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Supplementary Text 

1. Quasi two-dimensional model for current driven domain wall dynamics in circular 

curved wires 

 

The one-dimensional model (26, 33) is a useful theoretical tool to understand current driven 

domain wall (DW) dynamics both intuitively and quantitatively. This model has been 

successfully used to describe the current induced motion of DWs in straight racetracks formed 

from single magnetic layers with perpendicular magnetic anisotropy (PMA) via a chiral spin 

torque (14, 20), and in synthetic ferromagnets and antiferromagnets via an exchange coupling 

torque (21). Here we extend this model to the quasi two-dimensional model (Q2D) to curved 

nanowires by incorporating (1) a moving reference frame with Cartesian coordinates that allows 

for tilting of the DW to be taken into account, (2) periodic variation in anisotropy to simulate 

DW pinning, (3) thermal fluctuations in the DW position and magnetization along the wire, and 

(4) a non-uniform current density transverse to the wire. 

 

The basic assumption of our model is that if the DW width is much smaller than the radius of 

curvature, the DW has a fixed magnetization profile of polar angle 𝜃 by which the magnetization 

is rotated from the direction perpendicular to the layer, i.e. the z-axis, and the azimuthal 

magnetization angle 𝜓 is uniform all over the wire at each instant of time when it is manipulated 

either by current or magnetic field or a combination of the two. In contrast, when the DW width 

becomes comparable to the radius of curvature of the wire, an additional curvature effect should 

be taken into account since the azimuthal magnetization angle within DW does not look uniform 

anymore in the curved wire moving frame coordinate. However, the wires used in our 

experiment have a few microns of curved radius whilst the DW width parameter is ~ 5 nm. 

Hence the former assumption is valid since the latter effect is vanishingly small and neglected 

hereafter. For the case of perpendicularly magnetized nanowires the DW dynamics can be 

described within the Q2D model by three parameters, namely the position q of the DW along the 

nanowire, its conjugate momentum 2𝑀𝑠𝜓/𝛾, where 𝜓 is the angle of the DW’s magnetization in 

the plane of the wire with respect to the direction 𝑥̂, and the tilting angle 𝜒 defined with respect 

to the direction −𝑦̂ (see fig. S1). 𝑀𝑠 is the saturation magnetization and 𝛾 is the gyromagnetic 



ratio. Here, the key point to note is that the DW motion in curved wires are instantaneously 

governed by the DW magnetization angle 𝜙, and tilting angle 𝜁, defined with respect to unit 

vectors, 𝑒̂𝑠, 𝑒̂𝑟 and 𝑧̂ in the moving frame coordinates but the DW dynamics is ultimately 

described by the static Cartesian coordinates in Q2D model because 𝑒̂𝑠 and 𝑒̂𝑟 vary as a function 

of time and DW position. 𝜙 and 𝜁 are connected to the corresponding parameters, 𝜓 and 𝜒, 

defined in static Cartesian coordinates, respectively, via DW position 𝑞 : 𝜙(𝑡) =
𝑞(𝑡)

𝑅
+ 𝜓(𝑡) and 

𝜁(𝑡) =
𝑞(𝑡)

𝑅
+ 𝜒(𝑡) where 𝑅 is the mid-radius of wire (see fig. S1). As a result, the domain wall 

profile of curved wires in terms of moving frame parameters is given by  

 

𝜃(𝑟, 𝑡) = 2 arctan exp [±
𝑟(𝜉−

𝑞(𝑡)

𝑅
)cos 𝜁(𝑡)+(𝑟−𝑅)sin 𝜁(𝑡)

Δ
]    (1) 

This can be rewritten in static Cartesian coordinates as following 

𝜃(𝑥, 𝑦, 𝑡) = 2 arctan exp

[
 
 
 
 
 

±

(√𝑥2+𝑦2arctan
𝑦

𝑥
−𝑞(𝑡)) cos

(

 𝑞(𝑡)

√𝑥2+𝑦2
+𝜒(𝑡)

)

 +(√𝑥2+𝑦2−𝑅)sin

(

 𝑞(𝑡)

√𝑥2+𝑦2
+𝜒(𝑡)

)

 

Δ

]
 
 
 
 
 

 

(2) 

Here the upper and lower signs correspond to the ⊙ | ⊗ and ⊗ | ⊙ domain magnetic 

configurations, respectively, and 𝛥 is the domain wall width parameter. It should be noted that 

the azimuthal magnetization angles 𝜙(𝑡) and 𝜓(𝑡) do not depend on spatial parameters, 𝑟, 𝑥, and 

𝑦, i.e. uniform as mentioned above. Consequently, the DW defined by Eq. (1) is not a straight 

line as seen in fig. S1 since the DW tilt angle 𝜁 in moving coordinates is constant along the 

transverse to the wire direction thus showing that the tangent of DW at each point along the DW 

keeps the same angle with −𝑒̂𝑟 direction. 

 

Before deriving the equations of motion, let us first discuss the additional effects as shown in 

section a-c that we have taken into account in development of Q2D model in curved wires. 

 



 

a. Non-uniform anisotropy induced pinning effect 

The threshold current density above which the DWs start to be depinned and move by current is 

zero in the absence of any pinning (e.g. see fig. S5). Since the curved nanowire devices we 

measured do not have any artificial notches or blips, we consider the intrinsic DW pinning only. 

There are various intrinsic sources that cause DW pinning. Among them we make use of the 

periodic variation of anisotropy 𝐾𝑒𝑓𝑓 = 𝐾𝑒𝑓𝑓
0 [1 − 𝜂 cos

2𝜋(𝑞−𝑞𝑠)

𝑞0
] along the length of wire to 

simulate pinning since it is the major factor that give rise to the broadening of ferromagnetic 

resonances (FMR) spectrum linewidth, that is, so-called inhomogeneous broadening. Here 𝜂, 𝑞𝑠 

and 𝑞0 are the strength, center position and period of anisotropy, respectively (see fig.S2). The 

pinning field induced by the periodic anisotropy is 𝐻𝑝𝑖𝑛 =
4𝜋𝛥𝜂𝐾𝑒𝑓𝑓

0

𝑞0𝑀𝑠
 where 𝑀𝑠 is the saturation 

magnetization. Based on our fitted parameters, we have 𝐻𝑝𝑖𝑛~560 Oe that is consistent with 5-10% 

of anisotropy field 𝐻𝐾~1 T of our film since the inhomogeneous broadening is known to 

correspond to this proportion of 𝐻𝐾 (34).  

