

Figure S1, related to Figure 4, The combination of cisplatin and ablating Bmi1⁺ CSCs potently inhibits recurrent HNSCC tumor growth.

(A) PTC-209 suppressed the ubiquitination of histone H2A in HNSCC cells by inhibiting BMI1 activity.

(B) Lineage tracing showed that PTC-209 did not affect adjacent normal epithelial tissues.

(C) Experimental design for examining tumor cells in recurrent HNSCC after ablating Bmi⁺1 CSCs and cisplatin treatment. *Bmi1^{CreER}*;*R26^{DTA}* or *Bmi1^{CreER}*;*R26^{tdTomato}*;*R26^{DTA}* mice after first round of cisplatin and tamoxifen treatment were maintained for 8 additional weeks. Mice with recurrent HNSCC lesion received second round of treatment and tumors were harvested after 1 or 14 days.

(D) Tomato labeling showed Bmi1⁺ CSCs in recurrent HNSCC of mice.

(E) Quantification of recurred lesion areas visible in the tongue 14 days after control (n=3) or cisplatin and ablating Bmi1⁺ CSCs (n=4). Values are mean \pm SD. **p < 0.01; Student's t-test.

(F) Quantification of dysplasia and SCC numbers after control (n=3) or cisplatin and ablating Bmi1⁺ CSCs (n=4). Values are mean \pm SD. **p < 0.01; Student's t-test.

(G) Percentage of Ki67⁺ cells in recurrent HNSCC of mice 14 days after control or cisplatin and ablating Bmi1⁺ CSCs. Values are mean \pm SD. **p < 0.01; Student's t-test.

(H) Percentage of Bmi1⁺ cells in recurrent HNSCC of mice 14 days after control or cisplatin and ablating Bmi1⁺ CSCs. Values are mean \pm SD. **p < 0.01; Student's t-test.

Figure S2, related to Figure 6, 3-PA potently inhibits AP-1 activities in Bmi1⁺ CSCs by Real-time RT-PCR. Data represent mean \pm SD from one of three independent experiments. **p < 0.01; Student's t test; n = 3

Figure S3, related to Figure 7, Inhibition of Bmi1⁺ by PTC-209 renders HNSCC cell lines sensitive to cisplatin.

(A) ALDH^{high}/CD44⁺ cells isolated from primary HNSCC tissues potently formed tumorspheres in vitro compared to ALDH^{high}/CD44⁻, ALDH^{low}/CD44⁺ and ALDH^{low}/CD44⁻ cells.

(B) FACS sorting showed increasing proportion of ALDH^{high}CD44⁺ cells in SCC1R cells compared to parental SCC1 cells.

(C) qRT-PCR showed that Bmi1 was significantly up-regulated in CSCs in both SCC1 and SCC1R cell lines. Data represent mean \pm SD from one of three independent experiments. *p < 0.05; Student's t test; n = 3.

(D) Bmi1 expression was elevated in CSCs populations from different HNSCC cell lines. Data represent mean \pm SD from one of three independent experiments. **p < 0.01; Student's t test; n = 3.

(E) Western blot analysis showed that PTC-209 treatment reduced BMI1 proteins in SCC1R cells.

(F) PTC-209 sensitized SCC1R cells to cisplatin killing. Data represent mean \pm SD from one of three independent experiments. **p < 0.01; One-way ANOVA; n = 3.

(G) PTC-209 enhanced cisplatin-induced caspase activation in SCC1R cells.

(H) PTC-209 enhanced cisplatin-induced caspase activation in SCC23 cells.

(I) PTC-209 enhanced cisplatin-induced caspase activation in SCC9 cells.

Figure S4, related to Figure 7, Inhibition of BMI1 by PTC-209 impairs tumorigenic and chemoresistant properties of ALDH^{high}CD44⁺ CSC-like cells from a cisplatin-resistant human HNSCC cell line.

(A) Experimental design for SCC1R tumor treatment in vivo.

(B) Representative image of HNSCC tumors from ALDH^{high}CD44⁺ CSCs after treatment. Cis+PTC, cisplatin plus PTC-209.

