The Association of Parental Education with Childhood Undernutrition in Lowand Middle-Income Countries: Comparing the Role of Paternal and Maternal Education

Sebastian Vollmer^{1,2}, Christian Bommer¹, Aditi Krishna³, Kenneth Harttgen⁴ and S.V. Subramanian^{2*}

¹University of Göttingen, Germany, ² Harvard T.H. Chan School of Public Health, United States, ³ The Hospital for Sick Children, Global Child Health Centre, Toronto, Canada, ⁴ ETH Zürich, Switzerland

*Corresponding author. Harvard Center for Population and Development Studies, 9 Bow Street, Cambridge, MA 02138; Email: <u>svsubram@hsph.harvard.edu</u>

Supplementary online appendix

Table of contents

Appendix A

Table A1: Estimated undernutrition rates by survey	5 - 6
Table A2: Parental education (estimated means/%) by survey	7 – 9
Table A3: Descriptive statistics (all countries weighted equally)	10
Table A4: Descriptive statistics (all countries weighted by population)	11

Appendix B

Table B1: Relationship between parental education levels and stunting in children	13
Table B2: Relationship between parental education levels and underweight in children (linear vs. logistic regression)	14
Table B3: Relationship between parental education levels and wasting in children (linear vs. logistic regression)	15
Table B4: Relationship between parental education levels and severe stunting in children	16
Table B5: Relationship between parental education levels and severe underweight in children	17
Table B6: Relationship between parental education levels and severe wasting in children	18
Table B7: Years of schooling and severe child undernutrition	19
Table B8: Relationship between parental education levels and stunting in children (2007-2014)	20
Table B9: Relationship between parental education levels and underweight in children (2007-2014)	21
Table B10: Relationship between parental education levels and wasting in children (2007-2014)	22
Table B11: Years of schooling and child undernutrition (2007-2014)	23
Table B12: Relationship between parental education levels and stunting in children (1999-2006)	24
Table B13: Relationship between parental education levels and underweight in children (1999-2006)	25
Table B14: Relationship between parental education levels and wasting in children (1999-2006)	26
Table B15: Years of schooling and child undernutrition (1999-2006)	27
Table B16: Relationship between parental education levels and stunting in children (1990-1998)	28
Table B17: Relationship between parental education levels and underweight in children (1990-1998)	29
Table B18: Relationship between parental education levels and wasting in children (1990-1998)	30
Table B19: Years of schooling and child undernutrition (1990-1998)	31
Table B20: Relationship between parental education levels and stunting in children (latest surveys)	32

Table B21: Relationship between parental education levels and underweight in children	33
(latest surveys) Table B22: Relationship between parental education levels and wasting in children	34
(latest surveys)	51
Table B23: Years of schooling and child undernutrition	35
(latest surveys)	
Table B24: Relationship between parental education levels and stunting in children	36
(adjusted for maternal height)	
Table B25: Relationship between parental education levels and underweight in children	37
(adjusted for maternal height)	
Table B26: Relationship between parental education levels and wasting in children	38
(adjusted for maternal height)	•
Table B27: Years of schooling and child undernutrition	39
(adjusted for maternal height)	10
able B28: Relationship between parental education levels and stunting in children (countries weighted equally)	40
(countries weighted equally) Table B20: Relationship between parental education levels and underweight in children	41
(countries weighted equally)	41
Table B30: Relationship between parental education levels and wasting in children	42
(countries weighted equally)	12
Table B31: Years of schooling and child undernutrition	43
(countries weighted equally)	-
Table B32: Relationship between parental education levels and stunting in children	44
(countries weighted by population)	
Table B33: Relationship between parental education levels and underweight in children	45
(countries weighted by population)	
Table B34: Relationship between parental education levels and wasting in children	46
(countries weighted by population)	
Table B35: Years of schooling and child undernutrition	47
(countries weighted by population)	10
Figure B1: Test of linearity assumption	48
(stunting)	10
Figure B2: Test of linearity assumption	49
(underweight) Figure D2: Test of linearity assumption	50
(wasting)	30
(washing) Figure B4: Ratio of school years	51
(country-wise regressions)	51
Figure B5: Binary indicatormother is better educated"	52
(country-wise regressions)	

Appendix part A: Descriptive statistics

This part of the appendix provides additional descriptive statistics to supplement the discussion in the article. Tables A1 and A2 provide population estimates for undernutrition and parental schooling for all surveys included in the sample. To adjust for oversampling and non-response, we use individual-level sampling weights as provided in the Demographic and Health Surveys.

Tables A3 and A4 provide pooled population-level estimates for the figures presented in Table 1 in the article. To aggregate population-level estimates over different surveys, we use two different rescaling methods: In Table A3, sampling weights were rescaled such that they add up to 1 for each country. As a consequence, observations from larger surveys are downweighted and those from smaller surveys are upweighted. In contrast, sampling weights in Table A4 add up to the actual population in every country. Doing this is appropriate when the figures should be interpreted as a global individual-level mean.¹

¹ It should be noted, however, that the figures are not necessarily representative for low- and middle-income countries not included in the sample. Additionally, they cannot be extrapolated to high-income countries.

Table A1: Estimated undernutrition rates by survey

Country	Survey year	Stunted (%)	Wasted (%)	Underweight (%)	Country	Survey year	Stunted (%)	Wasted (%)	Underweight (%)
Albania	2008	22.89	9.50	6.13	Haiti	2005	28.24	10.51	18.03
Armenia	2000	17.98	2.60	2.58	Haiti	2012	21.23	5.07	12.44
Armenia	2005	17.87	5.59	4.58	Honduras	2005	29.62	1.29	8.49
Armenia	2010	20.86	4.08	5.11	Honduras	2011	22.82	1.32	7.22
Azerbaijan Bangladash	2006	27.78	0.51	8.73 53.14	India	1992	57.32	21.07	50.78
Bangladesh	1990	50.45	12.46	42.18	India	2005	48 18	19.07	43.85
Bangladesh	2004	50.33	15.06	43.12	Jordan	1990	19.61	4.04	5.07
Bangladesh	2007	44.61	17.09	42.12	Jordan	1997	11.15	2.38	3.94
Bangladesh	2011	40.89	15.85	36.81	Jordan	2007	16.07	7.59	6.08
Benin	1996	34.01	17.83	26.94	Jordan	2012	7.89	2.43	3.01
Benin	2001	38.77	9.46	21.60	Kazakhstan	1999	13.47	2.62	4.20
Benin	2006	43.70	8.44	19.86	Kenya	1993	40.03	6.99	20.31
Benin	2011	49.11	15.87	23.88	Kenya	2002	38.34 26.71	7.90	18.50
Bolivia	1994	33.45	1.50	5.94	Kenya	2003	35.30	6.70	16.17
Bolivia	2003	32.68	1.69	5.51	Kvrgvz Ren	2000	18.51	2.82	3.82
Bolivia	2008	27.25	1.42	4.58	Lesotho	2004	43.70	5.18	18.25
Brazil	1996	12.76	2.61	4.48	Lesotho	2009	38.71	4.42	14.22
Burkina Faso	1993	39.96	15.48	29.49	Liberia	2006	39.55	7.38	18.80
Burkina Faso	1998	45.18	15.78	33.97	Liberia	2013	30.43	5.26	14.26
Burkina Faso	2003	43.16	21.36	35.40	Madagascar	1992	60.79	6.19	35.17
Burkina Faso	2010	34.90	15.86	26.29	Madagascar	1997	55.22	9.77	35.30
Burundi	2010	58.73	5.82	28.80	Madagascar	2003	52.36	15.07	35.83
Cambodia	2000	46.92	8 72	39.87 28.67	Madagascal Malawi	1002	48.40	6.42	24.15
Cambodia	2005	38 25	11.52	28.07	Malawi	2000	53.91	6.99	24.15
Cameroon	1991	37.23	4.63	19.14	Malawi	2000	52.23	6.42	18.42
Cameroon	1998	34.91	8.67	17.46	Malawi	2010	47.02	4.30	13.76
Cameroon	2004	35.71	6.40	15.61	Maldives	2009	19.14	11.02	17.19
Cameroon	2011	33.42	6.08	15.55	Mali	1995	37.12	27.29	38.69
Central Afric. Rep.	1994	39.87	9.04	23.70	Mali	2001	41.96	12.77	30.21
Chad	1996	44.89	16.56	34.21	Mali	2006	38.21	15.91	28.70
Chad	2004	43.88	16.20	33.68	Mali Maldava	2012	37.68	13.35	26.14
Colombia	2000	19.18	1.51	3.70	Morocco	1002	20.01	2.65	5.47
Colombia	2000	15.99	1.03	5.07	Morocco	2003	23.29	10.75	9.93
Colombia	2009	12.73	0.91	3.50	Mozambique	1997	44.47	12.51	27.30
Comoros	1996	40.09	11.22	22.75	Mozambique	2003	47.39	5.37	21.73
Comoros	2012	30.46	11.59	16.99	Mozambique	2011	43.45	6.41	15.82
Congo, Dem. Rep.	2007	45.70	10.78	25.34	Namibia	1992	34.88	9.70	21.82
Congo, Dem. Rep.	2013	42.79	8.21	23.44	Namibia	2000	29.27	9.27	19.78
Congo, Rep.	2005	30.06	7.76	11.81	Namibia	2006	30.41	7.23	17.29
Côngo, Rep.	2011	22.71	5.75	21.02	Namibia	2013	19.85	8.35	13.55
Côte d'Ivoire	2011	29.77	7.80	15.97	Nepal	2001	57.32	11.04	42.12
Dominican Republic	1991	21.05	2.20	8.14	Nepal	2001	50.40	12.56	39.52
Dominican Republic	1996	13.07	2.04	4.31	Nepal	2011	40.61	11.44	29.75
Dominican Republic	2002	11.52	2.04	3.99	Nicaragua	1997	31.37	3.35	10.57
Dominican Republic	2007	10.13	2.32	3.50	Nicaragua	2001	24.93	2.25	7.88
Dominican Republic	2007	19.29	2.71	7.60	Niger	1992	47.98	18.56	41.14
Dominican Republic	2013	6.58	2.05	2.90	Niger	1998	46.93	26.34	45.85
Dominican Republic	2013	8.39	2.44	5.21	Niger	2006	55.36	13.08	40.43
Egypt	1992	30.62	4.03 5.42	8.09 10.44	Nigeria	1990	42.80	12.03	34.67
Egypt	2000	24.12	3.16	4 12	Nigeria	2003	43.16	11 29	27.19
Egypt	2003	19.16	5.27	7.91	Nigeria	2008	40.70	14.65	27.05
Egypt	2005	23.90	5.18	5.45	Nigeria	2013	36.78	18.35	31.39
Egypt	2008	30.28	8.01	6.58	Pakistan	1990	53.53	12.09	37.97
Egypt	2014	22.32	9.66	6.84	Pakistan	2012	44.04	10.56	31.61
Ethiopia	2000	57.00	12.73	41.98	Paraguay	1990	17.83	0.42	2.61
Ethiopia	2005	49.83	12.39	34.17	Peru	1991	37.68	1.92	9.01
Ethiopia	2011	44.43	9.95	29.57	Peru	1996	31.59	1.60	5.73
Gabon	2000	25.19	4.33	9.24	Peru	2000	31.79	1.09	5.24
Ghana	1993	32.86	14 79	26.18	Peru	2007	28.30	0.85	4.04
Ghana	1998	31.33	9.61	20.77	Peru	2010	23.91	0.68	4.32
Ghana	2003	33.68	8.41	17.98	Peru	2011	19.91	0.35	4.15
Ghana	2008	27.52	9.23	14.34	Peru	2012	18.06	0.60	3.69
Guatemala	1995	55.50	3.82	22.02	Rwanda	1992	56.15	4.81	23.56
Guatemala	1998	53.03	2.94	19.98	Rwanda	2000	47.68	8.68	19.98
Guinea	1999	34.36	9.96	21.10	Rwanda	2005	51.25	4.64	18.21
Guinea	2005	39.74	11.48	23.23	Rwanda	2010	44.16	2.78	11.91
Guinea	2012	31.10	10.59	18.71	Sao Tomé & Principe	2008	30.83	11.84	15.21
Guyana	2009	20.26	5.35	12.37	Senegal	1992	33.96	9.68	22.87
nalti Haiti	2000	38.48 27.14	9.01	24.5/	Senegal	2005	20.81	8.72 10.51	14.25
11410	2000	21.14	5.55	13./4	Sellegal	2010	20.39	10.31	19.28

Table A1 (continued): Estimated undernutrition rates by survey

Country	Survey year	Stunted (%)	Wasted (%)	Underweight (%)	Country	Survey year	Stunted (%)	Wasted (%)	Underweight (%)
Senegal	2012	19.09	8.88	16.91	Uganda	1995	45.57	6.75	21.72
Sierra Leone	2008	38.63	10.53	21.46	Uganda	2000	45.08	5.14	19.02
Sierra Leone	2013	37.34	9.57	17.97	Uganda	2006	38.19	6.67	16.56
Swaziland	2006	27.42	3.50	5.00	Uganda	2011	33.40	4.82	14.19
Tanzania	1991	49.75	7.83	25.37	Zambia	1992	46.40	6.34	21.39
Tanzania	1996	49.14	8.20	26.49	Zambia	1996	48.95	5.10	19.09
Tanzania	2004	43.96	3.69	16.16	Zambia	2001	53.17	6.31	23.78
Tanzania	2009	41.90	4.79	16.24	Zambia	2007	46.53	5.57	14.84
Timor-Leste	2009	57.11	18.74	44.47	Zambia	2013	40.13	6.04	14.99
Togo	1998	31.06	13.83	23.72	Zimbabwe	1994	28.41	6.22	11.98
Togo	2013	26.60	6.71	15.99	Zimbabwe	1999	32.02	8.63	10.99
Turkey	1998	19.55	3.08	7.02	Zimbabwe	2005	33.46	6.70	13.27
Turkey	2003	14.95	1.01	3.28	Zimbabwe	2010	31.83	3.31	10.02