 

b. Thermal broadening 

At finite temperatures, thermal fluctuations are known to induce normal distributions (Gaussians) 

of the initial position 𝑞 and magnetization angle 𝜓 of DW (35). The distribution Gaussians can 

be derived as (see fig. S3A,B) 

𝑃(𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = √
𝑀𝑠𝐻𝑐0𝑤𝑡𝑚
𝜋𝑞0𝑘𝐵𝑇

exp (
𝑀𝑠𝐻𝑐0𝑤𝑡𝑚𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2

𝑞0𝑘𝐵𝑇
) 

𝑍(𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = √
𝑀𝑠𝐻𝑐0𝑤𝑡𝑚Δ

2𝑘𝐵𝑇
exp(

𝑀𝑠𝐻𝑐0𝑤𝑡𝑚Δ𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙
2

𝑞0𝑘𝐵𝑇
) 

where 𝑤 is the width of wire, 𝑡𝑚 is the thickness of magnetic film, 𝐻𝑐0 is the propagation field, 

𝑘𝐵 is the Boltzmann constant, 𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are the initial condition of DW position and 

azimuthal angle of magnetization, respectively. Since the sample temperature 𝑇 is proportional to 



the power applied to the wire, 𝑇 ∝ 𝐽2, where 𝐽 is the current density and we use 𝑇(𝐽 = 0)=300 K, 

and 𝑇(𝐽 = 2 × 108 𝐴/𝑐𝑚2)=500 K (see fig. S3C). 

 

The thermal broadening effect is implemented in the Q2D model by meshing 𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

around 𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0 and 𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0, calculating the results at each mesh point and then 

averaging them weighted by the Gaussians as following  

 

〈𝑋〉 =
∑ 𝑋𝑖𝑗𝑃(𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑖)𝑍(𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑗)𝑖,𝑗

∑ 𝑃(𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑖)𝑍(𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑗)𝑖,𝑗

 

 

where 𝑋 = 𝑞, 𝜓, and 𝜒. Note that the thermal effect plays a role in the depinning of DWs only 

near the critical current density. 

 

c. Non-uniform current distribution  

When an electrical current is flowed along a metallic curved wire, the current density is not 

uniform along the transverse direction to the wire. This happens because (1) electrons, majority 

carriers in metals, would flow along the gradient of electrical potential, that is, the arc direction, 

and consequently (2) the resistance linearly increases with the increasing radius. For example, 

when a voltage V is applied to one end of curved wire having thickness 𝑡𝑓, mid-radius R, width w, 

and resistivity  while the other end is grounded (see fig. S4), the current 𝑑𝐼 that flows along the 

cross section 𝑡𝑓𝑑𝑟 at radius r is 𝑑𝐼 =
𝑉𝑡𝑓𝑑𝑟

𝜋𝜌𝑟
. Hence the current density 𝐽(𝑟) at radius r is 𝐽(𝑟) =

𝑑𝐼

𝑡𝑓𝑑𝑟
=

𝑉

𝜋𝜌𝑟
, that is, 𝐽(𝑟) ∝

1

𝑟
. Hence the total current 𝐼 is 𝐼 = ∫ 𝑑𝐼

𝑅+
𝑤

2

𝑅−
𝑤

2

= ∫
𝑉𝑡𝑓

𝜋𝜌𝑟
𝑑𝑟

𝑅+
𝑤

2

𝑅−
𝑤

2

=

𝑉𝑡𝑓

𝜋𝜌
log

2𝑅+𝑤

2𝑅−𝑤
. Note that in a 𝜋𝑅 long straight wire the total current I is 𝐼 =

𝑉𝑡𝑓𝑤

𝜋𝜌𝑅
. The fact that 

log
2𝑅+𝑤

2𝑅−𝑤
>

𝑤

𝑅
 leads to that 𝐼𝑐𝑢𝑟𝑣𝑒 > 𝐼𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 with given same length and voltage. Based on this 

calculation, we have implemented the non-uniform current density in Q2D model by setting 

𝐻𝑆𝐻(𝑟) =
𝑅

𝑟
𝐻𝑆𝐻

0  where 𝐻𝑆𝐻
0  is 𝐻𝑆𝐻(𝑟 = 𝑅). We will derive the Q2D equations of motion later 



and discuss the parameter 𝐻𝑆𝐻
0  in detail there. Since the conventional volume spin transfer torque 

(V-STT) is significantly smaller than spin-orbit torque in our system, we do not take the non-

uniform current distribution effect into account in V-STT. 

 

d. Lagrangian and Equations of Motion 

First, we formulate the Lagrangians that include the adiabatic and non-adiabatic spin transfer 

torques, external field driven torques, the spin Hall current torque, and the Dzyaloshinskii-

Moriya exchange field. The equations of motion are then derived by Lagrange-Rayleigh 

equations (36). 

 

With the DW profile function (1), the Lagrangian ℒ in the curved wire that contains the 

magnetostatic potential energy considering inhomogeneous anisotropy, DW kinetic energy and 

adiabatic spin-transfer torque is given by 

 

ℒ = ∫∫[𝐸 +
𝑀𝑠

𝛾
𝜙𝜃̇ sin 𝜃 −

𝑢𝑀𝑠

𝛾
𝜙

𝑑𝜃

𝑑𝑠
sin 𝜃] 𝑑𝑠𝑑𝑟

=
2𝑤𝐴

Δ
sec 𝜁 [1 + (

4𝑅2

4𝑅2 − 𝑤2
) sin2 𝜁 +

𝜋2

3

Δ2

4𝑅2 − 𝑤2
]

+ 2𝑤Δ𝐾𝑒𝑓𝑓
0 {1 − 𝜂 cos [

2𝜋(𝑞 − 𝑞𝑠)

