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S1. NOISE AMPLIFICATION BY
DIFFERENTIATION

When estimating interatomic forces from a statistical
model trained on energies, considerable noise will likely
be present. This is because the derivative operator am-
plifies high frequencies with increasing gain, which – per
assumption – is the frequency band noise lives in: the
derivative of a model f in the frequency domain is

F [f ′] = iωF [f ] , (1)

with F [f ] being its Fourier transform.
As functions parameterized by data are inherently

noisy, either because the data itself is imprecise or due
to the ill-posedness of the model, this phenomenon can
not be avoided. Commonly, machine learning approaches
alleviate noise effects via regularization, i.e. by attenu-
ating parts of the model’s frequency spectrum that are
assumed to be distorted [31]. Model de-noising can also
be implemented as a post-processing step by recovering
low-dimensional data manifolds from high-dimensional
embeddings for example by means of principal compo-
nent analysis (PCA) [32–35]. In most cases however, the
resulting predictor will never exactly match the truth so
that the differentiation process will still amplify the re-
maining noise and increase the prediction error.

S2. VECTOR-VALUED KERNEL

LEARNING

The predictor used in this work is a generalization of
the commonly used kernel ridge-regression technique to
structured vector fields [19–21]. Like its scalar coun-
terpart, it transforms the input to a high-dimensional
feature space φ : X → H where the data can be mod-
eled by a linear function. Adopting the kernel trick [36],
this space is defined implicitly through a kernel func-
tion κ(~x, ~x′) = 〈φ(~x), φ(~x′)〉H that characterizes the in-
ner product in some reproducing kernel Hilbert space H.
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The accuracy of the GDML model (in terms of
the MAE) as a function of training set size:

for small training sets.

Kernels replace the covariance term in the normal equa-
tion of the ridge estimator. GDML solves the derivative
of this normal equation and maps to all partial forces of
a molecule simultaneously. Rearranging the kernel term

κ
(
∂xi

∂R ,
∂x′

∂R

)
= ∂2κ

∂2R reveals that the force-field kernel is

the Hessian matrix of any kernel function that is at least
twice differentiable. The efficient use of samples and the
convex nature of the GDML optimization problem en-
ables us to train the model using a direct solver with
all its numerical benefits. The regularization coefficient
λ as well as the length scale σ and the smoothness pa-
rameter v of the Matérn kernel are found through a grid

fig. S1.
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Chemical
accuracy of less than 1 kcal/mol is already achieved



S1. Properties of MD data sets that were used for numerical testing. Forces are in kcal/mol/A, energies in kcal/mol.˚

Dataset Energies Forces

Molecule Formula DOF Size Range Min. (×104) Max. (×104) Range Min. Max.

Benzene C6H6 30 627000 20.2 −14.653 −14.651 266.3 −126.677 139.626

Uracil C4H4N2O2 30 133000 39.9 −26.012 −26.008 476.6 −237.381 239.249

Naphthalene C10H8 48 326000 48.4 −24.192 −24.187 452.9 −217.207 235.688

Aspirin C9H8O4 57 211000 47.0 −40.676 −40.671 404.1 −195.664 208.454

Salicylic acid C7H6O3 42 320000 47.5 −31.105 −31.100 453.8 −236.086 217.687

Malonaldehyde C3H4O2 21 993000 43.8 −16.751 −16.747 570.7 −286.050 284.602

Ethanol C2H6O 21 555000 35.5 −9.721 −9.717 432.0 −211.104 220.900

Toluene C7H8 39 442000 46.9 −17.024 −17.019 425.6 −212.984 212.617

force errors in kcal/mol/Å.

Dataset Energy Prediction Force Prediction

Magnitude Angle

Molecule # ref. MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 1000 0.07 0.09 0.23 0.34 0.21 0.30 0.0041 0.0079

Uracil 1000 0.11 0.14 0.24 0.38 0.24 0.33 0.0040 0.0066

Naphthalene 1000 0.12 0.15 0.23 0.34 0.21 0.28 0.0033 0.0115

Aspirin 1000 0.27 0.36 0.99 1.41 0.91 1.19 0.0169 0.0244

Salicylic acid 1000 0.12 0.15 0.28 0.43 0.32 0.43 0.0038 0.0065

Malonaldehyde 1000 0.16 0.25 0.80 1.15 0.71 0.97 0.0109 0.0184

Ethanol 1000 0.15 0.20 0.79 1.12 0.99 1.33 0.0130 0.0237

Toluene 1000 0.12 0.16 0.43 0.62 0.35 0.45 0.0055 0.0088

search of a suitable subset of the hyper-parameter space.
Throughout, cross-validation with dedicated datasets for
training and testing is used to estimate the generalization
performance of the model. Finally, the model is evalu-
ated on a separate, previously unseen hold-out set (see
e.g. Hansen et al. [13]).