Table A2: Parental education (estimated means/%) by survey

Country	Survey year	Father < Mother (%)	Father = Mother (%)	Father > Mother (%)	Mother higher education (%)	Different education (%)	Mother years of schooling	Father years of schooling	Difference years of schooling
Albania	2008	12.92	63.64	23.44	14.36	39.98	9.51	9.91	0.40
Armenia	2000	14.06	67.97	17.97	29.21	68.81	11.39	11.63	0.24
Armenia	2005	44.29	44.93	10.79	28.77	59.00	9.29	9.31	0.03
Armenia	2010	20.43	64.50 60.14	9.08	26.38	50.84 63.54	11.85	11.18	-0.67
Bangladesh	1996	13.33	51.56	35.11	14.73	53.85	2.30	3.46	1.16
Bangladesh	1999	18.52	47.83	33.65	20.05	57.99	2.94	3.75	0.82
Bangladesh	2004	24.60	47.01	28.39	26.96	62.30	3.40	3.79	0.39
Bangladesh	2007	31.25	42.41	26.34	35.59	68.41	4.57	4.46	-0.11
Bangladesh	2011	33.27	41.62	25.11	39.20	71.83	5.23	4.96	-0.27
Benin	1996	7.34	63.22	29.45	8.54	39.04	0.90	2.19	1.29
Benin	2001	7.26	57.54	35.20	9.08	46.78	1.26	2.78	1.52
Benin	2006	0.84	57.90	35.27	8.41	4/.8/	1.55	3.20	1.87
Bolivia	1994	936	40.62	50.02	15 29	79 34	5 57	7 58	2.00
Bolivia	1998	11.47	44.02	44.51	23.14	78.15	5.99	7.34	1.34
Bolivia	2003	11.13	52.89	35.98	20.86	78.71	6.40	7.97	1.57
Bolivia	2008	13.61	50.65	35.74	22.89	77.92	7.28	8.70	1.42
Brazil	1996	32.68	44.87	22.46	42.61	75.72	5.92	5.46	-0.46
Burkina Faso	1993	7.01	84.63	8.36	7.16	15.56	0.59	0.67	0.08
Burkina Faso	1998	5.30	88.93	5.77	5.29	10.78	0.45	0.46	0.01
Burkina Faso	2003	6.88	85.31	7.81	7.57	15.84	0.66	0.74	0.08
Burkina Faso	2010	9.17	/8.69	12.14	10.09	23.44	0.89	1.07	0.19
Burundi	2010	17.95	48.05	54.05 41.84	20.79	72.95	2.47	3.21	0.74
Cambodia	2000	12.66	46.35	40.99	20.41	72.93	3 50	5.16	1.72
Cambodia	2005	14.66	43.51	41.83	24.44	80.32	4.34	5.85	1.51
Cameroon	1991	13.56	55.51	30.93	13.59	54.17	3.35	4.54	1.20
Cameroon	1998	12.61	55.49	31.90	16.07	59.95	4.31	5.54	1.22
Cameroon	2004	12.14	49.34	38.52	15.71	66.67	4.44	5.88	1.44
Cameroon	2011	13.28	49.58	37.14	16.71	66.99	4.83	6.25	1.41
Central Afric. Rep.	1994	6.70	40.61	52.69	9.82	74.15	2.10	4.79	2.68
Chad	1996	4.82	66.72	28.46	5.34	38.76	0.66	2.06	1.40
Chad	2004	6.49	64.64	28.87	7.46	41.42	0.92	2.42	1.50
Colombia	2000	27.00	43.71	28.04	37.37	/5.80	6.08	0.03	0.12
Colombia	2000	32 52	41.67	25.81	39.84	73.44	7 71	7 39	-0.31
Colombia	2004	47.26	34.54	18.20	27.41	87.18	8.69	10.60	1.91
Comoros	1996	17.20	55.20	27.60	19.01	49.89	2.24	2.90	0.66
Comoros	2012	19.47	42.19	38.34	24.12	69.06	4.05	5.52	1.47
Congo, Dem. Rep.	2007	6.51	33.09	60.40	10.64	85.01	4.83	8.12	3.29
Congo, Dem. Rep.	2013	7.32	29.31	63.37	9.97	86.61	5.15	8.55	3.40
Congo, Rep.	2005	11.10	40.57	48.33	16.88	87.74	6.55	8.92	2.36
Congo, Rep.	2011	10.61	46.21	43.18	19.54	85.38	7.22	9.24	2.02
Côte d'Ivoire	1994	8.00	58.69	33.31	9.42	45.60	1.56	3.20	1.64
Dominicon Popublic	2011	27.56	42.95	29.49	39.56	82.29	7.42	7.61	0.18
Dominican Republic	1991	26.46	41.09	32.45	37 57	82.18	7.64	7.96	0.10
Dominican Republic	2002	30.03	41.18	28.79	42.83	83.12	8.26	8.11	-0.15
Dominican Republic	2007	33.25	36.96	29.79	43.74	83.58	8.93	8.53	-0.40
Dominican Republic	2007	21.01	48.05	30.94	33.79	78.87	5.07	5.65	0.59
Dominican Republic	2013	37.24	37.27	25.49	47.57	81.61	10.31	9.56	-0.75
Dominican Republic	2013	33.19	40.09	26.73	44.29	81.31	7.29	6.80	-0.49
Egypt	1992	10.50	49.88	39.63	13.94	59.40	3.87	5.87	1.99
Egypt	2000	12.32	46.90	40.78	15.30	62.92	4.91	0.8/	1.95
Egypt	2000	15.43	49.74	38.58	17 35	69.15	5.82	8.47	1.79
Egypt	2005	16.72	48 47	34.82	18.96	70.31	6.85	8 51	1.66
Egypt	2008	18.67	50.26	31.07	21.48	70.41	7.69	8.96	1.27
Egypt	2014	23.13	49.18	27.69	28.35	67.98	8.73	9.20	0.47
Ethiopia	2000	5.46	65.70	28.85	6.46	37.28	0.82	1.95	1.13
Ethiopia	2005	7.02	60.77	32.21	8.47	44.64	0.92	2.14	1.22
Ethiopia	2011	7.55	59.91	32.54	10.58	51.25	1.34	2.74	1.40
Gabon	2000	9.98	45.04	44.98	16.49	83.36	6.08	8.28	2.21
Ghana	2012	15.64	47.30	30.01 37.27	21.01	02.92 77.07	/.40 6.31	9.09	3.36
Ghana	1995	7 71	51.62	40.67	10.31	65 30	4 80	7.64	2.84
Ghana	2003	9.67	53 10	37.23	13 10	62.41	4.54	6.73	2.20
Ghana	2008	11.15	45.46	43.39	14.23	67.87	4.97	7.21	2.24
Guatemala	1995	15.41	47.17	37.42	20.88	67.26	2.90	3.84	0.94
Guatemala	1998	15.20	46.08	38.72	19.94	69.81	3.24	4.34	1.10
Guinea	1999	5.59	73.51	20.91	6.07	27.43	0.83	2.25	1.41
Guinea	2005	4.87	75.43	19.70	5.30	25.81	0.64	1.92	1.27
Guinea	2012	8.07	65.72	26.22	8.96	36.75	1.33	2.78	1.45
Guyana	2009	31.20	46.97	21.83	57.95	70.50	8.68	8.36	-0.33
Halti	1994	11.55	57.02	51.45 27.10	15.81	30.84 70.72	2.32	3.40	1.08
11410	2000	13.08	49.00	51.12	20.03	10.15	2.02	4.22	1.40

Table A2 (continued): Parental education (estimated means/%) by survey

Country	Survey year	Father < Mother (%)	Father = Mother (%)	Father > Mother (%)	Mother higher education (%)	Different education (%)	Mother years of schooling	Father years of schooling	Difference years of schooling
Haiti	2005	14.16	48.59	37.25	20.53	72.10	3.84	5.28	1.44
Haiti	2012	15.21	52.43	32.36	23.91	75.42	4.96	6.06	1.10
Honduras	2005	45.09	40.91	14.00	37.92	72.74	5.23	5.15	-0.08
Honduras	2011	32.57	42.48	24.96	41.92	74.69	6.48	6.06	-0.42
India	1992	6.91	47.22	45.87	8.91	61.39	2.73	5.63	2.90
India	1998	9.85	42.30	47.86	12.76	65.96	3.59	6.13	2.54
India	2005	12.36	48.51	39.12	15.28	66.55	4.07	6.30	2.23
Jordan	1990	18.26	35.21	46.53	24.49	80.52	7.27	8.98	1.72
Jordan	1997	25.04	38.61	36.35	33.42	76.85	9.16	9.72	0.56
Jordan	2002	20.20	48.01	22.60	30.34	76.49	10.39	10.30	0.11
Jordan	2007	29.30	48.01	22.09	40.81	73.19	11.04	10.70	-0.34
Vozokheten	1000	13.07	40.17	20.75	43.75	77.52 52.78	11.55	10.78	-0.36
Kazakiistaii	1999	13.07	42.30	10.05	18 27	74.81	5.62	7 20	1.58
Konya	1008	13.05	37 33	49.61	22.43	77.02	6.77	8.07	1.30
Kenya	2003	14 19	40.82	44 99	23.49	75.90	6.73	7 97	1.24
Kenya	2008	13.34	42.64	44.02	21.68	70.59	6.97	8.09	1.12
Kvrgvz Rep.	2012	32.65	52.99	14.36	35.41	59.08	12.10	11.73	-0.37
Lesotho	2004	56.16	28.16	15.68	66.80	85.80	6.92	4.65	-2.27
Lesotho	2009	59.23	30.65	10.11	62.17	85.16	7.27	5.35	-1.92
Liberia	2006	7.50	35.31	57.19	8.66	73.06	2.50	5.94	3.44
Liberia	2013	10.26	33.95	55.79	13.13	76.10	3.14	6.33	3.19
Madagascar	1992	17.66	57.67	24.67	33.44	73.82	3.52	3.69	0.17
Madagascar	1997	20.39	53.21	26.40	32.12	73.31	3.41	3.80	0.39
Madagascar	2003	27.32	49.91	22.77	29.88	72.97	3.76	4.26	0.50
Madagascar	2008	19.50	53.84	26.66	30.02	72.66	3.18	3.67	0.49
Malawi	1992	6.08	39.79	54.13	10.63	76.34	2.30	4.94	2.64
Malawi	2000	9.18	44.16	46.66	17.03	80.78	3.38	5.51	2.14
Malawi	2004	11.97	42.04	45.99	20.09	82.42	4.11	5.99	1.87
Malawi	2010	18.02	48.67	33.31	23.07	81.68	4.86	6.39	1.53
Maldives	2009	42.97	42.89	14.14	62.10	62.10	4.70	0.00	-4.70
Mali	2001	7.81 9.49	79.10	15.09	0.12	22.13	0.00	1.55	0.68
Mali	2001	0.40	74.72	15.26	9.13	20.09	0.79	1.47	0.07
Mali	2000	9.60	77.60	12.20	0.29	23.99	1.00	1.20	0.49
Moldova	2012	18.08	65.05	16.87	28.92	62 21	11.02	11.49	-0.02
Morocco	1992	5 46	66.92	27.62	5.87	34.81	1 18	2.40	1.21
Morocco	2003	12.54	52.49	34.97	15.34	55.75	2.66	4.11	1.45
Mozambique	1997	11.50	56.12	32.39	16.04	72.24	2.09	3.35	1.26
Mozambique	2003	6.96	51.21	41.83	11.56	72.23	1.93	3.70	1.77
Mozambique	2011	10.86	51.85	37.29	17.56	71.60	2.89	4.20	1.31
Namibia	1992	24.81	49.57	25.62	33.56	70.76	5.11	5.20	0.10
Namibia	2000	27.22	42.91	29.87	35.14	74.83	6.50	6.50	-0.01
Namibia	2006	31.91	47.07	21.02	35.68	73.62	7.02	6.91	-0.11
Namibia	2013	28.02	42.66	29.32	34.34	75.40	8.15	8.09	-0.05
Nepal	1996	2.87	41.90	55.23	3.51	59.04	1.07	3.88	2.81
Nepal	2001	4.12	42.13	53.75	4.56	60.82	1.38	4.24	2.86
Nepal	2006	6.25	37.22	56.53	7.94	70.24	2.37	5.08	2.71
Nepal	2011	9.92	38.61	51.47	11.84	67.48	3.44	5.52	2.08
Nicaragua	1997	20.94	41.09	31.30	35.27	/3.3/	4.99	5.25	0.25
Nicaragua	1002	20.39	87.30	50.00	6.48	12.36	0.43	0.45	0.07
Niger	1992	7 33	82.65	10.02	7 50	17.26	0.45	0.43	0.02
Niger	2006	8 69	80.00	11.31	8 94	21.31	0.69	0.05	0.20
Niger	2000	8.10	78.35	13.56	8.84	23.39	0.72	1.09	0.37
Nigeria	1990	13.41	57.60	28.99	11.31	42.85	2.50	3.70	1.20
Nigeria	2003	13.21	48.34	38.46	14.19	55.72	4.12	6.00	1.88
Nigeria	2008	12.57	53.44	33.99	13.93	50.88	4.91	6.36	1.44
Nigeria	2013	11.38	54.73	33.89	12.69	49.39	4.81	6.43	1.61
Pakistan	1990	3.79	50.90	45.31	5.08	53.08	1.68	4.56	2.88
Pakistan	2012	13.81	38.20	47.99	15.87	66.46	3.58	5.99	2.41
Paraguay	1990	18.17	52.32	29.52	29.93	71.84	5.96	6.35	0.39
Peru	1991	12.20	41.84	45.97	16.32	71.64	6.36	7.89	1.53
Peru	1996	29.37	39.26	31.38	18.32	71.83	6.38	7.79	1.41
Peru	2000	15.10	41.85	43.06	20.34	72.34	7.61	8.97	1.35
Peru	2007	16.33	44.93	38.75	22.14	71.54	8.33	9.49	1.16
Peru	2009	30.33	37.70	31.91	34.81	74.29	8.77	9.05	0.28
Peru	2010	28.78	39.80	31.42	33.34	73.29	8.74	9.03	0.29
r eru Peru	2011	30.34	30.32	20.93	24.49 24.86	13.01 73.14	0.76	9.23	0.23
Rwanda	1002	18 22	59.95	29.00	27.14	72.07	2.04	3 30	0.15
Rwanda	2000	26.56	40.61	37.82	27.14	74 41	2.55	3.30	0.75
Rwanda	2000	20.30	42.01	33.42	33 30	78.94	3.81	4 31	0.29
Rwanda	2005	23.97	46 73	29 30	34.83	79.48	3.80	4.16	0.37
Sao Tomé & Principe	2008	14.06	49.90	36.04	20.17	74 49	4.92	6.22	1.30
Senegal	1992	7.73	78.40	13.87	7.75	21.57	0.97	1.41	0.45
Senegal	2005	11.40	73.74	14.86	15.26	31.03	1.82	2.06	0.24
Senegal	2010	14.93	69.50	15.57	15.49	33.19	1.56	1.87	0.31
Senegal	2012	16.59	67.77	15.64	18.01	36.01	1.87	2.02	0.14