𝑞0
]} sec 𝜁 + 𝑤Δ𝑀𝑠𝐻𝑘 cos2(𝜓 − 𝜒) sec 𝜁

∓ 2𝑀𝑠𝐻𝑧𝑤𝑞 − 𝜋𝑤Δ𝑀𝑠𝐻𝑝 cos(𝜓 − 𝜓𝐻) sec 𝜁 − 𝜋𝑤Δ𝑀𝑠𝐻𝐷𝑀 cos(𝜓 − 𝜒) sec 𝜁

∓
2𝑤𝑀𝑠

𝛾
𝜙(𝑞̇ + 𝑢) 

   (3) 

Here the upper and lower signs correspond to the ⊙ | ⊗ and ⊗ | ⊙ domain magnetic 

configurations, respectively. 𝑠 is the coordinate position along the wire length direction. ℇ is the 

magnetostatic energy density of domain wall per area and is given by  

 



ℇ = 𝐴(∇𝑚⃗⃗ )2 + 𝐾𝑒𝑓𝑓 [1 − 𝜂 cos
2𝜋(𝑞 − 𝑞𝑠)

𝑞0
] sin2 𝜃 +

𝑀𝑠𝐻𝑘

2
sin2 𝜃 cos2(𝜓 − 𝜒) − 𝑀𝑠𝐻𝑧 cos 𝜃

− 𝑀𝑠𝐻𝑝 sin 𝜃 cos(𝜓 − 𝜓𝐻) − 𝑀𝑠𝐻𝐷𝑀 sin 𝜃 cos(𝜓 − 𝜒) 

(4) 

Eq. (3) can be rewritten as ℒ = 𝜎 + ∫∫ [
𝑀𝑠

𝛾
𝜙𝜃̇ sin 𝜃 −

𝑢𝑀𝑠

𝛾
𝜙

𝑑𝜃

𝑑𝑠
sin 𝜃] 𝑑𝑠𝑑𝑟 where the 

magnetostatic potential energy 𝜎 = ∫∫ℇ𝑑𝑠𝑑𝑟. 𝐴 is the exchange stiffness, 𝐻𝑘 is the magnitude 

of the in-plane anisotropy field derived from the shape anisotropy of the DW that favors a Bloch 

DW configuration over that of a Néel wall, 𝐻𝑧 is the out-of-plane field, 𝐻𝑝 and 𝜓𝐻 are the in-

plane magnetic field and its angle defined with respect to +𝑥̂ direction. 𝐻𝐷𝑀 is the 

Dzyaloshinskii–Moriya interaction exchange field at the DW whose direction is always 

perpendicular to DW length direction thus favoring Néel type wall but the sign depends on 

domain configurations establishing the chirality of domain walls. The volume spin transfer 

torque from the current within magnetic layer is parameterized by =
𝜇𝐵𝑃𝐽

𝑒𝑀𝑠
 

, where 𝜇𝐵 is the Bohr 

magneton, e is the electron charge, P is the spin polarization of the current and 𝐽 is the current 

density in the magnetic layer. Note that 𝜎 is a function of DW position 𝑞, i.e. 
𝜕𝜎

𝜕𝑞
≠ 0 and a finite 

pressure torque in curved wires, which is distinct from the straight wire even in the absence of 

Zeeman exchange field 𝐻𝑧. This is due to the fact that the domain wall energy varies depending 

on 𝑞 since e.g. the DW tilt angle 𝜁 changes as a function of 𝑞. Meanwhile, the dissipative 

function ℱ that includes damping, non-adiabatic spin-transfer torque and spin-orbit torque is 

given by  



ℱ = ∫∫
𝛼𝑀𝑠

2𝛾
[(

𝑑

𝑑𝑡
−

𝛽𝑢

𝛼

𝑑

𝑑𝑠
 ) 𝑚⃗⃗ +

𝛾

𝛼
𝐻𝑆𝐻𝑚⃗⃗ × 𝑒̂𝑟] 𝑑𝑠𝑑𝑟

=
𝛼𝑀𝑠

2𝛾
{
2𝑤𝑞̇2

Δ
[

𝑤2

12𝑅2
sin 𝜁 tan3 𝜁 + cos 𝜁]

+
𝑤𝑞𝜒̇

3𝑅Δ
sin 𝜁 tan 𝜁 {𝑤2 [sec2 𝜁 −

2𝑞

𝑅
𝑡𝑎𝑛𝜁] + 𝜋2Δ2 sec2 𝜁}

+
𝑤𝜒̇2

6Δ
sec3 𝜁[𝑤2 + 𝜋2Δ2 sin2 𝜁] + 2𝑤Δ𝜙̇2 sec 𝜁

±
2𝜋𝛾

𝛼
𝐻𝑆𝐻

0 cos𝜙 {𝑞̇ [tan2 𝜁 (𝑅 log
2𝑅 + 𝑤

2𝑅 − 𝑤
− 𝑤) + 𝑅 log

2𝑅 + 𝑤

2𝑅 − 𝑤
]

+ 𝜒̇𝑅 sec2 𝜁 (𝑅 log
2𝑅 + 𝑤

2𝑅 − 𝑤
− 𝑤)} +

4𝛽𝑢

𝛼Δ
𝑞̇𝑤 cos 𝜁

∓
𝜋𝛽𝑢

2𝛼
cos𝜙 {𝑞̇ [

1

𝑅
tan2 𝜁 (𝑅 log

2𝑅 + 𝑤

2𝑅 − 𝑤
− 𝑤) + log

2𝑅 + 𝑤

2𝑅 − 𝑤
]}

+ 𝜒̇ sec2 𝜁 (𝑅 log
2𝑅 + 𝑤

2𝑅 − 𝑤
− 𝑤) −

4𝛽𝑢Δ

𝛼
𝜙̇ sin2 𝜙 sec 𝜁 log

2𝑅 + 𝑤

2𝑅 − 𝑤
} 

(5) 

Here again, the upper and lower signs correspond the ⊙ | ⊗ and ⊗ | ⊙ domain magnetic 

configurations, respectively, 𝛽 is the non-adiabatic STT coefficient. The spin Hall effect is 

parameterized by an effective field 𝐻𝑆𝐻
0  in the mid-wire that is given by 𝐻𝑆𝐻

0 =
ℏ𝜃𝑆𝐻𝐽𝑈𝐿

2𝑒𝑀𝑠𝑡
 where ℏ 

is 
ℎ

2𝜋
, ℎ is Planck constant, 𝐽𝑈𝐿 is the current density in the underlayer, 𝑡 is the thickness of 

magnetic layer, and 𝜃𝑆𝐻 is the spin Hall angle (or the effective spin Hall angle that describes the 

magnitude of the spin accumulation that the magnetic layer is subjected to). Note that the 

accumulated spin from the spin Hall current is oriented transverse to the wire length s, i.e. the 

radial direction 𝑒̂𝑟. The spin-orbit torque related term written in blue in Eq. (5) becomes 

±
2𝜋𝛾𝑤

𝛼
𝐻𝑆𝐻

0 𝑞̇ cos 𝜙 when the current distribution is uniform. 

