Supplementary Figure 1- Uncropped scans.

Main Figures

Actin $\frac{55}{35}$

35 - -

Figure 4b

Extended Data

Ext Data Figure 1b

Ext Data Figure 1c

Ext Data Figure 3e

Ext Data Figure 3f

Ext Data Figure 7c

Ext Data Figure 8c

Ext Data Figure 8e

Ext Data Figure 9d (continue)

IP K63 Ub 250-130-K63 Ub 250-

K48 Ub 250-130polyQ

polyQ

Ext Data Figure 9d

Input

Ext Data Figure 10a

	Input	IP
AR	,	
100-	17	
AR		
130— -		(*******
100- *		li
Beclin 1		
70		
70		
55 — -		
55 — · 35 — ·	[]	
55 - ' - 35 IgG → ⁵⁵	[]	
$10 - 1$ $55 - 35 - 35 - 35$ $IgG \rightarrow 55 - 55$ Actin 35 - 35		
10 - 1 $55 - 35 - 35 - 35 - 35 - 35 - 35 - 35 -$		

Actin $55 \rightarrow$ 55 — Actin 35 — Ext Data Figure 10b

35 —

Ext Data Figure 10c

Ext Data Figure 10b (continue)

Table S1.	Full statistical	analysis of	the data from	Figure 1	and Figure 4.

Figure	P value for test	P value for post-test
Figure 1a	Two-way ANOVA (column factor shRNA *** P<0.001, row factor BafA1 *** P<0.001, interaction *	Bonferroni's post-test (* P<0.05, *** P<0.001, N.S. not significant).
	P<0.05).	
Figure 1b	Two-way ANOVA (column factor shRNA ** P<0.01, row factor BafA1 *** P<0.001, interaction P value N.S).	Bonferroni's post-test (** P<0.01, *** P<0.001, N.S).
Figure 1c	One-way ANOVA (** P<0.01).	Post-hoc Tukey's test (* P<0.05, ** P<0.01).
Figure 1d	Two-way ANOVA (column factor siRNA ** P<0.01, row factor fasting ** P<0.01, interaction P value N.S).	Bonferroni's post-test (* P<0.05, ** P<0.01, N.S).
Figure 1e	Two-way ANOVA (column factor siRNA * P<0.05, row factor fasting ** P<0.01, interaction P value N.S).	Bonferroni's post-test (* P<0.05, ** P<0.01, N.S).
Figure 4 c	Two-way ANOVA (column factor HD ** P<0.01, row factor fasting N.S, interaction P value N.S).	Bonferroni's post-test (** P<0.01, N.S).
Figure 4 d	Two-way ANOVA (column factor HD *** P<0.001, row factor fasting * P<0.05, interaction * P<0.05).	Bonferroni's post-test (** P<0.01, *** P<0.001, N.S).

 Table S2. List of patient-derived fibroblasts analysed in this study.

Disease	Catalogue number	Ref in the paper
HD	GM04285	HD1
	GM04287	HD 2
	GM04476	HD 3
	GM04867	HD 4
	HD 940-01	HD 5
	HD960-01	HD 6
	HD305-01	HD 7
DRPLA	AT2140102	DRPLA 1
	GM13716	DRPLA 2
	GM13717	DRPLA 3
SCA3	GM06151	SCA3 1
	GM06153	SCA3 2
SCA7	GM03561	SCA7 1