Table A2 (continued): Parental education (estimated means/%) by survey

Country	Survey year	Father < Mother (%)	Father = Mother (%)	Father > Mother (%)	Mother higher education (%)	Different education (%)	Mother years of schooling	Father years of schooling	Difference years of schooling
Sierra Leone	2008	7.02	69.36	23.62	8 14	33 77	1 10	2.45	1 35
Sierra Leone	2013	11.32	63.99	24.69	12.05	39.32	1.71	2.92	1.20
Swaziland	2006	33.25	32.33	34.42	41.61	86.63	7.40	7.50	0.10
Tanzania	1991	14.77	51.83	33.41	16.62	52.80	3.85	4 79	0.94
Tanzania	1996	14.23	53.52	32.25	15.31	50.59	4.37	5.31	0.95
Tanzania	2004	15.63	55.46	28.91	17.48	50.26	4.86	5.64	0.78
Tanzania	2009	16.37	53.24	30.39	18.20	51.44	4.84	5.61	0.77
Timor-Leste	2009	30.85	38.19	30.96	35.54	73.63	5.97	6.19	0.22
Togo	1998	7.41	46.29	46.29	10.01	60.91	1.68	4.02	2.35
Togo	2013	11.47	41.48	47.05	15.85	73.68	3.43	5.56	2.13
Turkey	1998	11.45	42.89	45.66	8.98	57.57	4.88	6.80	1.92
Turkey	2003	10.45	40.83	48.73	11.55	61.32	5.08	7.04	1.96
Uganda	1995	9.62	35.39	54.99	15.40	84.14	3.42	5.79	2.37
Uganda	2000	11.42	40.12	48.46	19.24	85.73	3.80	6.13	2.33
Uganda	2006	13.62	43.92	42.46	21.81	85.49	4.15	6.20	2.06
Uganda	2011	16.22	43.98	39.80	26.49	85.49	5.16	6.75	1.59
Zambia	1992	10.82	32.71	56.47	14.40	80.23	5.06	6.95	1.89
Zambia	1996	10.64	33.88	55.48	13.92	83.39	5.30	7.58	2.27
Zambia	2001	11.23	32.07	56.70	15.17	83.04	5.09	7.22	2.13
Zambia	2007	13.59	33.32	53.09	19.03	84.57	5.28	7.16	1.88
Zambia	2013	13.99	36.17	49.84	19.63	82.49	5.90	7.63	1.73
Zimbabwe	1994	15.46	48.05	36.49	23.04	74.98	6.41	7.54	1.13
Zimbabwe	1999	15.46	39.40	45.15	18.89	70.52	7.48	8.61	1.13
Zimbabwe	2005	14.82	56.11	29.07	19.43	68.22	7.59	8.41	0.81
Zimbabwe	2010	12.86	56.35	30.80	18.51	68.92	8.76	9.78	1.02

Table A3: Descriptive statistics (all countries weighted equally)

	Stunting		Underweight		Wasting	
	Mean/%	95%-CI	Mean/%	95%-CI	Mean/%	95%-CI
Undernutrition prevalence Stunting (%) Underweight (%) Wasting (%)	34.08	[33.78,34.36]	18.25	[18.03,18.48]	8.02	[7.89,8.16]
Maternal education Non or incomplete primary (%) Primary or incomplete secondary (%) Secondary or higher (%)	55.46 30.31 14.23	[54.94,55.98] [29.91,30.71] [13.81,14.65]	55.51 30.28 14.21	[54.99,56.03] [29.88,30.68] [13.80,14.64]	55.48 30.30 14.21	[54.96,56.00] [29.91,30.70] [13.80,14.64]
Paternal education Non or incomplete primary (%) Primary or incomplete secondary (%) Secondary or higher (%)	47.25 34.69 18.06	[46.78,47.72] [34.33,35.05] [17.65,18.48]	47.34 34.62 18.04	[46.88,47.81] [34.26,34.98] [17.63,18.46]	47.31 34.65 18.04	[46.84,47.78] [34.29,35.02] [17.62,18.46]
Difference in degrees Father < Mother (%) Father = Mother (%) Father > Mother (%)	17.23 50.29 32.48	[16.98,17.47] [49.97,50.62] [32.18,32.78]	17.22 50.35 32.43	[16.98,17.46] [50.03,50.67] [32.13,32.73]	17.22 50.33 32.45	[16.97,17.47] [50.00,50.65] [32.15,32.76]
Years of schooling Maternal school years Paternal school years Difference school years Number of school years differ (%) Mother better educated (%)	4.96 5.92 0.96 64.00 22.18	[4.90,5.01] [5.86,5.97] [0.92,1.00] [63.62,64.38] [21.84,22.52]	4.95 5.91 0.96 63.95 22.18	[4.90,5.00] [5.86,5.96] [0.93,0.99] [63.56,64.32] [21.84,22.52]	4.95 5.91 0.96 64.00 22.19	[4.90,5.01] [5.86,5.97] [0.93,1.00] [63,62,64.39] [21.85,22.53]

This table provides population estimates for the sample-level statistics presented in Table 1. 95% confidence intervals are provided in brackets to the right of each estimate. Sampling weights were rescaled to allow an equal weighting of all countries.

Table A4: Descriptive statistics (all countries weighted by population)

	Stunting		Underweight		Wasting	
	Mean/%	95%-CI	Mean/%	95%-CI	Mean/%	95%-CI
Undernutrition prevalence Stunting (%) Underweight (%) Wasting (%)	42.48	[42.02,42.93]	32.05	[31.50,32.59]	13.56	[13.27,13.84]
Maternal education Non or incomplete primary (%) Primary or incomplete secondary (%) Secondary or higher (%)	59.47 29.13 11.40	[58.88,60.06] [28.67,29.58] [11.08,11.73]	60.29 28.62 11.09	[59.67,60.91] [28.16,29.08] [10.77,11.42]	59.62 29.02 11.35	[59.03,60.22] [28.57,29.48] [11.04,11.68]
Paternal education Non or incomplete primary (%) Primary or incomplete secondary (%) Secondary or higher (%)	45.84 36.24 17.92	[45.32,46.36] [35.81,36.67] [17.54,18.32]	46.70 35.69 17.60	[46.17,47.24] [35.27,36.12] [17.22,17.99]	45.99 36.14 17.88	[45.46,46.51] [35.70,36.58] [17.49,18.27]
Difference in degrees Father < Mother (%) Father = Mother (%) Father > Mother (%)	13.70 48.01 38.29	[13.41,14.00] [47.64,48.39] [37.88,38.69]	13.55 48.28 38.17	[13.26,13.84] [47.92,48.64] [37.78,38.56]	13.65 48.08 38.26	[13.36,13.95] [47.71,48.46] [37.86,38.67]
Years of schooling Maternal school years Paternal school years Difference school years Number of school years differ (%) Mother better educated (%)	4.04 5.80 1.76 63.61 17.00	[3.99, 4.10] [5.75,5.85] [1.72,1.80] [63.20,64.01] [16.65,17.34]	3.98 5.73 1.75 63.16 16.81	[3.93,4.04] [5.68,5.78] [1.71,1.78] [62.77,63.56] [16.47,17.15]	4.03 5.79 1.76 63.50 16.94	[3.97,4.08] [5.74,5.84] [1.72,1.80] [63.09,63.90] [16.60,17.29]

This table provides population estimates for the sample-level statistics presented in Table 1. 95% confidence intervals are provided in brackets to the right of each estimate. Sampling weights were rescaled to allow weighting of all countries by their population.

Appendix part B: Regression analyses

This part of the appendix provides robustness checks for the regression analyses provided in the article. Tables B1-B3 present predicted undernutrition prevalences for all combinations of paternal and maternal education levels using logistic regression models. The purpose is to investigate the robustness of the interaction effects models presented in Table 3 to a change in functional form. Due to the incidental parameter problem, one cannot consistently estimate predicted prevalences if local area characteristics (PSU-level fixed effects) are included. We therefore use – unlike in Table 3 – Model 1 and 2, rather than Model 3, to obtain predictions. To make sure that differences between Table 3 and Tables B1-B3 are not caused by a change in control variables, we also provide linear estimates for Model 1 and 2 alongside the logistic regression estimates. The results indicate that our conclusions are largely robust to a change in functional form, although it should be noted that the differences between maternal and paternal education effects are slightly more pronounced in the non-linear case.

Next, we replicate Tables 3 and 4 from the article using severe undernutrition (i.e. by shifting the undernutrition threshold from a z-score of -2 to -3). Our results remain largely robust. Similarly, in Tables B8-B23 we show that our conclusions do not change when the sample is divided into sub-periods (1990-1998, 1999-2006, 2007-2014, only latest survey per country).

In a further robustness check, we re-estimate our main results but further adjust for maternal height in Model 2 and 3. The rationale for this additional control variable is that maternal height may be driven by factors (e.g. past household income/wealth) which might have causally affected maternal education. If maternal height is further correlated to child height (via the intergenerational transmission of undernutrition), this may bias estimated effects of maternal education on child undernutrition. The results of this robustness check (Tables B24-B27), however, indicate that this is not the case.

Moreover, we investigate the robustness of our results to the use of sampling weights in Tables B28-B35. As in Appendix A, we rescale sampling weights such that countries are either weighted equally or by population size. We see the same attenuation of differences in the association of parental education with childhood undernutrition as in our main analysis when all covariates and PSU-level fixed effects are included, regardless of which type of weight is used.

Table 4 in the article provides estimates for marginal effects of paternal and maternal school on stunting, underweight and wasting. The implicite assumption in the analysis was that marginal effects are constant in years of schooling as linear models were used. To test whether this assumption is correct, we repeat the analysis using dummies for every year of schooling (with zero years being the baseline category and all years equal or larger than 17 summarized in one binary indicator as sample sizes decrease drastically beyond this threshold). This way, it is possible to estimate the relationship between parental school years and undernutrition with a maximum of flexibility. The results are presented in Figures B1 - B3. As can be seen, in almost all cases the effects on undernutrition increase in an approximately linear way and are close to the linear trend line which was drawn by multiplying the linear effect estimates from Table 4 by the respective number of school years. This is especially the case when fully adjusted models (i.e. model 3) are considered.

In a final robustness check, we present country-wise regression respectively using differences (Figure B4) and ratios (Figure B5) in years of schooling as exposure (analogously to the country-wise representation of Figure 3 in the article). We find very little heterogeneity in the calculated marginal effects.

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (LPM) (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	45.71 [45.49,45.92] 405 181	36.00 [35.58,36.42] 56 307	26.00 [24.98,27.02] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	39.83 [39.53,40.13] 129 600	30.60 [30.32,30.89] 140 678	20.73 [20.26,21.19] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	35.03 [34.43,35.63] 27 910	25.93 [25.53,26.33] 56 192	19.20 [18.87,19.53] 95 338
Model 1 (logistic) (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	45.52 [45.30,45.73] 405 181	36.06 [35.63,36.48] 56 307	24.96 [23.75,26.16] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	39.68 [39.39,39.98] 129 600	30.66 [30.37,30.94] 140 678	19.62 [19.12,20.11] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	35.01 [34.42,35.60] 27 910	25.92 [25.52,26.31] 56 192	18.52 [18.19,18.85] 95 338
Model 2 (LPM) (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	42.07 [41.86,42.29] 405 181	35.87 [35.45,36.28] 56 307	30.38 [29.35,31.40] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	38.72 [38.42,39.01] 129 600	32.83 [32.54,33.11] 140 678	27.57 [27.10,28.05] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	35.86 [35.27,36.45] 27 910	30.15 [29.75,30.55] 56 192	27.45 [27.10,27.81] 95 338
Model 2 (logistic) (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	41.69 [41.48,41.90] 405 181	36.03 [35.62,36.45] 56 307	28.99 [27.69,30.29] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	38.59 [38.31,38.88] 129 600	32.99 [32.70,33.28] 140 678	25.48 [24.89,26.07] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	35.88 [35.29,36.47] 27 910	29.96 [29.53,30.40] 56 192	25.32 [24.91,25.73] 95 338

Table B1: Relationship between parental education levels and stunting in children (linear vs. logistic regression)

The table presents unweighted predicted prevalences of stunting with 95% confidence intervals in square brackets below. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. All standard errors were clustered on the PSU-level.

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (LPM) (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	27.18 [26.99,27.37] 419 823	19.03 [18.70,19.36] 57 541	15.79 [15.12,16.46] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	21.65 [21.40,21.90] 133 963	15.12 [14.90,15.34] 144 192	12.14 [11.82,12.46] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	18.69 [18.22,19.17] 28 955	12.69 [12.40,12.99] 57 825	11.12 [10.86,11.38] 97 642
Model 1 (logistic) (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	26.46 [26.29,26.64] 419 823	18.90 [18.56,19.25] 57 541	14.11 [13.05,15.16] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	21.34 [21.11,21.58] 133 963	15.05 [14.84,15.26] 144 192	10.19 [9.79,10.58] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	18.58 [18.11,19.06] 28 955	12.41 [12.11,12.71] 57 825	8.94 [8.68,9.21] 97 642
Model 2 (LPM) (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	24.87 [24.68,25.05] 419 823	18.98 [18.65,19.31] 57 541	18.43 [17.74,19.11] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	21.00 [20.76,21.25] 133 963	16.59 [16.37,16.82] 144 192	16.43 [16.10,16.76] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	19.31 [18.84,19.78] 28 955	15.45 [15.14,15.75] 57 825	16.26 [15.98,16.54] 97 642
Model 2 (logistic) (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	24.16 [23.99,24.32] 419 823	19.18 [18.83,19.52] 57 541	16.44 [15.25,17.63] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	20.99 [20.76,21.22] 133 963	16.67 [16.44,16.90] 144 192	13.48 [12.98,13.98] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	19.35 [18.86,19.84] 28 955	14.87 [14.53,15.22] 57 825	12.63 [12.27,12.99] 97 642

Table B2: Relationship between parental education levels and underweight in children (linear vs. logistic regression)

The table presents unweighted predicted prevalences of underweight with 95% confidence intervals in square brackets below. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. All standard errors were clustered on the PSU-level.