 

Based on Lagrangians ℒ and dissipated function ℱ obtained above, the Lagrange-Rayleigh 

equations 
𝜕ℒ

𝜕𝑋
−

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕𝑋̇
) +

𝜕ℱ

𝜕𝑋̇
= 0 (𝑋 = 𝑞, 𝜓, and 𝜒) finally lead to the equations of motion as 

following 



𝛼𝑞̇ (
𝑤2

12𝑅2
sin 𝜁 tan3 𝜁 + cos 𝜁) ± Δ𝜓̇

+
𝛼

12𝑅
𝜒̇ sin 𝜁 tan 𝜁 [𝑤2 (sec2 𝜁 −

2𝑞

𝑅
tan 𝜁) + 𝜋2Δ2 sec2 𝜁]

= ±𝛾Δ𝐻𝑧

− 𝛽𝑢 cos 𝜁 ±
𝑢Δ

𝑅
±

𝜋𝛽𝑢Δ

4𝑤
cos𝜙 {

1

𝑅
tan2 𝜁 (𝑅 log

2𝑅 + 𝑤

2𝑅 − 𝑤
− 𝑤) + log

2𝑅 + 𝑤

2𝑅 − 𝑤
}

+
𝛽𝑢Δ2

𝑤𝑅
sin2 𝜙 sec 𝜁 log

2𝑅 + 𝑤

2𝑅 − 𝑤

−
𝛾𝐴

𝑅𝑀𝑠
sec 𝜁 {tan 𝜁 [1 + (

4𝑅2

4𝑅2 − 𝑤2
− 1) sin2 𝜁 +

𝜋2

3

Δ2

4𝑅2 − 𝑤2
]

+ (
4𝑅2

4𝑅2 − 𝑤2
− 1) sin 2𝜁}

−
𝛾Δ2

2𝑅𝑀𝑠
[2𝐾𝑒𝑓𝑓

0 {1 − 𝜂 cos [
2𝜋(𝑞 − 𝑞𝑠)

𝑞0
]} + 𝑀𝑠𝐻𝑘 cos2(𝜓 − 𝜒)

− 𝜋𝑀𝑠𝐻𝑝 cos(𝜓 − 𝜓𝑝) − 𝜋𝑀𝑠𝐻𝐷𝑀 cos(𝜓 − 𝜒)] sec 𝜁 tan 𝜁

−
2𝜋𝛾𝜂Δ2

𝑞0𝑀𝑠
𝐾𝑒𝑓𝑓

0 sin [
2𝜋(𝑞 − 𝑞𝑠)

𝑞0
] sec 𝜁

∓
𝜋

2𝑤
𝛾Δ𝐻𝑆𝐻

0 cos𝜙 [tan2 𝜁 (𝑅 log
2𝑅 + 𝑤

2𝑅 − 𝑤
− 𝑤) + 𝑅 log

2𝑅 + 𝑤

2𝑅 − 𝑤
] 

(6) 

(cos 𝜁 +
𝛼Δ

𝑅
) 𝑞̇ + 𝛼Δ𝜓̇

= −𝑢 ∓
𝛽𝑢Δ

𝑤
sin2 𝜙 log

2𝑅 + 𝑤

2𝑅 − 𝑤

±
𝛾Δ

2
[−𝐻𝑘 sin 2(𝜓 − 𝜒) + 𝜋𝐻𝑝 sin(𝜓 − 𝜓𝐻) + 𝜋𝐻𝐷𝑀 sin(𝜓 − 𝜒)] 

(7) 



𝛼

12𝑅
𝑞̇ sin 𝜁 tan 𝜁 [𝑤2 (sec2 𝜁 −

2𝑞

𝑅
tan 𝜁) + 𝜋2Δ2 sec2 𝜁] +

𝛼

12
𝜒̇sec3 𝜁 (𝑤2 + 𝜋2Δ2 sin2 𝜁)

= −
𝛾𝐴

𝑀𝑠
sec 𝜁 {tan 𝜁 [1 + (

4𝑅2

4𝑅2 − 𝑤2
− 1) sin2 𝜁 +

𝜋2

3

Δ2

4𝑅2 − 𝑤2
]

+ (
4𝑅2

4𝑅2 − 𝑤2
− 1) sin 2𝜁} −

𝛾Δ2𝐾𝑒𝑓𝑓
0

𝑀𝑠
{1 − 𝜂 cos [

2𝜋(𝑞 − 𝑞𝑠)

𝑞0
]} sec 𝜁 tan 𝜁

−
𝛾Δ2𝐻𝑘

2
cos(𝜓 − 𝜒) sec 𝜁 [cos(𝜓 − 𝜒) tan 𝜁 + 2 sin(𝜓 − 𝜒)]

+
𝛾𝜋Δ2𝐻𝑝

2
cos(𝜓 − 𝜓𝐻) sec 𝜁 tan 𝜁

+
𝛾𝜋Δ2𝐻𝐷𝑀

2
sec 𝜁 [sin(𝜓 − 𝜒) + cos(𝜓 − 𝜒) tan 𝜁]

∓
𝛾Δ𝜋𝑅𝐻𝑆𝐻

0

2𝑤
cos𝜙 sec2 𝜁 (𝑅 log

2𝑅 + 𝑤

2𝑅 − 𝑤
− 𝑤)

+
Δ𝜋𝛽𝑢

8𝑤
sec 𝜁 (𝑅 log

2𝑅 + 𝑤

2𝑅 − 𝑤
− 𝑤) 

(8) 

Here again, the upper and lower signs correspond the ⊙ | ⊗ and ⊗ | ⊙ domain magnetic 

configurations, respectively. For cases of uniform current distribution, the spin-orbit torque 

related terms written in blue in Eqs. (6) and (8) become ∓
𝜋

2
𝛾Δ𝐻𝑆𝐻

0 cos𝜙 and 0, respectively. 