(C) Histologic staining of human HNSCC tumors in nude mice after treatment. Scale bar, 250 μ m. Cis+PTC, cisplatin plus PTC-209.

(D) Quantification of human HNSCC tumor growth in nude mice after treatment. Values are mean \pm SD. *p < 0.05; one-way ANOVA; n = 8.

(E) Representative staining of metastatic tumor cells in cervical lymph nodes of nude mice after treatment using anti-pan-cytokeratin (PCK). Scale bar upper, 250 µm; Scale bar lower, 50 µm.

(F) The percentage of mice having lymph node metastasis in nude mice after treatment. *p<0.05; Fisher exact test; n =8. Cis+PTC, cisplatin plus PTC-209.

Figure S5, related to Figure 7, Targeting BMI1 or AP-1 impairs tumor sphere formation of human CSCs in vitro.

(A) Real-time RT-PCR showed that *BMI1* mRNA from human CSCs was knocked down by two different *BMI1* siRNAs. Data represent mean \pm SD from one of three independent experiments. **p < 0.01; Student's t test; n = 3.

(B) Representative images of tumor sphere formation by *BMI1* and *FOSL1* knockdown human CSCs.

(C) Quantification of tumor sphere formation of human CSCs after knockdown of *BMI1* or *FOSL1*. Values are mean \pm SD from one of three independent experiments. *p < 0.05; **p < 0.01; one-way ANOVA; n = 12.

(D) Real-time RT-PCR confirmed that *FOSL1* mRNA from human CSCs was knocked down by two different *FOSL1* siRNAs. Data represent mean \pm SD from one of three independent experiments. **p < 0.01; Student's t test; n = 3.

(E and F) PTC-209 treatment inhibited tumorsphere formation of human CSCs. Data represent mean \pm SD from one of three independent experiments. **p < 0.01; Student's t test; n = 3.

(G and H) 3-PA treatment inhibited tumor sphere formation of human CSCs. Data represent mean \pm SD from one of three independent experiments. **p < 0.01; Student's t test; n = 3.

(I) The ectopic expression of HA-FOSL1 in HNSCC cells was determined by Western blot.

(J and K) The ectopic expression of FOSL1 rescued tumorsphere formation inhibited by PTC-209. Data represent mean \pm SD from one of three independent experiments. *p < 0.05, **p < 0.01; Student's t test; n = 3.

(L) The ectopic expression of FOSL1 rescued tumorsphere formation inhibited by Bmi1 knockdown. Data represent mean \pm SD from one of three independent experiments. **p < 0.01; Student's t test; n = 3.

Figure S6, related to Figure 7, BMI1 is highly abundant in human SCC lymph node metastasis and co-expressed with FOLS1.

(A) Immunostaining of BMI1 expression in human HNSCC specimens without LN metastasis (SCC w/o LN met), HNSCC with lymph node metastases (SCC w LN met) and lymph node metastases (LN met). Images are representative of 31 (SCC w/o LN met), 33 (SCC w LN met), and 33 (LN) samples.

(B) Quantification of BMI1 abundance in SCC w/o LN met, SCC w LN met and lymph node metastases (LN met). BMI1 staining intensity was scored as: 1 = weak; 2 = moderate; 3 = strong staining and 4 = very strong.

(C) Co-immunostaining for FOSL1 (red) and BMI1 (green) in HNSCC with lymph node metastases (SCC w LN met) and lymph node metastases (LN met).

Table S1, related to Figure 6. Differential expressed genes between Tomato⁺ and Tomato⁻ tumor cells.

Table S2, related to Figure 7, BMI1 is positively correlated with the levels of FOSL1 in HNSCC by Pearson correlation analysis (r = 0.796, p < 0.01).

Table S2, related to Figure 7, The abundance of BMI1 correlates with the abundance of FOSL1 in human HNSCC

		FOSL1 expression			
		1	2	3	4
	1	0	9	0	0
BMI1	2	0	7	26	0
expression	3	0	0	27	13
	4	0	0	0	15

The staining intensity was scored as: 1, weaker staining; 2, modest staining; 3, strong staining; and 4 very strong staining. r=0.7960; p<0.01