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (LPM) (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.60 [10.47,10.73] 400 355	8.33 [8.10,8.57] 55 588	8.31 [7.72,8.89] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.73 [8.56,8.89] 128 315	7.44 [7.28,7.59] 139 109	6.84 [6.59,7.09] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.19 [7.84,8.53] 27 689	6.78 [6.56,7.01] 55 652	6.95 [6.75,7.14] 94 348
Model 1 (logistic) (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.38 [10.26,10.50] 400 355	8.26 [8.00,8.52] 55 588	8.14 [7.28,9.00] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.64 [8.48,8.81] 128 315	7.37 [7.21,7.53] 139 109	6.31 [5.97,6.65] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.09 [7.76,8.41] 27 689	6.67 [6.44,6.91] 55 652	6.61 [6.38,6.83] 94 348
Model 2 (LPM) (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.06 [9.93,10.19] 400 355	8.36 [8.12,8.59] 55 588	8.84 [8.26,9.43] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.61 [8.44,8.78] 128 315	7.81 [7.66,7.97] 139 109	7.75 [7.49,8.02] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.36 [8.02,8.70] 27 689	7.45 [7.22,7.68] 55 652	8.03 [7.81,8.25] 94 348
Model 2 (logistic) (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.86 [9.74,9.98] 400 355	8.36 [8.10,8.62] 55 588	8.70 [7.79,9.61] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.61 [8.44,8.77] 128 315	7.80 [7.63,7.97] 139 109	7.11 [6.72,7.49] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.31 [7.97,8.65] 27 689	7.31 [7.05,7.57] 55 652	7.57 [7.30,7.85] 94 348

Table B3: Relationship between parental education levels and wasting in children (linear vs. logistic regression)

The table presents unweighted predicted prevalences of wasting with 95% confidence intervals in square brackets below. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. All standard errors were clustered on the PSU-level.

Table B4: Relationship between parental education levels and severe stunting in children

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	23.08 [22.90,23.26] 405 181	15.14 [14.82,15.45] 56 307	10.80 [10.16,11.44] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	18.21 [17.96,18.45] 129 600	11.88 [11.68,12.08] 140 678	8.38 [8.09,8.68] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	15.41 [14.95,15.87] 27 910	9.59 [9.32,9.86] 56 192	7.90 [7.68,8.12] 95 338
Model 2 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	20.75 [20.57,20.93] 405 181	15.10 [14.79,15.41] 56 307	13.57 [12.92,14.22] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	17.53 [17.29,17.77] 129 600	13.35 [13.14,13.55] 140 678	12.71 [12.40,13.02] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	15.97 [15.51,16.42] 27 910	12.29 [12.01,12.58] 56 192	13.06 [12.81,13.31] 95 338
Model 3 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	19.55 [19.40,19.70] 405 181	16.39 [16.06,16.72] 56 307	14.70 [13.98,15.43] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	17.50 [17.27,17.74] 129 600	14.66 [14.43,14.88] 140 678	14.35 [14.00,14.70] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	16.00 [15.51,16.49] 27 910	13.45 [13.14,13.76] 56 192	14.15 [13.87,14.43] 95 338

The table presents unweighted predicted prevalences of severe stunting with 95% confidence intervals in square brackets below. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B5: Relationship between parental education levels and severe underweight in children

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.77 [10.63,10.91] 419 823	6.05 [5.84,6.25] 57 541	5.00 [4.64,5.36] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	7.48 [7.33,7.64] 133 963	4.40 [4.27,4.54] 144 192	3.72 [3.54,3.91] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	6.66 [6.34,6.98] 28 955	3.60 [3.42,3.78] 57 825	3.40 [3.25,3.55] 97 642
Model 2 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.64 [9.51,9.78] 419 823	6.05 [5.84,6.25] 57 541	6.30 [5.93,6.67] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	7.18 [7.03,7.34] 133 963	5.14 [5.01,5.27] 144 192	5.81 [5.61,6.01] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	6.96 [6.64,7.28] 28 955	4.93 [4.75,5.12] 57 825	5.86 [5.69,6.03] 97 642
Model 3 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.01 [8.90,9.11] 419 823	6.82 [6.60,7.04] 57 541	6.36 [5.94,6.77] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	7.39 [7.23,7.55] 133 963	6.02 [5.87,6.17] 144 192	6.28 [6.07,6.49] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	6.86 [6.52,7.20] 28 955	5.59 [5.39,5.80] 57 825	6.03 [5.86,6.20] 97 642

The table presents unweighted predicted prevalences of severe underweight with 95% confidence intervals in square brackets below. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B6: Relationship between parental education levels and severe wasting in children

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	4.08 [4.00,4.16] 400 355	3.01 [2.87,3.15] 55 588	3.21 [2.82,3.60] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	3.19 [3.09,3.30] 128 315	2.64 [2.55,2.73] 139 109	2.47 [2.32,2.63] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	2.90 [2.68,3.13] 27 689	2.41 [2.27,2.55] 55 652	2.60 [2.48,2.72] 94 348
Model 2 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	3.86 [3.77,3.94] 400 355	3.02 [2.87,3.16] 55 588	3.45 [3.06,3.84] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	3.14 [3.04,3.25] 128 315	2.79 [2.70,2.89] 139 109	2.86 [2.70,3.03] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	2.97 [2.75,3.19] 27 689	2.68 [2.53,2.82] 55 652	3.06 [2.92,3.20] 94 348
Model 3 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	3.69 [3.62,3.76] 400 355	3.14 [2.98,3.30] 55 588	3.07 [2.66,3.48] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	3.32 [3.21,3.42] 128 315	3.06 [2.96,3.16] 139 109	2.88 [2.70,3.06] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	3.07 [2.83,3.31] 27 689	2.86 [2.70,3.01] 55 652	2.95 [2.81,3.09] 94 348

The table presents unweighted predicted prevalences of severe wasting with 95% confidence intervals in square brackets below. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B7: Years of schooling and severe child undernutrition

		Model 1		Model 2			Model 3		
	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting
Maternal years of schooling Paternal years of schooling N	-0.90 [-0.92,-0.87] -0.50 [-0.52,-0.47] 948 642	-0.43 [-0.45,-0.41] -0.30 [-0.32,-0.29] 977 862	-0.08 [-0.09,-0.07] -0.09 [-0.10,-0.08] 938 208	-0.55 [-0.57,-0.52] -0.29 [-0.32,-0.27] 948 642	-0.28 [-0.30,-0.26] -0.21 [-0.23,-0.19] 977 862	-0.05 [-0.07,-0.04] -0.07 [-0.08,-0.06] 938 208	-0.34 [-0.37,-0.31] -0.24 [-0.27,-0.22] 948 642	-0.20 [-0.22,-0.18] -0.16 [-0.18,-0.14] 977 862	-0.05 [-0.06,-0.04] -0.04 [-0.05,-0.03] 938 208
Paternal minus maternal school years N	-0.06 [-0.08,-0.04] 948 642	-0.07 [-0.09,-0.06] 977 862	-0.04 [-0.05,-0.02] 938 208	-0.03 [-0.05,-0.01] 948 642	-0.05 [-0.07,-0.04] 977 862	-0.03 [-0.04,-0.02] 938 208	-0.06 [-0.08,-0.03] 948 642	-0.05 [-0.06,-0.03] 977 862	-0.01 [-0.02,0.00] 938 208
Paternal divided by maternal school years N	-0.11 [-0.21,-0.01] 541 451	0.03 [-0.03,0.09] 553 108	0.01 [-0.03,0.05] 534 938	0.03 [-0.07,0.13] 541 451	0.07 [0.01,0.13] 553 108	0.01 [-0.03,0.05] 534 938	-0.11 [-0.23,0.01] 541 451	0.01 [-0.06,0.08] 553 108	0.02 [-0.03,0.07] 534 938
Different number of school years Mother completed more years of schooling than the father N	-3.08 [-3.28,-2.88] -1.62 [-1.82,-1.42] 948 642	-2.81 [-2.96,-2.66] -0.60 [-0.72,-0.47] 977 862	-0.93 [-1.02,-0.83] -0.06 [-0.15,0.03] 938 208	-2.21 [-2.41,-2.01] -1.17 [-1.37,-0.97] 948 642	-2.39 [-2.54,-2.25] -0.42 [-0.55,-0.29] 977 862	-0.84 [-0.93,-0.74] -0.04 [-0.13,0.05] 938 208	-1.25 [-1.47,-1.03] -0.27 [-0.50,-0.05] 948 642	-1.31 [-1.47,-1.16] -0.16 [-0.30,-0.01] 977 862	-0.38 [-0.49,-0.28] -0.07 [-0.17,0.03] 938 208

The table presents unweighted marginal effects in percentage points on different forms of severe child undernutrition with 95% confidence intervals in square brackets below. Model 1 is only adjusted for child age, sex and country-level fixed effects. Model 2 further controls for child birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Model 3 is additionally adjusted for local area characteristics (PSU-level fixed effects). All standard errors were clustered on the PSU-level. For "paternal divided by maternal school years", or the two binary indicators "different number of school years" and "mother completed more years of schooling than the father". With the exception of the main effects models (i.e. maternal and paternal years of schooling), all specifications control for the number of school years achieved by the least educated parent.

Table B8: Relationship between parental education levels and stunting in children (2007-2014)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 345 034)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	41.88 [41.48,42.27] 120 889	34.43 [33.75,35.11] 21 313	23.84 [22.46,25.21] 3 645
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	37.19 [36.66,37.73] 42 228	29.65 [29.19,30.11] 54 805	19.91 [19.30,20.52] 18 998
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.61 [31.66,33.56] 11 350	24.75 [24.14,25.36] 24 442	17.88 [17.41,18.34] 47 364
Model 2 (N = 345 034)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	38.11 [37.71,38.50] 120 889	33.46 [32.79,34.13] 21 313	26.89 [25.51,28.27] 3 645
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	35.37 [34.84,35.89] 42 228	30.44 [29.98,30.89] 54 805	25.33 [24.69,25.97] 18 998
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.91 [31.97,33.85] 11 350	27.54 [26.92,28.15] 24 442	24.74 [24.22,25.26] 47 364
Model 3 (N = 345 034)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	35.74 [35.39,36.10] 120 889	33.85 [33.14,34.55] 21 313	29.20 [27.73,30.67] 3 645
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	34.36 [33.85,34.88] 42 228	31.56 [31.11,32.01] 54 805	28.78 [28.07,29.48] 18 998
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.05 [31.07,33.03] 11 350	29.48 [28.83,30.13] 24 442	27.83 [27.28,28.39] 47 364

The table presents unweighted predicted prevalences of stunting with 95% confidence intervals in square brackets below using only surveys conducted between 2007 and 2014. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B9: Relationship between parental education levels and underweight in children (2007-2014)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 351 382)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	23.69 [23.32,24.05] 122 896	17.17 [16.63,17.71] 21 563	13.02 [12.07,13.96] 3 761
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	18.93 [18.49,19.36] 42 994	13.64 [13.30,13.98] 55 544	11.01 [10.60,11.43] 19 289
	Father: Secondary or higher	Prevalence (%) 95%-CI N	16.01 [15.24,16.78] 11 780	11.16 [10.71,11.60] 25 013	9.34 [8.98,9.69] 48 542
Model 2 (N = 351 382)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	21.68 [21.32,22.04] 122 896	16.64 [16.11,17.18] 21 563	14.63 [13.68,15.59] 3 761
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	17.97 [17.54,18.39] 42 994	14.03 [13.69,14.37] 55 544	13.92 [13.47,14.37] 19 289
	Father: Secondary or higher	Prevalence (%) 95%-CI N	16.21 [15.44,16.98] 11 780	12.61 [12.16,13.07] 25 013	12.97 [12.58,13.37] 48 542
Model 3 (N = 351 382)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	19.32 [19.03,19.61] 122 896	17.39 [16.82,17.96] 21 563	14.96 [13.95,15.97] 3 761
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	17.90 [17.48,18.32] 42 994	15.84 [15.49,16.18] 55 544	15.33 [14.85,15.81] 19 289
	Father: Secondary or higher	Prevalence (%) 95%-CI N	16.03 [15.26,16.80] 11 780	15.18 [14.71,15.65] 25 013	14.73 [14.35,15.12] 48 542

The table presents unweighted predicted prevalences of underweight with 95% confidence intervals in square brackets below using only surveys conducted between 2007 and 2014. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B10: Relationship between parental education levels and wasting in children (2007-2014)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 337 827)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.24 [9.98,10.51] 117 196	8.26 [7.86,8.66] 20 832	7.45 [6.59,8.32] 3 604
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.39 [8.09,8.69] 41 413	7.17 [6.92,7.41] 53 841	6.52 [6.18,6.86] 18 812
	Father: Secondary or higher	Prevalence (%) 95%-CI N	7.68 [7.11,8.24] 11 236	6.48 [6.13,6.83] 24 151	6.46 [6.17,6.75] 46 742
Model 2 (N = 337 827)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.88 [9.61,10.15] 117 196	8.18 [7.79,8.58] 20 832	7.74 [6.87,8.60] 3 604
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.23 [7.93,8.53] 41 413	7.25 [7.00,7.49] 53 841	7.02 [6.65,7.38] 18 812
	Father: Secondary or higher	Prevalence (%) 95%-CI N	7.72 [7.16,8.28] 11 236	6.74 [6.38,7.09] 24 151	7.08 [6.76,7.41] 46 742
Model 3 (N = 337 827)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	8.83 [8.62,9.05] 117 196	8.45 [8.02,8.87] 20 832	7.28 [6.38,8.17] 3 604
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.46 [8.16,8.77] 41 413	8.04 [7.79,8.29] 53 841	7.40 [7.02,7.79] 18 812
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.06 [7.47,8.64] 11 236	7.81 [7.43,8.18] 24 151	7.71 [7.39,8.04] 46 742