When 𝑅 → ∞, the Eqs. (6)-(8) become 

 

𝛼 cos 𝜒𝑠

𝛥 
𝑞̇ ± 𝜓̇ = ±𝛾𝐻𝑧 −

2𝜋𝛾𝜂Δ2

𝑞0𝑀𝑠
𝐾𝑒𝑓𝑓 sin

2𝜋(𝑞 − 𝑞𝑠)

𝑞0
sec 𝜒 −

𝛽𝑢

𝛥
cos 𝜒 ∓

𝜋

2
𝛾𝐻𝑆𝐻 cos𝜓 

(9) 

cos 𝜒𝑠

𝛥 
𝑞̇ ∓ 𝛼𝜓̇ = −

𝑢

𝛥
cos 𝜒 ∓

𝛾

2
𝐻𝑘sin 2(𝜓 − 𝜒) ±

𝜋

2
𝛾𝐻𝑝 sin(𝜓 − 𝜓𝐻) ±

𝜋

2
𝛾𝐻𝐷𝑀 sin(𝜓 − 𝜒) 

(10) 



𝜋2

6𝛾
𝛼𝑀𝑠Δ [(

𝑤

Δ𝜋
)
2

sec2 𝜒 + tan2 𝜒] 𝜒̇

= − [
2𝐴

Δ
+ 2𝐾𝑒𝑓𝑓Δ + 𝑀𝑠𝐻𝑘Δ sin(𝜓 − 𝜒) + 𝜋𝑀𝑠𝐻𝐷𝑀Δ cos(𝜓 − 𝜒)] tan𝜒

− 𝐻𝑘𝑀𝑠Δ sin 2(𝜓 − 𝜒) + 𝜋Δ𝑀𝑠𝐻𝑝 sin(𝜓 − 𝜓𝐻) + 𝜋Δ𝑀𝑠𝐻𝐷𝑀 sin(𝜓 − 𝜒) 

(11) 

These Eqs. (9)-(11) correspond to the equations of motion for straight wires (28). 

Note that for straight wire, the magnetostatic potential energy 𝜎 does not depend on 𝑞 so that the 

pressure torque driven DW velocity 𝜈𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = −
𝛼𝛾Δ

2𝑀𝑠

𝜕𝜎

𝜕𝑞
 is zero in the absence of 𝐻𝑧 and 

periodic variation of anisotropy. However, in curved wires, 𝜎 is a function of 𝑞 entirely due to 

curvature effect, i.e., 𝜈𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≠ 0, even when 𝐻𝑧 = 0 and 𝜂 = 0. 

 

e. Current driven domain wall dynamics in curved wires 

Now based on the newly developed Q2D model above, let us investigate the current driven 

DW motion in curved wires. First, we will discuss the DW dynamics in the absence of non-

uniform current distribution (NUCD). Before starting the discussion one may wonder how the 

velocity along the DW profile would evolve as a function of time during the application of 

current pulses since the DW length would increase indefinitely if the velocity is same all along 

the DW. This can be understood by extending an analogy to the dynamics of a disk with mass 

𝑀 and radius 𝑅, whose center of mass (CM) is at the CM velocity 𝜈𝐶𝑀 while the disk rotates 

with angular velocity 𝜔 around the CM in the static Cartesian coordinates. (see fig. S6A). 

Note that the kinetic energy is divided to drive (1) the linear motion of CM and (2) the rotation 

of disk, which gives rise to top instantaneous velocity 𝜈𝑡𝑜𝑝 = 𝜈𝐶𝑀 + 𝑅𝜔 that is larger than the 

bottom instantaneous velocity 𝜈𝑏𝑜𝑡𝑡𝑜𝑚 = 𝜈𝐶𝑀 − 𝑅𝜔. In the same way, the energy to drive the 

DW motion by current in a curved wire is used not only to move the mid-radius of DW at 

velocity 𝑞̇ but to rotate the DW around the mid-point of DW at angular velocity −𝜒̇. Hence 

the velocity at the outer and inner rims in DW would be 𝑞̇ −
𝑤

2
𝜒̇ and 𝑞̇ +

𝑤

2
𝜒̇, respectively, 

and in general 𝑞̇ − (𝑟 − 𝑅)𝜒̇ at a radius 𝑟 (see fig. S6B). This shows that the velocity 𝑞̇ is 



compensated by −(𝑟 − 𝑅)𝜒̇ at 𝑟. In particular, when 𝜒̇ = −
𝑞̇

𝑅
, the velocity becomes fully 

compensated, which corresponds to the steady state of tilt angle 𝜁 =
𝑞

𝑅
+ 𝜒, i.e., 𝜁̇ = 0. In the 

steady state, the velocity 𝜈(𝑟) = 𝑞̇ − (𝑟 − 𝑅)𝜒̇ = 𝑞̇ + (𝑟 − 𝑅)
𝑞̇

𝑅
=

𝑟

𝑅
𝑞̇ at 𝑟 in DW (see fig. 

S6C) and the angular velocity 
𝜈(𝑟)

𝑟
=

𝑞̇

𝑅
 at 𝑟, that is, independent of 𝑟. This implies that the 

angular velocity is uniform along the DW in the steady state (see fig. S6B,D). Note that the 

Q2D model calculation in fig. S6D shows that the angular velocity does not look completely 

constant along the DW. This is because the DW does not fully reach the steady state within the 

pulse length 𝑡𝑝 = 50 ns. 

