M1M3M5M6M4M2

9 M1M3M5M7M9M2M4M6M8M10

7 M1M3M5M4M2

7 M1M3M5M7M9M11M13M15M2M4M6M8M10M12M14M16

6 M1M2M4M3

6 M1M3M5M7M9M11M2M4M6M8M10

5 M2M4M3M1

5 M3M2M4M1

5 M1M3M5M7M9M8M6M4M2

5 M1M3 . . .M15M17M2M4 . . .M16M18

5 M1M3 . . .M19M21M2M4 . . .M18M20

5 M1M3 . . .M25M27M2M4 . . .M24M26

4 M1M2M4M3

4 M1M3M2M4

4 M1M4M2M3

4 M3M5M2M4M1

Continued on next page

2

Count Reduced MIC pattern representative

4 M1M3M5M7M8M6M4M2

4 M1M3 . . .M13M15M2M4 . . .M12M14

4 M1M3 . . .M19M21M2M4 . . .M20M22

4 M1M3 . . .M21M23M2M4 . . .M20M22

4 M1M3 . . .M23M25M2M4 . . .M22M24

3 M1M3M5M7M6M4M2

3 M2M4M6M7M5M3M1

3 M1M3M5M7M9M11M10M8M6M4M2

3 M1M3 . . .M15M17M2M4 . . .M14M16

3 M1M3 . . .M27M29M2M4 . . .M28M30

2 M1M2M4M3

2 M1M3M5M2M4

2 M2M4M3M5M1

2 M1M2M5M3M6M4

2 M2M4M6M1M3M5

2 M3M5M2M4M6M1

2 M2M1M3M6M7M5M4

2 M2M4M6M3M5M7M1

2 M4M6M2M5M7M3M1

2 M2M4M6M8M1M3M5M7

2 M2M6M8M4M7M9M5M3M1

2 M1M3M5M7M9M11M12M10M8M6M4M2

2 M2M4M6M8M10M12M1M3M5M7M9M11

2 M1M3M5M7M9M11M13M12M10M8M6M4M2

2 M1M3 . . .M11M13M2M4 . . .M12M14

2 M1M3 . . .M15M17M18M16 . . .M4M2

2 M1M3 . . .M17M19M2M4 . . .M16M18

2 M1M3 . . .M17M19M2M4 . . .M18M20

2 M1M3M5M2M4 . . .M20M22M7M9 . . .M21M23

2 M1M3 . . .M27M29M2M4 . . .M26M28

2 M1M3 . . .M29M31M2M4 . . .M28M30

2 M1M3M5 . . .M19M21M37M35 . . .M25M23M2M4 . . .M34M36

2 M1M3 . . .M37M39 . . .M2M4 . . .M38M40

273 Other

Table 1: Reduced scrambled rearrangement patterns of O. trifallax listed in order of frequency.

3

DOW Reduced Pattern Count DOW Reduced Pattern Count

123213 M1M4M2M3 4 123231 M2M4M3M1 5

M1M3M2M4 4 M1M4M3M2 1

M2M4M3M1 1 M2M4M3M1 1

M2M4M3M1 1 M2M4M3M1 1

M1M3M4M2 1 M3M1M4M2 1

M3M2M4M1 1 M1M4M3M2 0

M1M4M3M2 0 M1M3M4M2 0

M1M4M3M2 0 M1M4M3M2 0

M1M4M3M2 0 M2M3M4M1 0

M1M4M3M2 0 M2M4M1M3 0

M1M4M2M3 0 M3M1M4M2 0

M1M3M4M2 0 123123 M1M3M2M4 35

M2M4M1M3 0 M2M4M1M3 18

M3M1M4M2 0 M3M2M4M1 5

M2M4M1M3 0 M3M2M4M1 1

M2M4M1M3 0 M1M4M2M3 1

M4M2M3M1 0 M1M3M2M4 0

M1M3M2M4 0 M1M3M2M4 0

M1M3M2M4 0 M2M4M1M3 0

M1M4M2M3 0 M2M4M1M3 0

121323 M1M2M4M3 2 M3M2M4M1 0

M1M4M2M3 1 122313 M2M1M4M3 1

M2M1M4M3 1 M2M1M4M3 1

M1M4M2M3 0 M3M4M2M1 1

M3M4M2M1 0 M1M4M3M2 0

M1M2M4M3 0 M1M2M4M3 0

M1M2M4M3 0 M1M4M3M2 0

M3M2M4M1 0 121233 M1M2M4M3 6

M1M4M2M3 0 M1M2M4M3 0

M1M2M4M3 0 M4M3M2M1 0

M1M2M4M3 0 M1M2M3M4 0

M1M2M3M4 0 123321 M1M3M4M2 14

M4M3M2M1 0 M2M4M3M1 1

M4M3M2M1 0 123312 M1M3M4M2 1

122133 M1M2M4M3 4 122331 M2M1M4M3 0

Table 2: The number of reduced patterns having four MDSs observed in O. trifallax, grouped by

their associated double occurrence word.