The table presents unweighted predicted prevalences of wasting with 95% confidence intervals in square brackets below using only surveys conducted between 2007 and 2014. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B11: Years of schooling and child undernutrition (2007-2014)

		Model 1		Model 2				Model 3		
	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	
Maternal years of schooling	-1.36	-0.76	-0.20	-0.81	-0.52	-0.18	-0.42	-0.26	-0.10	
	[-1.41,-1.30]	[-0.81,-0.72]	[-0.23,-0.17]	[-0.87,-0.76]	[-0.57,-0.47]	[-0.21,-0.14]	[-0.48,-0.36]	[-0.31,-0.21]	[-0.14,-0.07]	
Paternal years of schooling	-0.62	-0.53	-0.18	-0.34	-0.39	-0.16	-0.29	-0.20	-0.04	
	[-0.67,-0.57]	[-0.57,-0.49]	[-0.21,-0.15]	[-0.39,-0.29]	[-0.43,-0.35]	[-0.19,-0.13]	[-0.34,-0.24]	[-0.24,-0.16]	[-0.07,-0.01]	
	341 411	347 555	334 325	341 411	347 555	334 325	341 411	347 555	334 325	
Paternal minus maternal school	0.08	-0.07	-0.04	0.07	-0.07	-0.04	-0.03	-0.04	0.01	
years	[0.04,0.13]	[-0.10,-0.03]	[-0.07,-0.02]	[0.02,0.11]	[-0.11,-0.04]	[-0.07,-0.02]	[-0.08,0.01]	[-0.07,0.00]	[-0.02,0.04]	
N	341 411	347 555	334 325	341 411	347 555	334 325	341 411	347 555	334 325	
Paternal divided by maternal	0.03	-0.03	0.01	0.20	0.03	0.01	-0.20	-0.12	0.04	
school years	[-0.18,0.24]	[-0.19,0.12]	[-0.09,0.11]	[-0.01,0.41]	[-0.12,0.18]	[-0.09,0.11]	[-0.44,0.05]	[-0.31,0.06]	[-0.09,0.16]	
N	219 904	222 189	215 597	219 904	222 189	215 597	219 904	222 189	215 597	
Different number of school years Mother completed more years of schooling than the father N	-2.28 [-2.70,-1.87] -2.72 [-3.15,-2.30] 341 411	-3.81 [-4.16,-3.45] -0.84 [-1.15,-0.52] 347 555	-1.91 [-2.18,-1.65] -0.08 [-0.31,0.16] 334 325	-1.26 [-1.67,-0.85] -1.72 [-2.14,-1.30] 341 411	-3.28 [-3.63,-2.93] -0.40 [-0.72,-0.08] 347 555	-1.83 [-2.10,-1.56] -0.03 [-0.27,0.20] 334 325	-0.80 [-1.25,-0.35] -0.11 [-0.57,0.36] 341 411	-1.05 [-1.42,-0.68] -0.12 [-0.48,0.24] 347 555	-0.47 [-0.75,-0.19] -0.22 [-0.49,0.05] 334 325	

The table presents unweighted marginal effects in percentage points on different forms of child undernutrition with 95% confidence intervals in square brackets below using only survey conducted between 2007 and 2014. Model 1 is only adjusted for child age, sex and country-level fixed effects. Model 2 further controls for child birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Model 3 is additionally adjusted for local area characteristics (PSU-level fixed effects). All standard errors were clustered on the PSU-level. For each model type, different specifications were estimated, using either maternal and paternal years of schooling or the following composite indicators as exposure: "Paternal minus maternal school years", "paternal divided by maternal school years", or the two binary indicators "different number of school years" and "mother completed more years of schooling than the father". With the exception of the main effects models (i.e. maternal and paternal years of schooling), all specifications control for the number of school years achieved by the least educated parent.

Table B12: Relationship between parental education levels and stunting in children (1999-2006)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 359 405)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	46.42 [46.10,46.75] 165 819	36.09 [35.41,36.78] 21 535	28.79 [26.91,30.67] 2 016
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	40.40 [39.92,40.87] 50 652	31.23 [30.75,31.71] 48 712	22.63 [21.73,23.53] 9 384
	Father: Secondary or higher	Prevalence (%) 95%-CI N	36.24 [35.27,37.21] 10 600	27.07 [26.39,27.75] 19 182	20.98 [20.40,21.57] 31 505
Model 2 (N = 359 405)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	42.68 [42.35,43.01] 165 819	36.32 [35.65,36.99] 21 535	34.28 [32.40,36.16] 2 016
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	39.49 [39.03,39.96] 50 652	34.40 [33.92,34.88] 48 712	30.69 [29.78,31.60] 9 384
	Father: Secondary or higher	Prevalence (%) 95%-CI N	37.33 [36.38,38.27] 10 600	32.39 [31.70,33.07] 19 182	30.73 [30.10,31.36] 31 505
Model 3 (N = 359 405)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	41.82 [41.56,42.09] 165 819	37.93 [37.21,38.65] 21 535	34.70 [32.55,36.85] 2 016
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	39.42 [38.96,39.87] 50 652	35.68 [35.17,36.18] 48 712	32.55 [31.50,33.59] 9 384
	Father: Secondary or higher	Prevalence (%) 95%-CI N	36.85 [35.83,37.87] 10 600	33.08 [32.35,33.82] 19 182	31.45 [30.74,32.16] 31 505

The table presents unweighted predicted prevalences of stunting with 95% confidence intervals in square brackets below using only surveys conducted between 1999 and 2006. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B13: Relationship between parental education levels and underweight in children (1999-2006)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 368 713)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	28.64 [28.36,28.92] 170 696	20.17 [19.62,20.72] 22 025	18.28 [17.08,19.49] 2 053
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	23.13 [22.73,23.53] 51 920	16.28 [15.89,16.66] 49 804	11.84 [11.17,12.51] 9 556
	Father: Secondary or higher	Prevalence (%) 95%-CI N	20.22 [19.47,20.96] 10 885	13.69 [13.18,14.20] 19 593	11.47 [11.00,11.94] 32 181
Model 2 (N = 368 713)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	26.11 [25.84,26.39] 170 696	20.40 [19.86,20.95] 22 025	21.84 [20.61,23.07] 2 053
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	22.58 [22.19,22.97] 51 920	18.48 [18.08,18.88] 49 804	17.17 [16.49,17.84] 9 556
	Father: Secondary or higher	Prevalence (%) 95%-CI N	21.02 [20.28,21.76] 10 885	17.35 [16.82,17.87] 19 593	17.91 [17.41,18.41] 32 181
Model 3 (N = 368 713)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	25.45 [25.21,25.68] 170 696	21.70 [21.12,22.29] 22 025	21.22 [19.86,22.58] 2 053
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	23.14 [22.76,23.53] 51 920	19.86 [19.44,20.28] 49 804	17.94 [17.16,18.73] 9 556
	Father: Secondary or higher	Prevalence (%) 95%-CI N	21.01 [20.21,21.80] 10 885	17.70 [17.11,18.29] 19 593	17.10 [16.53,17.68] 32 181

The table presents unweighted predicted prevalences of underweight with 95% confidence intervals in square brackets below using only surveys conducted between 1999 and 2006. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B14: Relationship between parental education levels and wasting in children (1999-2006)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 357 592)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	11.35 [11.16,11.55] 165 191	8.62 [8.23,9.00] 21 401	8.53 [7.56,9.50] 2 011
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	9.52 [9.24,9.79] 50 443	8.09 [7.81,8.37] 48 380	6.88 [6.36,7.40] 9 295
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.46 [7.93,8.99] 10 543	7.06 [6.67,7.44] 19 029	6.65 [6.33,6.98] 31 299
Model 2 (N = 357 592)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.81 [10.61,11.01] 165 191	8.72 [8.33,9.10] 21 401	9.22 [8.24,10.19] 2 011
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	9.44 [9.17,9.71] 50 443	8.59 [8.31,8.88] 48 380	7.92 [7.38,8.45] 9 295
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.66 [8.13,9.20] 10 543	7.85 [7.46,8.24] 19 029	7.90 [7.53,8.26] 31 299
Model 3 (N = 357 592)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.56 [10.39,10.73] 165 191	8.93 [8.52,9.34] 21 401	8.97 [7.86,10.09] 2 011
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	9.67 [9.39,9.96] 50 443	9.00 [8.70,9.31] 48 380	8.19 [7.57,8.82] 9 295
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.81 [8.20,9.42] 10 543	8.00 [7.56,8.45] 19 029	7.85 [7.43,8.27] 31 299

The table presents unweighted predicted prevalences of wasting with 95% confidence intervals in square brackets below using only surveys conducted between 1999 and 2006. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B15: Years of schooling and child undernutrition (1999-2006)

	Model 1			Model 2			Model 3		
	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting
Maternal years of schooling Paternal years of schooling N	-1.40 [-1.45,-1.35] -0.76 [-0.81,-0.72] 361 920	-0.95 [-1.00,-0.91] -0.63 [-0.67,-0.60] 371 316	-0.23 [-0.26,-0.20] -0.20 [-0.23,-0.17] 360 084	-0.77 [-0.82,-0.71] -0.40 [-0.45,-0.35] 361 920	-0.56 [-0.61,-0.51] -0.40 [-0.44,-0.36] 371 316	-0.16 [-0.19,-0.12] -0.15 [-0.18,-0.12] 360 084	-0.57 [-0.63,-0.50] -0.38 [-0.43,-0.32] 361 920	-0.47 [-0.52,-0.41] -0.35 [-0.40,-0.31] 371 316	-0.13 [-0.17,-0.09] -0.12 [-0.16,-0.09] 360 084
Paternal minus maternal school years N	-0.13 [-0.18,-0.09] 361 920	-0.17 [-0.21,-0.13] 371 316	-0.07 [-0.10,-0.04] 360 084	-0.06 [-0.10,-0.01] 361 920	-0.11 [-0.15,-0.07] 371 316	-0.05 [-0.08,-0.03] 360 084	-0.10 [-0.15,-0.05] 361 920	-0.11 [-0.15,-0.07] 371 316	-0.04 [-0.07,-0.01] 360 084
Paternal divided by maternal school years N	-0.64 [-0.86,-0.42] 192 128	-0.21 [-0.38,-0.03] 196 374	-0.04 [-0.15,0.08] 190 876	-0.28 [-0.49,-0.06] 192 128	-0.02 [-0.20,0.15] 196 374	-0.01 [-0.12,0.11] 190 876	-0.50 [-0.76,-0.24] 192 128	-0.23 [-0.44,-0.01] 196 374	-0.10 [-0.24,0.04] 190 876
Different number of school years Mother completed more years of schooling than the father N	-3.32 [-3.72,-2.93] -1.69 [-2.14,-1.25] 361 920	-4.28 [-4.62,-3.94] -1.06 [-1.42,-0.70] 371 316	-1.75 [-1.99,-1.50] -0.37 [-0.62,-0.12] 360 084	-1.88 [-2.28,-1.49] -1.04 [-1.47,-0.60] 361 920	-3.27 [-3.60,-2.93] -0.71 [-1.06,-0.35] 371 316	-1.48 [-1.72,-1.23] -0.33 [-0.58,-0.07] 360 084	-1.39 [-1.83,-0.96] -0.16 [-0.65,0.33] 361 920	-1.85 [-2.22,-1.48] -0.18 [-0.58,0.21] 371 316	-0.82 [-1.10,-0.54] -0.20 [-0.49,0.09] 360 084

The table presents unweighted marginal effects in percentage points on different forms of child undernutrition with 95% confidence intervals in square brackets below using only survey conducted between 1999 and 2006. Model 1 is only adjusted for child age, sex and country-level fixed effects. Model 2 further controls for child birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Model 3 is additionally adjusted for local area characteristics (PSU-level fixed effects). All standard errors were clustered on the PSU-level. For each model type, different specifications were estimated, using either maternal and paternal years of schooling or the following composite indicators as exposure: "Paternal minus maternal school years", "paternal divided by maternal school years", or the two binary indicators "different number of school years" and "mother completed more years of schooling than the father". With the exception of the main effects models (i.e. maternal and paternal years of schooling), all specifications control for the number of school years achieved by the least educated parent.