 

Our Q2D model calculation shows that curvature dependence of current driven DW motion is 

due to the fact that |
3𝜋

2
− 𝜙𝑢𝑑| ~ |

3𝜋

2
− 𝜙𝑑𝑢| while 𝜁𝑢𝑑 is significantly larger than 𝜁𝑑𝑢. This 

happens because (1) 𝜙 relaxes in much shorter time scale than 𝜁 (28) and (2) the magnetostatic 

potential energy favors negative 𝜒 in ⊙ | ⊗ configuration whilst a positive 𝜒 value is favored 

in ⊗ | ⊙. These mechanisms induce |
3𝜋

2
− 𝜙𝑢𝑑 + 𝜁𝑢𝑑| > |

3𝜋

2
− 𝜙𝑑𝑢 + 𝜁𝑑𝑢|, 𝜁𝑢𝑑 − 𝜒𝑢𝑑 −

3𝜋

2
<

0, and 𝜁𝑑𝑢 − 𝜒𝑑𝑢 −
3𝜋

2
> 0 so that the 𝐻𝐷𝑀 driven torque |𝜏𝐷𝑀

𝑢𝑑 | < |𝜏𝐷𝑀
𝑑𝑢 | and the 𝐻𝑘 driven 

torque |𝜏𝐻𝑘

𝑢𝑑| > |𝜏𝐻𝑘

𝑑𝑢| where 𝜏𝐻𝑘
 has opposite sign to 𝜏𝐷𝑀, since 𝜏𝐷𝑀 ∝ cos (

3𝜋

2
− 𝜙𝑢𝑑 + 𝜁𝑢𝑑) 

and 𝜏𝐻𝑘
∝ sin 2 (

3𝜋

2
− 𝜙𝑢𝑑 + 𝜁𝑢𝑑). As a result, 𝜏𝐷𝑀

𝑢𝑑 + 𝜏𝐻𝑘

𝑢𝑑 < 𝜏𝐷𝑀
𝑑𝑢 + 𝜏𝐻𝑘

𝑑𝑢. As either the width 

increases or the radius decreases, |𝜁𝑢𝑑 − 𝜁𝑑𝑢| increases thus increasing the differences in DW 

velocity between two domain configurations (see fig. S5 and S7). 

 

In the presence of the NUCD, the DW dynamics are further affected because the outer radius 

the wire is subject to the smaller current density as discussed above thus increasing tilt angle 𝜁 

compared to the absence of NUCD. Actually our Q2D model has an additional term that is 

responsible for NUCD in the eq. of motion related to the tilt angle dynamics, which is written 

in blue in Eq. (8). This term is always positive thus increasing the tilt angle since 𝐻𝑆𝐻 > 0, 

cos𝜙 < 0 (⊙ | ⊗), and cos𝜙 > 0 (⊗ | ⊙) that leads to 



∓
𝛾Δ𝜋𝑅𝐻𝑆𝐻

0

2𝑤
cos𝜙 sec2 𝜁 (𝑅 log

2𝑅+𝑤

2𝑅−𝑤
− 𝑤) > 0 irrespective of domain configurations and sign 

of 𝐻𝑆𝐻. The increased 𝜁 is clearly observed in fig. S12 (also see fig. S8 as a reference). It is 

remarkable that the NUCD induced torque depends on the domain configurations. It is found 

that NUCD in DW motion plays a key role in depinning DWs trapped in pinning potential that 

is more dominant for ⊗ | ⊙ than ⊙ | ⊗ because the NUCD tends to increase 𝜁 more for ⊗

| ⊙ thus enlarging the difference of DW velocity between two configurations near the 

threshold current density 𝐽𝑐 (see fig. S9). In particular, the increased tilt angle 𝜁 for ⊗ | ⊙ 

configuration changes the sign of 𝜏𝐻𝑘
 that comes to have the same sign as 𝜏𝐷𝑀 because 𝜁𝑑𝑢 −

𝜒𝑑𝑢 −
3𝜋

2
< 0 thus 𝜏𝐻𝑘

being added to 𝜏𝐷𝑀. As a result, 𝜈𝐷𝑈 is still larger than 𝜈𝑈𝐷. 

Note that the pressure torque driven DW velocity 𝜈𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 is small although it is not simply 

zero because 
Δ

𝑅
≪ 1 (see fig. S10B and S11B). 

 

f. Comparison with micromagnetic simulations  

Micromagnetic simulations of current driven DW motion in curved nanowires have been carried 

out using LLG micromagnetics simulator (29). Due to the memory intensiveness of simulating a 

wire of the same size as our experiment, we simulated a wire which was smaller in dimension 

(𝑤=0.4 m, 𝑅=1 m). We have then initialized two magnetic configurations for running our 

simulation with the domain wall in the middle of the wire. After sending an electrical pulse with 

the current density 1.0 x 108 A/cm2, we see that that a ⊗ | ⊙ DW responds differently than a ⊙

| ⊗ consistent with our understanding and experimental observations. The micromagnetic 

simulation results are in excellent agreement with Q2D model calculations that use the same 

parameters (see. fig. S13). 

 

g. Curvature dependence of DW motion in narrow nanowires 

It is relevant to know if the curvature still influences the DW motion of narrow nanowires when 

the widths of nanowires are rather small (~ a few tens of nanometers) in practical devices with 

high density. Hence to answer this question we calculate the DW velocity for various radii of 



curvature 𝑅= 100, 125 and 175 nm at fixed width 𝑤=50 nm, which correspond to the same ratio 

of 
𝑅

𝑤
 for 𝑅=4, 5 and 7 m at fixed 𝑤=2 m that are shown in Fig. 2A&B and Fig. 3C&D. It is 

clear that the DW velocity is different depending on the curvature although the difference is 

smaller than the wider wires (see fig. S16). However, this difference in narrow wires is critical 

thus preventing the proper operation of racetrack device as the lockstep motion independent of 

DW configuration is essential. 