S3. DESCRIPTORS

We use an input descriptor D to disambiguate Carte-
sian geometries that are physically equivalent. Inspired
by the Coulomb matrix [11], geometries are represented
by matrices were each entry

Dij =

{
‖Ri −Rj‖−1 for i > j

0 for i ≤ j
(2)

is the reciprocal of the Euclidian distance of two atoms.
When used with a descriptor, the covariance struc-
ture defined by the kernel must be projected back
from descriptor space D to the original input space
I to match the Cartesian force labels. The result
κD→I = ∂D>κ∂D is given by the chain rule were
∂D = (∂D1/∂R, . . . , ∂DN/∂R) is the matrix of partial

derivatives of the (vectorized) training descriptors in each
column.

S4. MODEL ANALYSIS

We analyze the performance of all models using the
well established mean absolute error (MAE) and root-
mean-square error (RMSE) measures for both, energy
and force predictions (see Tables S4 and S2 and Fig. S1).
Since forces are multivariate, we analyze them under
two additional aspects that permit a better assess-
ment of their topological accuracy: The magnitude er-

ror ‖f̂‖ − ‖f‖ describes the extend to which the slope
of the predicted PES differs from the reference calcu-
lation. We measure MAE and RMSE of the magni-
tudes of predicted and true forces. The angular error

cos−1(f̂/‖f̂‖ · f/‖f‖)/π measures the relative orienta-
tion of the predicted force direction and the reference.
An error of 0 indicates perfect alignment, while an error
of 1 shows that the predicted vector is inverted. Again,
we compute the MAE and the RMSE of this quantity.
Fig. S2 shows qualitatively, how closely the predicted en-
ergies and forces follow the reference data (using the ex-
ample of uracil).

table S2. GDML prediction accuracy for interatomic forces and total energies for all data sets. Energy errors are in kcal/mol,

table
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Accuracy of the näıve force predictor. This model learns all components of the force labels independently. It is
identical to the GDML model in all aspects, except for being energy-conservative. Energy errors are in kcal/mol, force errors
in kcal/mol/Å.

Dataset Energy Prediction Force Prediction

Magnitude Angle

Molecule # ref. MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 1000 n/a n/a 14.67 20.01 19.38 22.39 0.4496 0.5048

Uracil 1000 n/a n/a 5.91 11.29 1.90 2.84 0.1341 0.1859

Naphthalene 1000 n/a n/a 6.50 11.16 2.17 3.13 0.1255 0.1748

Aspirin 1000 n/a n/a 8.80 12.95 6.64 9.29 0.1481 0.1948

Salicylic acid 1000 n/a n/a 6.13 11.28 2.36 3.35 0.1183 0.1662

Malonaldehyde 1000 n/a n/a 19.98 27.35 17.99 22.79 0.4157 0.4664

Ethanol 1000 n/a n/a 18.15 24.78 24.12 30.89 0.3938 0.4506

Toluene 1000 n/a n/a 15.66 23.29 11.85 16.09 0.3583 0.4109

Accuracy of the converged energy-based predictor. All training set sizes are chosen to match the complexity of
the optimization problem in the corresponding force model (number of samples times number of partial derivatives). Energy
errors are in kcal/mol, force errors in kcal/mol/Å.

Dataset Energy Prediction Force Prediction

Magnitude Angle

Molecule # ref. MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Benzene 36000 0.04 0.06 0.80 1.16 1.00 1.38 0.0196 0.0350

Uracil 36000 0.03 0.03 0.44 0.62 0.45 0.54 0.0092 0.0148

Naphthalene 54000 0.02 0.03 0.40 0.55 0.43 0.52 0.0079 0.0129

Aspirin 63000 0.03 0.04 1.51 2.12 0.98 1.28 0.0220 0.0311

Salicylic acid 48000 0.10 0.13 0.45 0.63 0.39 0.51 0.0052 0.0090

Malonaldehyde 27000 0.11 0.16 0.83 1.16 0.80 1.05 0.0128 0.0230

Ethanol 27000 0.09 0.14 0.76 1.07 0.92 1.22 0.0116 0.0246

Toluene 45000 0.06 0.08 0.52 0.71 0.50 0.61 0.0087 0.0146

S5. DETAILS OF THE PIMD

SIMULATION

Path-integral molecular dynamics (PIMD) is a method
that incorporates quantum-mechanical effects into molec-
ular dynamics simulations using Feynman’s path inte-
gral formalism. Here, PIMD simulations were done us-
ing P = 10 beads at ambient temperature using the

GDML model implemented in the i-PI code [30]. The
recently developed estimators based on perturbation the-
ory were used to evaluate structural and electronic ob-
servables [29]. The total time of simulation was 200 ps
for aspirin and 100 ps for the rest of the molecules, and
for all the cases the NVT ensemble was used with a time
step of 0.5 fs.

table S4.

table S3.

section
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secutive time steps of an MD simulation of uracil at 500 K.
The prediction (gray) follows the reference trajectory (black,
dashed) with high accuracy. The area between both curves is
marked red to highlight small deviations.

fig. S2. Predicting energies (a) and forces (b) for 500 con-