Table B16: Relationship between parental education levels and stunting in children (1990-1998)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 246 248)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	48.61 [48.23,48.99] 118 297	38.32 [37.45,39.19] 13 364	26.89 [24.27,29.50] 975
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	42.09 [41.54,42.64] 36 507	31.29 [30.72,31.86] 36 736	20.79 [19.64,21.94] 5 865
	Father: Secondary or higher	Prevalence (%) 95%-CI N	37.93 [36.67,39.20] 5 925	26.31 [25.46,27.15] 12 350	19.34 [18.59,20.09] 16 229
Model 2 (N = 246 248)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	44.98 [44.60,45.36] 118 297	38.84 [37.99,39.68] 13 364	33.07 [30.46,35.67] 975
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	41.66 [41.12,42.19] 36 507	34.73 [34.15,35.30] 36 736	29.30 [28.14,30.46] 5 865
	Father: Secondary or higher	Prevalence (%) 95%-CI N	39.25 [38.01,40.50] 5 925	32.33 [31.48,33.18] 12 350	30.00 [29.19,30.81] 16 229
Model 3 (N = 246 248)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	44.02 [43.72,44.33] 118 297	40.15 [39.27,41.02] 13 364	34.95 [32.02,37.87] 975
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	41.24 [40.72,41.76] 36 507	35.90 [35.32,36.48] 36 736	33.03 [31.74,34.31] 5 865
	Father: Secondary or higher	Prevalence (%) 95%-CI N	39.03 [37.68,40.38] 5 925	33.23 [32.30,34.16] 12 350	32.14 [31.23,33.05] 16 229

The table presents unweighted predicted prevalences of stunting with 95% confidence intervals in square brackets below using only surveys conducted between 1990 and 1998. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B17: Relationship between parental education levels and underweight in children (1990-1998)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 259 882)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	29.11 [28.78,29.43] 126 009	20.78 [20.11,21.45] 13 853	17.20 [15.70,18.71] 996
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	23.18 [22.72,23.64] 38 780	15.88 [15.43,16.34] 38 383	13.94 [13.27,14.61] 5 970
	Father: Secondary or higher	Prevalence (%) 95%-CI N	20.87 [19.85,21.89] 6 246	13.37 [12.71,14.03] 12 986	13.62 [13.07,14.17] 16 659
Model 2 (N = 259 882)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	26.56 [26.24,26.88] 126 009	21.21 [20.55,21.88] 13 853	21.28 [19.74,22.82] 996
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	23.00 [22.54,23.45] 38 780	18.44 [17.98,18.90] 38 383	19.76 [19.07,20.46] 5 970
	Father: Secondary or higher	Prevalence (%) 95%-CI N	21.97 [20.96,22.97] 6 246	17.71 [17.06,18.37] 12 986	20.93 [20.33,21.52] 16 659
Model 3 (N = 259 882)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	26.36 [26.09,26.62] 126 009	22.36 [21.65,23.07] 13 853	21.53 [19.74,23.31] 996
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	23.40 [22.95,23.84] 38 780	19.05 [18.56,19.54] 38 383	19.71 [18.93,20.49] 5 970
	Father: Secondary or higher	Prevalence (%) 95%-CI N	21.93 [20.85,23.02] 6 246	17.63 [16.93,18.33] 12 986	19.23 [18.61,19.86] 16 659

The table presents unweighted predicted prevalences of underweight with 95% confidence intervals in square brackets below using only surveys conducted between 1990 and 1998. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B18: Relationship between parental education levels and wasting in children (1990-1998)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N =244 706)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.35 [10.14,10.56] 117 754	7.97 [7.53,8.41] 13 266	8.05 [6.91,9.19] 968
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.45 [8.14,8.76] 36 238	6.94 [6.66,7.22] 36 464	6.66 [6.20,7.11] 5 812
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.43 [7.70,9.15] 5 874	6.40 [5.95,6.84] 12 259	7.19 [6.80,7.58] 16 071
Model 2 (N =244 706)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.69 [9.48,9.90] 117 754	8.12 [7.68,8.56] 13 266	8.93 [7.78,10.08] 968
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.45 [8.15,8.76] 36 238	7.64 [7.34,7.93] 36 464	8.01 [7.51,8.51] 5 812
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.75 [8.02,9.48] 5 874	7.48 [7.02,7.94] 12 259	8.82 [8.38,9.27] 16 071
Model 3 (N =244 706)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.69 [9.51,9.87] 117 754	8.45 [7.97,8.92] 13 266	8.97 [7.67,10.27] 968
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.67 [8.36,8.98] 36 238	7.79 [7.48,8.10] 36 464	7.73 [7.17,8.29] 5 812
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.83 [8.01,9.65] 5 874	7.27 [6.77,7.77] 12 259	7.94 [7.47,8.41] 16 071

The table presents unweighted predicted prevalences of wasting with 95% confidence intervals in square brackets below using only surveys conducted between 1990 and 1998. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B19: Years of schooling and child undernutrition (1990-1998)

		Model 1			Model 2			Model 3		
	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	
Maternal years of schooling Paternal years of schooling	-1.62 [-1.69,-1.55] -0.81 [-0.87,-0.75]	-0.96 [-1.02,-0.89] -0.65 [-0.70,-0.60]	-0.22 [-0.26,-0.19] -0.17 [-0.21,-0.14]	-0.93 [-1.01,-0.86] -0.41 [-0.47,-0.35]	-0.54 [-0.60,-0.47] -0.38 [-0.43,-0.33]	-0.13 [-0.17,-0.09] -0.10 [-0.14,-0.07]	-0.70 [-0.78,-0.62] -0.40 [-0.47,-0.34]	-0.52 [-0.59,-0.45] -0.38 [-0.44,-0.33]	-0.14 [-0.19,-0.10] -0.11 [-0.15,-0.06]	
Ν	243 751	257 306	242 213	243 751	257 306	242 213	243 751	257 306	242 213	
Paternal minus maternal school years N	-0.14 [-0.20,-0.09] 243 751	-0.22 [-0.26,-0.17] 257 306	-0.06 [-0.09,-0.03] 242 213	-0.04 [-0.09,0.02] 243 751	-0.13 [-0.17,-0.08] 257 306	-0.04 [-0.07,-0.00] 242 213	-0.09 [-0.15,-0.03] 243 751	-0.14 [-0.18,-0.09] 257 306	-0.04 [-0.07,-0.00] 242 213	
Paternal divided by maternal school years N	-0.29 [-0.56,-0.02] 127 528	-0.15 [-0.35,0.06] 132 563	0.06 [-0.07,0.19] 126 515	0.21 [-0.06,0.47] 127 528	0.11 [-0.10,0.31] 132 563	0.09 [-0.03,0.22] 126 515	-0.06 [-0.37,0.26] 127 528	-0.01 [-0.25,0.24] 132 563	0.01 [-0.14,0.17] 126 515	
Different number of school years Mother completed more years of schooling than the father N	-3.26 [-3.73,-2.79] -2.45 [-3.01,-1.90] 243 751	-4.03 [-4.43,-3.63] -0.77 [-1.21,-0.34] 257 306	-1.48 [-1.75,-1.20] -0.26 [-0.55,0.03] 242 213	-1.53 [-2.00,-1.06] -1.83 [-2.38,-1.29] 243 751	-2.79 [-3.19,-2.39] -0.50 [-0.93,-0.07] 257 306	-1.13 [-1.41,-0.85] -0.21 [-0.51,0.08] 242 213	-1.57 [-2.07,-1.06] -0.72 [-1.31,-0.12] 243 751	-1.87 [-2.31,-1.44] -0.00 [-0.48,0.47] 257 306	-0.69 [-1.01,-0.37] -0.06 [-0.38,0.27] 242 213	

The table presents unweighted marginal effects in percentage points on different forms of child undernutrition with 95% confidence intervals in square brackets below using only survey conducted between 1990 and 1998. Model 1 is only adjusted for child age, sex and country-level fixed effects. Model 2 further controls for child birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Model 3 is additionally adjusted for local area characteristics (PSU-level fixed effects). All standard errors were clustered on the PSU-level. For each model type, different specifications were estimated, using either maternal and paternal years of schooling or the following composite indicators as exposure: "Paternal minus maternal school years", "paternal divided by maternal school years", or the two binary indicators different number of school years" and "mother completed more years of schooling than the father". With the exception of the main effects models (i.e. maternal and paternal years of schooling), all specifications control for the number of school years achieved by the least educated parent.

Table B20: Relationship between parental education levels and stunting in children (latest surveys)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 320 471)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	43.44 [43.05,43.83] 119 886	35.81 [35.12,36.50] 21 163	23.83 [22.07,25.59] 2 287
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	37.88 [37.35,38.41] 42 337	29.32 [28.88,29.75] 57 888	21.17 [20.47,21.87] 15 269
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.72 [31.61,33.82] 8 121	24.37 [23.70,25.03] 19 631	17.80 [17.26,18.34] 33 889
Model 2 (N = 320 471)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	39.71 [39.32,40.10] 119 886	35.12 [34.44,35.81] 21 163	27.62 [25.86,29.38] 2 287
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	36.27 [35.75,36.79] 42 337	30.86 [30.42,31.30] 57 888	27.29 [26.57,28.02] 15 269
	Father: Secondary or higher	Prevalence (%) 95%-CI N	33.45 [32.36,34.54] 8 121	27.95 [27.27,28.62] 19 631	25.54 [24.94,26.13] 33 889
Model 3 (N = 320 471)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	37.58 [37.23,37.93] 119 886	35.90 [35.18,36.62] 21 163	29.66 [27.76,31.56] 2 287
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	35.62 [35.11,36.13] 42 337	32.32 [31.88,32.77] 57 888	30.02 [29.21,30.84] 15 269
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.96 [31.81,34.12] 8 121	30.14 [29.41,30.87] 19 631	28.38 [27.73,29.04] 33 889

The table presents unweighted predicted prevalences of stunting with 95% confidence intervals in square brackets below using only the latest survey per country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B21: Relationship between parental education levels and underweight in children (latest surveys)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 329 278)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	27.20 [26.85,27.55] 123 024	20.01 [19.45,20.58] 22 117	14.92 [13.66,16.18] 2 387
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	22.27 [21.83,22.72] 43 276	15.76 [15.41,16.12] 59 526	11.62 [11.09,12.15] 15 697
	Father: Secondary or higher	Prevalence (%) 95%-CI N	18.63 [17.68,19.58] 8 363	13.11 [12.59,13.64] 20 093	9.79 [9.34,10.25] 34 795
Model 2 (N = 329 278)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	24.80 [24.44,25.16] 123 024	19.60 [19.04,20.15] 22 117	17.31 [16.03,18.58] 2 387
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	21.28 [20.84,21.72] 43 276	16.80 [16.44,17.16] 59 526	15.53 [14.97,16.09] 15 697
	Father: Secondary or higher	Prevalence (%) 95%-CI N	19.13 [18.19,20.08] 8 363	15.41 [14.87,15.95] 20 093	14.62 [14.12,15.12] 34 795
Model 3 (N = 329 278)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	22.90 [22.60,23.20] 123 024	20.42 [19.82,21.01] 22 117	17.59 [16.25,18.93] 2 387
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	21.17 [20.73,21.60] 43 276	18.39 [18.03,18.75] 59 526	17.13 [16.52,17.75] 15 697
	Father: Secondary or higher	Prevalence (%) 95%-CI N	18.81 [17.85,19.77] 8 363	17.49 [16.91,18.06] 20 093	16.37 [15.87,16.87] 34 795

The table presents unweighted predicted prevalences of underweight with 95% confidence intervals in square brackets below using only the latest survey per country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B22: Relationship between parental education levels and wasting in children (latest surveys)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 317 267)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	11.84 [11.58,12.11] 117 933	9.42 [9.00,9.84] 21 346	8.68 [7.49,9.88] 2 275
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	9.93 [9.61,10.25] 41 787	8.40 [8.14,8.66] 57 742	7.24 [6.81,7.66] 15 251
	Father: Secondary or higher	Prevalence (%) 95%-CI N	9.42 [8.71,10.13] 8 000	7.55 [7.14,7.96] 19 402	7.18 [6.80,7.56] 33 531
Model 2 (N = 317 267)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	11.32 [11.05,11.59] 117 933	9.35 [8.93,9.77] 21 346	9.18 [7.98,10.37] 2 275
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	9.74 [9.42,10.06] 41 787	8.64 [8.37,8.91] 57 742	8.04 [7.59,8.50] 15 251
	Father: Secondary or higher	Prevalence (%) 95%-CI N	9.53 [8.82,10.24] 8 000	8.04 [7.62,8.47] 19 402	8.16 [7.75,8.58] 33 531
Model 3 (N = 317 267)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.48 [10.25,10.70] 117 933	9.63 [9.19,10.07] 21 346	8.45 [7.25,9.65] 2 275
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	9.88 [9.56,10.20] 41 787	9.40 [9.13,9.67] 57 742	8.66 [8.16,9.16] 15 251
	Father: Secondary or higher	Prevalence (%) 95%-CI N	9.61 [8.86,10.35] 8 000	8.88 [8.41,9.34] 19 402	8.74 [8.31,9.17] 33 531

The table presents unweighted predicted prevalences of wasting with 95% confidence intervals in square brackets below using only the latest survey per country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B23: Years of schooling and child undernutrition (latest surveys)

		Model 1			Model 2			Model 3		
	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	
Maternal years of schooling Paternal years of schooling	-1.34 [-1.39,-1.28] -0.72	-0.95 [-1.00,-0.91] -0.56	-0.27 [-0.30,-0.23] -0.18	-0.80 [-0.86,-0.74] -0.44	-0.65 [-0.70,-0.60] -0.39	-0.22 [-0.26,-0.18] -0.15	-0.44 [-0.51,-0.38] -0.38	-0.38 [-0.43,-0.32] -0.26	-0.14 [-0.18,-0.09] -0.06	
Ν	[-0.77,-0.68] 317 393	[-0.60,-0.52] 325 966	[-0.21,-0.15] 314 250	[-0.49,-0.39] 317 393	[-0.43,-0.35] 325 966	[-0.18,-0.12] 314 250	[-0.43,-0.32] 317 393	[-0.31,-0.22] 325 966	[-0.10,-0.03] 314 250	
Paternal minus maternal school years N	-0.04 [-0.09,0.01] 317 393	-0.06 [-0.10,-0.02] 325 966	-0.03 [-0.06,-0.00] 314 250	-0.03 [-0.07,0.02] 317 393	-0.04 [-0.08,-0.00] 325 966	-0.03 [-0.06,0.00] 314 250	-0.10 [-0.15,-0.05] 317 393	-0.05 [-0.09,-0.01] 325 966	0.00 [-0.03,0.04] 314 250	
Paternal divided by maternal school years N	-0.36 [-0.59,-0.13] 193 076	-0.11 [-0.28,0.06] 197 501	0.02 [-0.10,0.14] 191 589	-0.15 [-0.37,0.08] 193 076	0.00 [-0.17,0.18] 197 501	0.03 [-0.09,0.15] 191 589	-0.40 [-0.67,-0.13] 193 076	-0.17 [-0.38,0.04] 197 501	-0.00 [-0.15,0.15] 191 589	
Different number of school years Mother completed more years of schooling than the father N	-3.08 [-3.51,-2.66] -1.63 [-2.08,-1.18] 317 393	-3.73 [-4.10,-3.36] -1.35 [-1.71,-0.99] 325 966	-1.84 [-2.12,-1.56] -0.32 [-0.58,-0.05] 314 250	-2.06 [-2.48,-1.64] -0.87 [-1.31,-0.42] 317 393	-3.07 [-3.44,-2.70] -0.94 [-1.30,-0.58] 325 966	-1.69 [-1.97,-1.41] -0.26 [-0.53,0.01] 314 250	-1.15 [-1.61,-0.68] 0.42 [-0.08,0.92] 317 393	-1.34 [-1.74,-0.95] -0.24 [-0.64,0.17] 325 966	-0.62 [-0.93,-0.31] -0.24 [-0.54,0.06] 314 250	

The table presents unweighted marginal effects in percentage points on different forms of child undernutrition with 95% confidence intervals in square brackets below using only the latest survey per country. Model 1 is only adjusted for child age, sex and country-level fixed effects. Model 2 further controls for child birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its weath quintile as measured by household asset ownership. Model 3 is additionally adjusted for local area characteristics (PSU-level fixed effects). All standard errors were clustered on the PSU-level. For each model type, different specifications were estimated, using either maternal and paternal years of schooling or the following composite indicators as exposure: "Paternal minus maternal school years", "paternal divided by maternal school years", or the two binary indicators "different number of school years" and "mother completed more years of schooling), all specifications control for the number of school years achieved by the least educated parent.