 

2. Definition of Curvature in curved wires 

In differential geometry, the curvature 𝜅 in a curved line 𝑟 (𝑠) = (𝑥(𝑠), 𝑦(𝑠)) that is a function of 

a parameter 𝑠 in the 𝑥 − 𝑦 plane can be defined as 

𝜅 =

𝑑𝑦
𝑑𝑠

𝑑2𝑥
𝑑𝑠2 −

𝑑𝑥
𝑑𝑠

𝑑2𝑦
𝑑𝑠2

[(
𝑑𝑥
𝑑𝑠

)
2

+ (
𝑑𝑦
𝑑𝑠

)
2

]

3/2
 

(10) 

Since the DW position 𝑞 is constrained to lie within the nanowire, we choose 𝑞 to describe the 

curved nanowire 𝑟 (𝑠). The time 𝑡 can be used for 𝑠, so we set 𝑠 = 𝑡. Since 𝑟 (𝑡) =

(𝑅 sin
𝑞

𝑅
, 𝑅 cos

𝑞

𝑅
) (see fig. S1A) and 𝑞 = 𝜈𝑡 in the steady state, then 𝑟 (𝑡) = (𝑅 sin

𝜈𝑡

𝑅
, 𝑅 cos

𝜈𝑡

𝑅
). 

Finally using 
𝑑𝑟 (𝑡)

𝑑𝑡
= (𝜈 cos

𝜈𝑡

𝑅
, −𝜈 sin

𝜈𝑡

𝑅
), and 

𝑑2𝑟 (𝑡)

𝑑𝑡2
= (−

𝜈2

𝑅
sin

𝜈𝑡

𝑅
, −

𝜈2

𝑅
cos

𝜈𝑡

𝑅
) then we find 

from Eq. (10), that the curvature 𝜅 is given by 

𝜅 =
1

𝑅

𝜈

|𝜈|
 

(11) 



Eq. (11) shows that the curvature 𝜅 is positive (negative) when the DW moves clockwise 

(counter-clockwise). Similarly, if we choose the current density 𝐽 to be a parameter that describes 

𝑟 (𝑡), then we find 

𝜅 =
1

𝑅

𝐽

|𝐽|
 

(12) 

Likewise the curvature 𝜅 is positive (negative) when the current flows clockwise (counter-

clockwise). The tables in fig. S15A and B are made using these two definitions of curvature, 

respectively.  



Supplementary Figure captions 

 



fig. S1. Schematic illustration of basic parameters used in the Q2D model for current 

driven domain wall motion. Schematic illustration of basic parameters used in the Q2D model 

for current driven domain wall motion in top view of curved wires with ⊙ | ⊗ domain 

configuration: (A) top view and (B) slanted overview. The moving frame coordindates 𝑒̂𝑠, 𝑒̂𝑟 and 

𝑧̂ are cartooned together with the static Cartesian coordinates 𝑥̂, 𝑦̂ and 𝑧̂. 



 

fig. S2. Profile of anisotropy constant Keff(q) with 0

effK  = 3.5  106 erg/cm3, η = 0.03, qs = 0 

nm, and q0 = 10 nm. 



 



fig. S3. Modeling of thermal broadening. Profile of normalized (A) 𝑃(𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙) and (B) 

𝑍(𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙) with T=500K, 𝐻𝑐0=20 Oe, 𝑞0=10 nm, 𝛥=5 nm, 𝑀𝑠=580 Oe, 𝑤=2 m, and 𝑡=1 nm. 

(C) Plot of wire temperature vs. current density 𝐽. 



 

fig. S4. Schematic of current distribution in curved wire with width w and mid-radius R. A 

voltage 𝑉 is applied on the left end while the right end is grounded. 



 



fig. S5. Plots of Q2D model calculation results that take neither nonuniform current 

distribution nor pinning and thermal fluctuation into account. (A,C) DW velocity 𝜈, (B,D) 

DW velocity ratio 
𝜈𝑑𝑢

𝜈𝑢𝑑
, vs. 𝐽. (A,B) 𝑅=4, 5, and 7 m while 𝑤 is fixed at 2 m. (C,D) 𝑤=2, 4, 6 

m while 𝑅 is fixed at 16 m. The commonly used parameters for all calculation are 𝛥=5 nm, 

𝑡𝑝=50 ns, 𝛼=0.1, 𝛽=0, 𝜂=0, 𝐾𝑒𝑓𝑓=3.5106 erg/cm3, 𝐻𝑘=1,000 Oe, 𝐻𝑆𝐻(𝐽 = 1.4 × 108𝐴/

𝑐𝑚2)=700 Oe, 𝐻𝐷𝑀=1,000 Oe, 𝑀𝑠=580 emu/cm3. 



 



fig. S6. Radial dependence of DW velocities transverse to the curve wire direction. (A) 

Schematic of a rigid solid disk whose CM at the CM velocity 𝜈𝐶𝑀 while the disk rotates with 

angular velocity 𝜔 around the CM in the static Cartesian coordinates. (B) Schematic of tilted 

DW development against time in the curved wire that is in the steady state, i.e., 𝜁̇ = 0. While the 

midpoint of DW moves at velocity 𝑞̇, the DW itself rotates around the midpoint at angular 

velocity −𝜒̇ in the static Cartesian coordinates. The shaded pie shapes correspond to the solid 

angles covered by displacement of 4 points in DW during a certain time. (C) Plot of DW velocity 

at each point along the transverse to the wire versus radius. (D) Plot of DW angular velocity at 

each point along the transverse to the wire versus radius. The parameters used in calculation for 

plots of (C,D) are same as used in fig. S5 except 𝑤=2 m and 𝑅=4 m. 



 



fig. S7. Plots of Q2D model calculation results that take pinning and thermal fluctuation 

but no nonuniform current distribution into account. (A,C) DW velocity 𝜈, (B,D) DW 

velocity ratio 
𝜈𝑑𝑢

𝜈𝑢𝑑
, vs. 𝐽. All the parameters are same as used in fig. S5 except 𝐻𝑐0=20 Oe, 𝜂=0.03, 

𝑞𝑠=0 nm, and 𝑞0=10 nm. The variation curve of temperature 𝑇 against 𝐽 shown in fig. S3 is used 

to incorporate the thermal fluctuation effect. 