4

S3 Nested Repeat-Return Removal Algorithm

1: Get DOW from the contig and store it in RDOW variable

2: Remove all loops from RDOW

3: Put RDOW in the ascending order

4: repeat

5: prevWord← RDOW

6: ListOfSets1 ← empty list, ListOfSets2 ← empty list

7: i← 1

8: while i < length(RDOW) do

9: if RDOW [i + 1] = RDOW [i] + 1 then

10: letterSet← {RDOW [i]}
11: i← i + 1

12: letterSet← letterSet ∪ {RDOW [i]}
13: while RDOW [i + 1] = RDOW [i] + 1 do

14: i← i + 1

15: letterSet← letterSet ∪ {RDOW [i]}
16: end while

17: Add letterSet to ListOfSets1
18: else if RDOW [i + 1] = RDOW [i]− 1 then

19: letterSet← {RDOW [i]}
20: i← i + 1

21: letterSet← letterSet ∪ {RDOW [i]}
22: while RDOW [i + 1] = RDOW [i]− 1 do

23: i← i + 1

24: letterSet← letterSet ∪ {RDOW [i]}
25: end while

26: Add letterSet to ListOfSets2
27: end if

28: i← i + 1

29: end while

30: intersection1 ← ∅, intersection2 ← ∅
31: for all letterSeti, letterSetj in ListOfSets1 with i 6= j do

32: if |letterSeti ∩ letterSetj | ≥ 2 then

33: intersection1 ← intersection1 ∪ (letterSeti ∩ letterSetj)

34: end if

35: end for

36: for all letterSeti in ListOfSets1 and letterSetj in ListOfSets2 do

37: if |letterSeti ∩ letterSetj | ≥ 2 then

38: intersection2 ← intersection2 ∪ (letterSeti ∩ letterSetj)

39: end if

40: end for

41: lettersToRemove← intersection1 ∪ intersection2

42: for all letter a in RDOW do

5

43: if a is in lettersToRemove then

44: Remove a from RDOW

45: end if

46: end for

47: Remove all loops from RDOW

48: Put RDOW in the ascending order

49: until prevWord = RDOW or RDOW = empty word

6

S4 Proof that the S3 Algorithm Removes Maximal Repeat-Return Words

Let w = a1a2 · · · a2n be an assembly word. Note that w may be represented uniquely as w = uv

where u is a maximal sequence of the form

i(i + 1) · · · (i + j − 1) or i(i− 1) · · · (i− j + 1) (?)

for some i, j ∈ [n] and v is a word. Consider the recursive construction where w0 = w and

wk−1 = ukwk where uk is the maximal length sequence defined above (?), and wk is eventually an

empty set. This results in a finite set {u1, . . . , up}. Define the binary operation ∧ such that, given

two words x and y,

x ∧ y =

{
{a | a ∈ x, a ∈ y}, x and y have at least two letters in common

∅, otherwise

and the set

R =
⋃

k,l∈[p],k 6=l

(uk ∧ ul).

Claim 1. R is the set of letters that form all maximal sub-repeats and sub-returns of w.

Proof. Let x ∈ R, then ∃ui, uj , such that x ∈ ui ∧ uj , and we note that ui ∧ uj consists of

consecutive symbols that correspond to a sub-repeat/sub-return of w. Hence, x is a part of some

maximal sub-repeat/sub-return of w.

Let x be a letter of some maximal sub-repeat/sub-return v of w, then there is a letter y ∈ v

such that y is next to x in v. So, y = x + 1, or y = x− 1 and WLOG assume y = x + 1. Consider

the first occurrence of v inside w. We claim that x and y belong to the same uk. Assume otherwise,

then we have x ∈ uk and y ∈ uk+1. Since y = x + 1, then uk can not be a singleton. Also, uk can

not be of the form i(i+1) · · · (x−1)x, since otherwise uk can be extended by appending y = (x+1)

to uk, but uk is maximal. So, x can only belong to uk of the form (i)(i − 1) · · · (x + 1)x. Hence,

x + 1 = y ∈ uk, and we also have that y ∈ uk+1, so y already appears twice in w and there is yet

another occurrence of y in w. Thus, x and y belong to the same uk during the first occurrence of

v inside w. For the second occurrence of v inside w, we have that either x is before y (i.e. v is a

sub-repeat), or y is before x (i.e. v is a sub-return). If x is before y, then the similar argument

shows that x and y belong to the same ul. Assume that y is before x and y ∈ ul, x ∈ ul+1.

Then, since y = x + 1, we have that ul can not be a singleton. Also, ul can not be of the form

i(i − 1) · · · (y + 1)y, since otherwise ul can be extended by appending x = y − 1 to ul, but ul is

maximal. Thus, ul can only be of the form i(i+1) · · · (y−1)y. Hence, y−1 = x ∈ ul, and x ∈ ul+1,

so x appears twice in w as a letter of ul and ul+1. Also, x ∈ uk (which is disjoint from ul), so x

appears 3 times in w. Therefore, x and y belong to the same ul, so x ∈ uk ∧ ul 6= ∅, since there are

at least two letters (x and y) in uk and ul ⇒ x ∈ R.

7