T-11. D14. D-1-4	h - 4 4 1		·	(-]:	
Table B24: Relationship	between parental	i education levels and	i stunting in children	(adjusted for maternal neight)	

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 866 457)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	45.74 [45.51,45.97] 367 834	36.22 [35.77,36.67] 51 025	25.57 [24.42,26.71] 5 672
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	39.77 [39.45,40.09] 116 632	30.85 [30.55,31.15] 128 533	20.56 [20.08,21.05] 31 570
	Father: Secondary or higher	Prevalence (%) 95%-CI N	34.80 [34.17,35.43] 25 510	26.00 [25.58,26.42] 51 140	19.16 [18.82,19.51] 88 541
Model 2 (N = 866 457)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	41.09 [40.87,41.31] 367 834	36.14 [35.71,36.56] 51 025	31.06 [29.93,32.20] 5 672
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	38.17 [37.86,38.47] 116 632	33.59 [33.30,33.88] 128 533	29.51 [29.02,30.00] 31 570
	Father: Secondary or higher	Prevalence (%) 95%-CI N	35.75 [35.14,36.36] 25 510	31.40 [30.98,31.82] 51 140	29.75 [29.38,30.12] 88 541
Model 3 (N = 866 457)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	39.60 [39.41,39.79] 367 834	37.24 [36.79,37.70] 51 025	33.04 [31.80,34.28] 5 672
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	37.77 [37.47,38.06] 116 632	34.91 [34.61,35.21] 128 533	32.58 [32.02,33.14] 31 570
	Father: Secondary or higher	Prevalence (%) 95%-CI N	35.54 [34.90,36.19] 25 510	32.92 [32.47,33.38] 51 140	31.88 [31.46,32.29] 88 541

The table presents unweighted predicted prevalences of stunting with 95% confidence intervals in square brackets. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age, height and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B25: Relationshi	n between naren	al education l	evels and u	nderweight in (children (adi	iusted for matern	al height)
I word Diet iterationshi	p been een paren	a caacacion i	erens and a	and weight in		astea for materia	

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 885 836)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	26.39 [26.19,26.58] 376 789	18.53 [18.17,18.88] 51 925	15.12 [14.37,15.88] 5 832
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	20.94 [20.68,21.21] 119 170	14.89 [14.66,15.11] 130 935	11.64 [11.31,11.97] 32 090
	Father: Secondary or higher	Prevalence (%) 95%-CI N	17.97 [17.48,18.47] 26 293	12.40 [12.09,12.70] 52 277	10.72 [10.46,10.99] 90 525
Model 2 (N = 885 836)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	23.59 [23.39,23.78] 376 789	18.51 [18.17,18.86] 51 925	18.26 [17.50,19.03] 5 832
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	20.06 [19.80,20.31] 119 170	16.59 [16.36,16.82] 130 935	16.91 [16.56,17.26] 32 090
	Father: Secondary or higher	Prevalence (%) 95%-CI N	18.64 [18.15,19.13] 26 293	15.69 [15.37,16.00] 52 277	16.92 [16.64,17.21] 90 525
Model 3 (N = 885 836)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	22.39 [22.23,22.55] 376 789	19.73 [19.36,20.10] 51 925	18.37 [17.55,19.18] 5 832
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	20.53 [20.28,20.78] 119 170	18.16 [17.92,18.40] 130 935	17.75 [17.36,18.14] 32 090
	Father: Secondary or higher	Prevalence (%) 95%-CI N	18.82 [18.31,19.32] 26 293	17.08 [16.74,17.42] 52 277	17.16 [16.85,17.48] 90 525

The table presents unweighted predicted prevalences of underweight with 95% confidence intervals in square brackets. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age, height and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B26. Relationship	n hetween na	rental education	levels and w	vasting in childre	n (adjuste	d for maternal height)
rabic D20. Relationshi	p between pa	i chiai cuucation	icvers and v	vasung m chhui v	n (aujusic)	a for maternal neight)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 856 293)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	10.52 [10.38,10.66] 362 961	8.29 [8.05,8.54] 50 353	8.35 [7.69,9.02] 5 631
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.68 [8.50,8.85] 115 400	7.45 [7.29,7.61] 127 100	6.82 [6.56,7.09] 31 268
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.02 [7.66,8.37] 25 288	6.76 [6.53,7.00] 50 648	6.89 [6.68,7.09] 87 644
Model 2 (N = 856 293)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.98 [9.84,10.12] 362 961	8.31 [8.06,8.55] 50 353	8.89 [8.22,9.56] 5 631
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.55 [8.38,8.73] 115 400	7.81 [7.64,7.97] 127 100	7.75 [7.47,8.03] 31 268
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.19 [7.83,8.55] 25 288	7.42 [7.18,7.66] 50 648	7.97 [7.74,8.21] 87 644
Model 3 (N = 856 293)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.60 [9.48,9.72] 362 961	8.59 [8.33,8.86] 50 353	8.15 [7.45,8.85] 5 631
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.90 [8.72,9.08] 115 400	8.35 [8.17,8.52] 127 100	7.81 [7.50,8.12] 31 268
	Father: Secondary or higher	Prevalence (%) 95%-CI N	8.45 [8.05,8.84] 25 288	7.84 [7.58,8.10] 50 648	7.84 [7.60,8.08] 87 644

The table presents unweighted predicted prevalences of wasting with 95% confidence intervals in square brackets. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age, height and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B27: Years of schooling and child undernutrition (adjusted for maternal height)

	Model 1			Model 2			Model 3		
	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting
Maternal years of schooling Paternal years of schooling N	-1.48 [-1.51,-1.44] -0.74 [-0.77,-0.71] 863 690	-0.85 [-0.88,-0.82] -0.60 [-0.63,-0.58] 882 817	-0.19 [-0.21,-0.16] -0.19 [-0.21,-0.17] 853 627	-0.70 [-0.74,-0.67] -0.34 [-0.37,-0.31] 863 690	-0.44 [-0.47,-0.41] -0.37 [-0.39,-0.34] 882 817	-0.12 [-0.15,-0.10] -0.15 [-0.16,-0.13] 853 627	-0.40 [-0.44,-0.36] -0.30 [-0.33,-0.27] 863 690	-0.29 [-0.32,-0.26] -0.26 [-0.28,-0.23] 882 817	-0.11 [-0.13,-0.08] -0.08 [-0.10,-0.06] 853 627
Paternal minus maternal school years N	-0.05 [-0.08,-0.02] 863 690	-0.15 [-0.17,-0.12] 882 817	-0.07 [-0.09,-0.05] 853 627	-0.01 [-0.04,0.02] 863 690	-0.11 [-0.13,-0.09] 882 817	-0.06 [-0.08,-0.04] 853 627	-0.08 [-0.11,-0.05] 863 690	-0.08 [-0.11,-0.06] 882 817	-0.02 [-0.04,-0.00] 853 627
Paternal divided by maternal school years N	-0.31 [-0.45,-0.17] 494 401	-0.14 [-0.24,-0.03] 502 491	-0.02 [-0.09,0.05] 488 338	0.01 [-0.12,0.15] 494 401	0.01 [-0.09,0.12] 502 491	0.00 [-0.07,0.07] 488 338	-0.27 [-0.43,-0.11] 494 401	-0.11 [-0.24,0.01] 502 491	-0.02 [-0.11,0.06] 488 338
Different number of school years Mother completed more years of schooling than the father N	-3.05 [-3.30,-2.79] -2.54 [-2.83,-2.26] 863 690	-4.17 [-4.39,-3.95] -0.94 [-1.16,-0.72] 882 817	-1.80 [-1.96,-1.64] -0.11 [-0.26,0.05] 853 627	-1.65 [-1.91,-1.40] -1.39 [-1.66,-1.11] 863 690	-3.27 [-3.49,-3.06] -0.39 [-0.61,-0.17] 882 817	-1.58 [-1.74,-1.42] -0.06 [-0.22,0.10] 853 627	-1.07 [-1.35,-0.79] -0.02 [-0.32,0.29] 863 690	-1.43 [-1.66,-1.20] 0.01 [-0.24,0.25] 882 817	-0.65 [-0.83,-0.48] -0.12 [-0.30,0.06] 853 627

The table presents unweighted marginal effects in percentage points on different forms of child undernutrition with 95% confidence intervals in square brackets below. Model 1 is only adjusted for child age, sex and country-level fixed effects. Model 2 further controls for child birth order, whether the child was born in a multiple birth, maternal age, height and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Model 3 is additionally adjusted for local area characteristics (PSU-level fixed effects). All standard errors were clustered on the PSU-level. For each model type, different specifications were estimated, using either maternal and paternal years of schooling or the following composite indicators as exposure: "Paternal minus maternal school years", and "mother completed more years of schooling than the father". With the exception of the main effects models (i.e. maternal and paternal years of schooling), all specifications control for the number of school years achieved by the least educated parent.

Table B28: Relationship between	narental education levels and stunti	ıg in children	(countries weighted equally)
Tuble Biol Heliutionship Seen een	parentai caacation icicio ana stanti	- <u>-</u>	(countries weighted equality)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	42.81 [42.45,43.17] 405 181	34.03 [33.23,34.82] 56 307	26.22 [23.61,28.84] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	36.89 [36.36,37.42] 129 600	27.96 [27.42,28.49] 140 678	21.38 [20.23,22.52] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	31.22 [30.12,32.32] 27 910	23.43 [22.58,24.29] 56 192	18.27 [17.52,19.02] 95 338
Model 2 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	39.20 [38.82,39.57] 405 181	33.54 [32.75,34.33] 56 307	30.05 [27.47,32.64] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	35.63 [35.12,36.14] 129 600	30.03 [29.49,30.57] 140 678	27.28 [26.13,28.42] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.05 [30.96,33.13] 27 910	27.67 [26.81,28.54] 56 192	25.99 [25.16,26.82] 95 338
Model 3 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	37.55 [37.18,37.92] 405 181	34.63 [33.82,35.45] 56 307	30.99 [28.08,33.90] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	35.08 [34.56,35.60] 129 600	31.31 [30.73,31.88] 140 678	29.27 [27.99,30.54] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.05 [30.81,33.29] 27 910	29.21 [28.26,30.15] 56 192	28.64 [27.69,29.58] 95 338

The table presents predicted prevalences of stunting with 95% confidence intervals in square brackets. Regressions are weighted such that sampling weights sum up to 1 in every country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B29. Relationship	n hetween i	narental education	levels and	l underweight in childr	en (countries weight	(vllenna ha
Table D29. Relationshi	p between	parental education	levels and	i unuei weignt in chnui	en (countries weight	cu cyuany)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	24.09 [23.81,24.38] 419 823	17.07 [16.46,17.68] 57 541	13.73 [11.89,15.57] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	19.25 [18.82,19.69] 133 963	13.97 [13.54,14.40] 144 192	10.49 [9.85,11.14] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	15.67 [14.85,16.48] 28 955	11.52 [10.98,12.06] 57 825	9.48 [8.95,10.01] 97 642
Model 2 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	21.93 [21.65,22.22] 419 823	16.89 [16.28,17.50] 57 541	15.91 [14.04,17.78] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	18.63 [18.19,19.06] 133 963	15.29 [14.85,15.72] 144 192	13.85 [13.19,14.52] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	16.22 [15.42,17.03] 28 955	14.06 [13.51,14.62] 57 825	13.79 [13.22,14.36] 97 642
Model 3 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	20.78 [20.51,21.06] 419 823	17.80 [17.07,18.53] 57 541	17.03 [14.91,19.15] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	18.83 [18.38,19.28] 133 963	16.22 [15.82,16.62] 144 192	14.72 [13.88,15.56] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	16.42 [15.53,17.32] 28 955	15.50 [14.87,16.14] 57 825	14.60 [14.01,15.20] 97 642

The table presents predicted prevalences of underweight with 95% confidence intervals in square brackets. Regressions are weighted such that sampling weights sum up to 1 in every country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B30: Relationship) between r	narental educatio	n levels and	wasting in	children	(countries weigh	ted equally)
i abie beor iterationshi	, been een p	pai chiai cuacatio	ii ic veis and	i masting m	chinai chi	(countries weigh	cou oquany)

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.52 [9.32,9.71] 400 355	7.70 [7.27,8.13] 55 588	7.24 [5.44,9.04] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	7.98 [7.69,8.27] 128 315	6.98 [6.66,7.30] 139 109	5.90 [5.32,6.48] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	7.69 [7.05,8.32] 27 689	6.36 [5.86,6.86] 55 652	6.04 [5.58,6.50] 94 348
Model 2 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	9.06 [8.86,9.27] 400 355	7.69 [7.26,8.12] 55 588	7.65 [5.84,9.46] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	7.88 [7.59,8.17] 128 315	7.29 [6.96,7.61] 139 109	6.55 [5.95,7.14] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	7.81 [7.17,8.44] 27 689	6.90 [6.38,7.41] 55 652	6.85 [6.37,7.33] 94 348
Model 3 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	8.80 [8.60,8.99] 400 355	7.88 [7.38,8.37] 55 588	8.15 [5.93,10.37] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	8.04 [7.73,8.35] 128 315	7.51 [7.18,7.84] 139 109	6.72 [6.01,7.42] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	7.77 [7.06,8.48] 27 689	7.32 [6.73,7.91] 55 652	6.84 [6.32,7.36] 94 348

The table presents predicted prevalences of wasting with 95% confidence intervals in square brackets. Regressions are weighted such that sampling weights sum up to 1 in every country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B31: Years of schooling and child undernutrition (countries weighted equally)