 



fig. S8. Plots of time-resolved Q2D model calculation results that take pinning and thermal 

fluctuation but no nonuniform current distribution into account. (A) DW velocity 𝜈, (B) 

DW position displacement 𝑞, (C) DW tilt angles 𝜒 and 𝜁, (D) DW magnetization angles 𝜓 and 𝜙 

vs. 𝑡. All the parameters are same as used in fig. S7 except 𝑤 and 𝑅 are fixed at 2 and 4 m, 

respectively. 



 



fig. S9. Plots of Q2D model calculation results that take nonuniform current distribution 

and pinning, but no thermal fluctuation into account. (A,B) DW velocity 𝜈. All the 

parameters are same as used in fig. S5 except 𝐻𝑐0=20 Oe, 𝜂=0.03, 𝑞𝑠=0 nm, and 𝑞0=10 nm.  



 



fig. S10. Plots of Q2D model calculation results that take nonuniform current distribution, 

pinning, and thermal fluctuation into account for various radii while width is fixed. Plots of 

Q2D model calculation results that take non-uniform current distribution, pinning and thermal 

fluctuation into account for 𝑅=4, 5, and 7 m while 𝑤 is fixed at 2 m: (A) DW velocity 𝜈, (B) 

DW velocity driven by pressure torque only, 𝜈𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, (C) DW tilt angle 𝜁, (D) DW 

magnetization angle 𝜙, (E) DW velocity driven by 𝐻𝐷𝑀 only, 𝜈𝐷𝑀 and (F) DW velocity driven 

by 𝐻𝑘, 𝜈𝐻𝑘
 vs. 𝐽. All the parameters are same as used in fig. S5 except 𝐻𝑐0=20 Oe, 𝜂=0.03, 𝑞𝑠=0 

nm, and 𝑞0=10 nm. The variation curve of temperature 𝑇 against 𝐽 shown in fig. S3 is used to 

incorporate the thermal fluctuation effect. 



 



fig. S11. Plots of Q2D model calculation results that take nonuniform current distribution, 

pinning, and thermal fluctuation into account for various widths while the radius is fixed. 

Plots of Q2D model calculation results that take non-uniform current distribution, pinning and 

thermal fluctuation into account for 𝑤=2, 4, 6 m while 𝑅 is fixed at 16 m: (A) DW velocity 𝜈, 

(B) DW velocity driven by pressure torque only, 𝜈𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, (C) DW tilt angle 𝜁, (D) DW 

magnetization angle 𝜙, (E) DW velocity driven by 𝐻𝐷𝑀 only, 𝜈𝐷𝑀 and (F) DW velocity driven 

by 𝐻𝑘, 𝜈𝐻𝑘
 vs. 𝐽. All the parameters are same as used in fig. S5 except 𝐻𝑐0=20 Oe, 𝜂=0.03, 𝑞𝑠=0 

nm, and 𝑞0=10 nm. The variation curve of temperature 𝑇 against 𝐽 shown in fig. S3 is used to 

incorporate the thermal fluctuation effect. 



 



fig. S12. Plots of time-resolved Q2D model calculation results that take pinning and 

thermal fluctuation but no nonuniform current distribution into account. (A) DW velocity 

𝜈, (B) DW position displacement 𝑞, (C) DW tilt angles 𝜒 and 𝜁, (D) DW magnetization angles 𝜓 

and 𝜙 vs. 𝑡. All the parameters are same as used in fig. S10 except 𝑤 and 𝑅 are fixed at 2 and 4 

m, respectively. 



 



fig. S13. Comparison of micromagnetic simulations and Q2D model. Snapshots of (A) 

micromagnetic simulations and (B) Q2D model calculations at time 𝑡=0, 2, 3.5 and 4.5 ns since 

the onset of current pulse application. For both the simulations, the NUCD and the following 

parameters are employed: ferromagnetic layer thickness 𝑡𝑓 is 1.5 nm, the DMI parameter 𝐷 =

−1 erg/cm2, 𝑀𝑠 = 580 emu/cm3, 𝐾𝑒𝑓𝑓 =5.11106 erg/cm3, 𝐴 =0.75 μerg/cm, 𝛼 = 0.1, 𝑤=0.4 m, 

𝑅=1 m, the current density J=1.0108 A/cm2, and spin Hall angle 𝜃𝑆𝐻=0.1. As for the 

micromagnetic simulations the used cell size is 2.5 nm x 2.5 nm x 1.5 nm, and the spin Hall layer 

that is placed under the ferromagnetic layer is chosen to be 1.5 nm thick. 



 



fig. S14. Unabridged Kerr images corresponding to the main text. The left side shows the 

Kerr image of a magnetic domain in the magnetic nanowire before the application of electrical 

pulses and the right portion shows the Kerr images after the application of electrical pulses. (A-

D) correspond to Fig. 1B. (E,F) correspond to Fig. 4A. 



 



fig. S15. Schematic table outlines the relationship between the effect of curvature on the 

DW velocity (⊙|⊗ or ⊗|⊙), which is found to be independent of the sign of DMI or SHE. 

Depending on the evolution of DW tilt w.r.t track curvature, a DW can either go faster or slower 

due to the change in effective DMI torque. A DW goes faster if it tilts in the direction of the bend 

and goes slower if it tilts opposite to that. Changing the sign of either the DMI or SHE torque not 

only changes the direction of DMI-induced tilting but also the sign of curvature which is why the 

same relationship still holds. (A) when the curvature is defined w.r.t. motion, (B) when the 

curvature is defined w.r.t. current. 

 



 



fig. S16. v against J of the quasi-2D model calculation results that take nonuniform current 

distribution, pinning, and thermal fluctuation into account for R = 100, 150, and 175 nm 

while w is fixed at 50 nm. All the parameters are same as used in fig. S5 except 𝐻𝑐0=20 Oe, 

𝜂=0.03, 𝑞𝑠=0 nm, and 𝑞0=10 nm. 

 

movie S1. Animation of Q2D calculation of time resolved DW motion in curved nanowires 

with positive curvatures for various radii and widths. Q2D calculation of time resolved DW 

motion in curved nanowires with positive curvatures and (A) R=4, w=2, (B) R=5, w=2, (C) R=7, 

w=2, (D) R=16, w=2, (E) R=16, w=4, and (F) R=16, w=6 m. The parameters used in the 

calculations are same as fig. S10 and S11. 