	Model 1			Model 2			Model 3		
	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting
Maternal years of schooling Paternal years of schooling N	-1.36 [-1.43,-1.28] -0.76 [-0.82,-0.70] 948 642	-0.86 [-0.92,-0.80] -0.53 [-0.57,-0.48] 977 862	-0.23 [-0.29,-0.18] -0.13 [-0.17,-0.10] 938 208	-0.81 [-0.88,-0.73] -0.43 [-0.49,-0.37] 948 642	-0.57 [-0.63,-0.51] -0.34 [-0.39,-0.29] 977 862	-0.18 [-0.24,-0.13] -0.09 [-0.13,-0.06] 938 208	-0.54 [-0.63,-0.46] -0.32 [-0.39,-0.26] 948 642	-0.38 [-0.45,-0.32] -0.27 [-0.32,-0.22] 977 862	-0.13 [-0.19,-0.08] -0.08 [-0.12,-0.04] 938 208
Paternal minus maternal school years N	-0.03 [-0.09,0.03] 948 642	-0.05 [-0.10,-0.00] 977 862	-0.01 [-0.05,0.03] 938 208	-0.00 [-0.06,0.05] 948 642	-0.03 [-0.07,0.02] 977 862	0.00 [-0.04,0.04] 938 208	-0.03 [-0.09,0.03] 948 642	-0.05 [-0.10,0.00] 977 862	-0.01 [-0.05,0.03] 938 208
Paternal divided by maternal school years N	-0.76 [-1.01,-0.50] 541 451	-0.16 [-0.38,0.06] 553 108	-0.03 [-0.19,0.12] 534 938	-0.37 [-0.61,-0.12] 541 451	0.03 [-0.19,0.26] 553 108	-0.01 [-0.16,0.15] 534 938	-0.44 [-0.75,-0.14] 541 451	-0.15 [-0.39,0.10] 553 108	-0.04 [-0.22,0.14] 534 938
Different number of school years Mother completed more years of schooling than the father N	-3.12 [-3.61,-2.63] -1.77 [-2.36,-1.18] 948 642	-3.40 [-3.79,-3.00] -1.22 [-1.68,-0.76] 977 862	-1.38 [-1.67,-1.08] -0.43 [-0.78,-0.08] 938 208	-1.90 [-2.40,-1.41] -1.18 [-1.76,-0.61] 948 642	-2.58 [-2.97,-2.18] -0.96 [-1.41,-0.50] 977 862	-1.18 [-1.48,-0.88] -0.41 [-0.75,-0.06] 938 208	-1.09 [-1.65,-0.54] -0.41 [-1.03,0.21] 948 642	-1.28 [-1.69,-0.87] -0.30 [-0.76,0.15] 977 862	-0.51 [-0.83,-0.19] -0.22 [-0.59,0.15] 938 208

The table presents unweighted marginal effects in percentage points on different forms of child undernutrition with 95% confidence intervals in square brackets below. Regressions are weighted such that sampling weights sum up to 1 in every country. Model 1 is only adjusted for child age, sex and country-level fixed effects. Model 2 further controls for child birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Model 3 is additionally adjusted for local area characteristics (PSU-level fixed effects). All standard errors were clustered on the PSU-level. For each model type, different specifications were estimated, using either maternal and paternal years of schooling or the following composite indicators as exposure: "Paternal minus maternal school years", "paternal divided by maternal school years", or the two binary indicators "different number of school years" achieved by the least educated parent.

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	51.65 [51.19,52.11] 405 181	41.62 [40.57,42.68] 56 307	29.74 [27.04,32.44] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	46.95 [46.30,47.60] 129 600	34.28 [33.67,34.89] 140 678	25.31 [24.12,26.50] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	43.24 [41.94,44.54] 27 910	30.71 [29.79,31.63] 56 192	22.12 [21.33,22.90] 95 338
Model 2 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	48.19 [47.72,48.65] 405 181	41.40 [40.36,42.44] 56 307	33.89 [31.23,36.54] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	45.46 [44.82,46.10] 129 600	36.69 [36.07,37.31] 140 678	32.46 [31.23,33.69] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	43.26 [41.98,44.55] 27 910	35.10 [34.16,36.05] 56 192	30.94 [30.04,31.83] 95 338
Model 3 (N = 952 253)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	46.84 [46.42,47.26] 405 181	43.08 [41.98,44.18] 56 307	35.71 [32.55,38.86] 6 656
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	44.65 [44.01,45.30] 129 600	38.56 [37.89,39.23] 140 678	35.45 [34.01,36.89] 34 391
	Father: Secondary or higher	Prevalence (%) 95%-CI N	41.87 [40.52,43.21] 27 910	35.95 [34.95,36.96] 56 192	32.83 [31.82,33.84] 95 338

Table B32: Relationship between parental education levels and stunting in children (countries weighted by population)

The table presents predicted prevalences of stunting with 95% confidence intervals in square brackets. Regressions are weighted such that sampling weights sum up to population size in every country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B33: Relationship	o between	parental education	levels and u	nderweight in	children (coun	tries weighted b	v population)
I doit Door Iterationshi	, ween een	par children caacaction	i i ci ci ci ci i i i i i i	macri in engine m		erres weigneed s	j population)

		-	Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	40.56 [40.13,40.99] 419 823	29.39 [28.49,30.29] 57 541	24.61 [22.42,26.79] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	35.29 [34.66,35.92] 133 963	24.09 [23.55,24.64] 144 192	17.41 [16.44,18.39] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.01 [30.76,33.26] 28 955	20.37 [19.59,21.16] 57 825	15.10 [14.45,15.76] 97 642
Model 2 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	37.50 [37.06,37.94] 419 823	29.32 [28.42,30.22] 57 541	27.90 [25.74,30.07] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	34.22 [33.60,34.84] 133 963	26.43 [25.88,26.99] 144 192	23.44 [22.42,24.45] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	32.38 [31.15,33.60] 28 955	24.51 [23.70,25.32] 57 825	22.40 [21.65,23.14] 97 642
Model 3 (N = 981 740)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	36.38 [35.99,36.77] 419 823	31.24 [30.30,32.17] 57 541	30.61 [28.11,33.11] 6 833
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	33.86 [33.27,34.46] 133 963	28.02 [27.44,28.61] 144 192	25.36 [24.19,26.53] 34 966
	Father: Secondary or higher	Prevalence (%) 95%-CI N	31.45 [30.17,32.74] 28 955	25.25 [24.36,26.15] 57 825	23.17 [22.27,24.08] 97 642

The table presents predicted prevalences of underweight with 95% confidence intervals in square brackets. Regressions are weighted such that sampling weights sum up to population size in every country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

			Mother: Non or incomplete primary	Mother: Primary or incomplete secondary	Mother: Secondary or higher
Model 1 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	16.44 [16.07,16.81] 400 355	12.62 [11.91,13.34] 55 588	12.20 [10.18,14.22] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	13.93 [13.44,14.42] 128 315	11.24 [10.83,11.65] 139 109	9.11 [8.36,9.86] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	13.24 [12.22,14.27] 27 689	9.70 [9.10,10.31] 55 652	8.89 [8.37,9.41] 94 348
Model 2 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	15.52 [15.16,15.88] 400 355	12.69 [11.97,13.41] 55 588	12.94 [10.94,14.94] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	13.70 [13.21,14.18] 128 315	12.01 [11.58,12.43] 139 109	10.58 [9.80,11.37] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	13.48 [12.45,14.51] 27 689	10.93 [10.31,11.56] 55 652	10.63 [10.05,11.20] 94 348
Model 3 (N = 941 721)	Father: Non or incomplete primary	Prevalence (%) 95%-CI N	15.20 [14.88,15.53] 400 355	13.00 [12.25,13.75] 55 588	13.35 [10.92,15.78] 6 602
	Father: Primary or incomplete secondary	Prevalence (%) 95%-CI N	13.72 [13.24,14.20] 128 315	12.41 [11.94,12.88] 139 109	11.03 [10.04,12.03] 34 063
	Father: Secondary or higher	Prevalence (%) 95%-CI N	13.52 [12.41,14.63] 27 689	11.27 [10.58,11.96] 55 652	10.61 [9.93,11.30] 94 348

Table B34: Relationship between parental education levels and wasting in children (countries weighted by population)

The table presents predicted prevalences of wasting with 95% confidence intervals in square brackets. Regressions are weighted such that sampling weights sum up to population size in every country. All models include the depicted parental education levels and their interaction. Model 1 is adjusted for child age, sex and country-level fixed effects. Model 2 is further adjusted for birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Lastly, Model 3 includes all covariates and PSU-level fixed effects. All standard errors were clustered on the PSU-level.

Table B35: Years of schooling and child undernutrition (countries weighted by population)

	Model 1			Model 2			Model 3		
	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting	Stunting	Underweight	Wasting
Maternal years of schooling Paternal years of schooling N	-1.71 [-1.78,-1.64] -0.67 [-0.74,-0.60] 948 642	-1.51 [-1.58,-1.44] -0.65 [-0.72,-0.59] 977 862	-0.41 [-0.46,-0.35] -0.25 [-0.30,-0.20] 938 208	-1.11 [-1.19,-1.04] -0.41 [-0.47,-0.34] 948 642	-1.04 [-1.11,-0.97] -0.40 [-0.47,-0.34] 977 862	-0.30 [-0.35,-0.24] -0.17 [-0.22,-0.12] 938 208	-0.78 [-0.88,-0.69] -0.41 [-0.48,-0.33] 948 642	-0.79 [-0.87,-0.70] -0.41 [-0.48,-0.34] 977 862	-0.25 [-0.32,-0.18] -0.15 [-0.21,-0.09] 938 208
Paternal minus maternal school years N	-0.09 [-0.15,-0.02] 948 642	-0.12 [-0.18,-0.06] 977 862	-0.09 [-0.13,-0.04] 938 208	-0.03 [-0.09,0.04] 948 642	-0.04 [-0.10,0.02] 977 862	-0.05 [-0.10,-0.00] 938 208	-0.12 [-0.19,-0.05] 948 642	-0.12 [-0.18,-0.05] 977 862	-0.05 [-0.11,0.00] 938 208
Paternal divided by maternal school years N	-0.42 [-0.82,-0.03] 541 451	-0.13 [-0.47,0.22] 553 108	-0.02 [-0.25,0.21] 534 938	-0.13 [-0.52,0.26] 541 451	0.13 [-0.22,0.47] 553 108	0.04 [-0.19,0.27] 534 938	-0.47 [-0.95,0.01] 541 451	-0.39 [-0.83,0.06] 553 108	-0.13 [-0.42,0.15] 534 938
Different number of school years Mother completed more years of schooling than the father N	-3.13 [-3.66,-2.60] -2.58 [-3.26,-1.91] 948 642	-3.71 [-4.23,-3.19] -2.83 [-3.40,-2.26] 977 862	-1.77 [-2.18,-1.35] -0.92 [-1.38,-0.47] 938 208	-2.01 [-2.54,-1.47] -1.84 [-2.50,-1.17] 948 642	-2.48 [-2.99,-1.96] -2.40 [-2.97,-1.84] 977 862	-1.27 [-1.69,-0.86] -0.87 [-1.32,-0.42] 938 208	-1.43 [-2.03,-0.82] -0.46 [-1.21,0.29] 948 642	-1.39 [-1.96,-0.81] -1.04 [-1.67,-0.40] 977 862	-0.61 [-1.08,-0.14] -0.70 [-1.21,-0.18] 938 208

The table presents marginal effects in percentage points on different forms of child undernutrition with 95% confidence intervals in square brackets below. Regressions are weighted such that sampling weights sum up to population size in every country. Model 1 is only adjusted for child age, sex and country-level fixed effects. Model 2 further controls for child birth order, whether the child was born in a multiple birth, maternal age and partnership status, urban location of household as well as its wealth quintile as measured by household asset ownership. Model 3 is additionally adjusted for local area characteristics (PSU-level fixed effects). All standard errors were clustered on the PSU-level. For each model type, different specifications were estimated, using either maternal and paternal years of schooling or the following composite indicators as exposure: "Paternal minus maternal school years", "paternal divided by maternal school years", or the two binary indicators different number of school years and "mother completed more years of schooling that the father". With the exception of the main effects models (i.e. maternal and paternal and paternal multiple as of schooling), all specifications control for the number of school years achieved by the least educated parent.

Figure B1: Test of linearity assumption (stunting)

The above graphs depict trend lines (black lines) showing the effect of years of schooling (derived from the marginal effects of the first section of Table 4 from the article) on stunting for different values of years of schooling. The blue dots are point estimates from a flexible regression using each year of schooling as a dummy variable (with zero years as a reference category and school years larger or equal than 17 pooled in one binary indicator). 95%-confidence intervals are depicted in green. All regressions are mutually adjusted, i.e. they include both maternal and paternal school years.

The above graphs depict trend lines (black lines) showing the effect of years of schooling (derived from the marginal effects of the first section of Table 4 from the article) on underweight for different values of years of schooling. The blue dots are point estimates from a flexible regression using each year of schooling as a dummy variable (with zero years as a reference category and school years larger or equal than 17 pooled in one binary indicator). 95%-confidence intervals are depicted in green. All regressions are mutually adjusted, i.e. they include both maternal and paternal school years.

Figure B3: Test of linearity assumption (wasting)

The above graphs depict trend lines (black lines) showing the effect of years of schooling (derived from the marginal effects of the first section of Table 4 from the article) on wasting for different values of years of schooling. The blue dots are point estimates from a flexible regression using each year of schooling as a dummy variable (with zero years as a reference category and school years larger or equal than 17 pooled in one binary indicator). 95%-confidence intervals are depicted in green. All regressions are mutually adjusted, i.e. they include both maternal and paternal school years.

Figure B4: Difference in years of schooling (country-wise regressions)

This figure depicts point estimates (marginal effects in percentage points) and 95% confidence intervals from country-wise regressions. The estimated model corresponds to the specification "paternal minus maternal school years" from Table 4. All regressions include the full set of controls and PSU-level fixed effects (i.e. Model 3). Kazakhstan and the Maldives were excluded due to very long confidence intervals (overlapping with the zero line).

Figure B5: Ratio of school years (country-wise regressions)

This figure depicts point estimates (marginal effects in percentage points) and 95% confidence intervals from country-wise regressions. The estimated model corresponds to the specification ,,paternal divided by maternal school years" from Table 4. All regressions include the full set of controls and PSU-level fixed effects (i.e. Model 3). Two countries are excluded: No marginal effects could be obtained for the Maldives, as the available number of observations was too low. Similarly, Kazakhstan was excluded due to very long confidence intervals (overlapping with the zero line).