Effects of Light, Abscisic Acid, and ⁶N-Benzyladenine on the Metabolism of [³H]Gibberellin A₄ in Seeds and Seedlings of Lettuce, cv. Grand Rapids¹

Received for publication January 28, 1975 and in revised form December 16, 1975

RICHARD C. DURLEY,² J. DEREK BEWLEY,³ IAN D. RAILTON,⁴ AND RICHARD P. PHARIS Department of Biology, University of Calgary, Calgary, Alberta T2N IN4, Canada

ABSTRACT

Gibberellin A₄ (GA₄) can substitute for light in the germination of Grand Rapids lettuce seeds. Seeds imbibed in [³H]GA₄ do not convert this to other GAs prior to, or immediately following, visible germination: thus GA₄ alone can promote radicle expansion. Abscisic acid inhibited [³H]GA₄-induced germination, but did not significantly affect [³H]GA₄ uptake or metabolism during germination. ⁶N-benzyladenine overcame the inhibitory effect of abscisic acid and increased [³H]GA₄ uptake, although radicle emergence was delayed somewhat.

During hypocotyl extension there was a large conversion of $[{}^{3}H]GA_{4}$ to $[{}^{3}H]GA_{1}$ in light or darkness, the major conversion site being the growing root. Hypocotyls of dark-grown seedlings contained more $[{}^{3}H]GA_{1}$ than those of light-grown seedlings. The apparent inability of exogenous GA_{1} to promote greater hypocotyl extension than GA_{4} is related to its poorer uptake. Abacisic acid markedly inhibited hypocotyl expansion, root growth, and the conversion of $[{}^{3}H]GA_{4}$ to $[{}^{3}H]GA_{1}$.

The physiological action of gibberellins on lettuce seed germination has been widely studied. Not all GAs are equally effective in promoting germination of seeds of the lettuce cultivars Arctic King or Grand Rapids, but among the most potent are GA_4 and GA_7 (4). Subsequent hypocotyl growth is effectively promoted by GA_7 in cultivars Arctic (8) and Grand Rapids (reported herein), although GA_4 is very promotive in Grand Rapids (reported herein, and 18) relative to Arctic (8). ABA is known to prevent GA_3 -induced germination, and BA will overcome this inhibitory effect (2).

Herein we report on the metabolism of $[{}^{3}H]GA_{4}$ during seed germination and subsequent hypocotyl extension of Grand Rapids lettuce both in the presence and absence of ABA and in the presence of ABA + BA.

MATERIALS AND METHODS

Seeds of *Lactuca sativa* L. (cv. Grand Rapids) were obtained from Ferry-Morse Inc., California and stored at 2 C until required. For specific experimental conditions see "Results and Discussion."

³ To whom requests for reprints should be addressed.

Synthesis of [³H]GA₄. Using hydrogen enriched with tritium, GA₇ was hydrogenated to 1, 2-[³H]GA₄, (by Amersham Searle Corp.) according to Cross *et al.* (6) and subsequently purified (9) to a constant specific radioactivity of 1.87 Ci/mmol (12.6×10^6 dpm/ μ g). The product was stored at -20 C in 95% ethanol purified immediately prior to use on a silica gel partition column (10).

Extraction and Chromatography. After incubation, seeds or seedlings were plunged into methanol at -22 C and stored at -22 C until extraction in a mortar with acid-washed sand at 0 C in 80% methanol. Methanol was removed *in vacuo* and an equal volume of 0.5 M phosphate buffer (pH 8) was added to the residual aqueous phase. After adjusting to pH 9 with 3 N KOH the extract was partitioned (4X) against equal volumes of diethyl ether, adjusted to pH 3, partitioned (6X) against ethyl acetate and then (4X) against l-butanol. Thus, for each harvest four fractions were obtained: neutral, ether extract; acidic, ethyl acetate extract; acidic, butanol extract; residual buffer solution. Only the acidic, ethyl acetate extract, which contained almost all of the extractable radioactivity (Table III), was examined further.

The acidic, ethyl acetate-soluble fractions were dissolved in a minimum volume of 0.5 M phosphate buffer (pH 8) and purified on a PVP column eluted with 0.1 M phosphate buffer (pH 8) (14). After extraction at pH 3 into ethyl acetate and evaporation, the residues were chromatographed on a silica-gel partition column (10). Twenty-seven fractions were collected and combined according to counts obtained from direct liquid scintillation using an external standard. Typical combinations are shown in Table I. The combined fractions were converted to trimethylsilvl ethers of the methyl ester derivatives as per Cavell *et al.* (5)and examined on three column liquid phases (2% AFI, 2% SE30, and 1% XE60) by gas-liquid radiochromatography as per Durley et al. (12). The radioactive peaks were compared to those of standards and results of a typical extract are summarized in Table I. Fractions 4 to 8 contained GA₄, fractions 13 and 14 contained GA₁, fractions 15 and 16 contained an unknown compound A, and fractions 17 to 19 contained GA₂. When [³H]GA₄ (not fed to seeds) was taken through the work-up procedure outlined above it was found that compound A and GA₂ were produced in appreciable quantities.

Uptake and Metabolism of Gibberellins in Roots, Hypocotyls, and Cotyledons. Conversion of [${}^{3}H$]GA₄ to other GAs in the root, hypocotyl, and cotyledons was determined in seedlings germinated and grown under continuous white fluorescent light, or in darkness, on 3 ml of 1.5 μ g/ml [${}^{3}H$]GA₄ (1.5 × 10⁷ dpm/ ml) for 5 days. After this time 40 seedlings from two replicate dishes were dissected into the appropriate parts; root and hypocotyl lengths were measured. The parts were extracted separately in cold 80% methanol, the extract was transferred to Whatman GF/A paper discs and eluted on a silica gel column (10). Consecutive fractions were pooled, taken to dryness, and

¹ This work was supported by National Research Council of Canada Grants A-6352 to J. D. B. and A-2585 to R. P. P. and by a NATO-Science Research Council (London, U.K.) postdoctoral fellowship to I. D. R.

² Present address: Department of Crop Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N OWO, Canada.

⁴ Present address: Botany Department, Rhodes University, Grahamstown, P.O. Box 94, South Africa.

Table I. Gas-Liquid Radiochromatography Retention Times of Trimethylsilyl Ethers of Methyl Ester Derivatives of Silica Gel Partition Column Fractions of a Typical Extract, with Comparative Standards

Comparison was made between the observed radioactive peak and the mass peak of an appropriate co-injected standard GA.

	Retention Time on 3 Columns				
	2% QF1 (203 C)	2% SE30 (203 C)	1% XE60 (209 C)	Probable Identit	
		min			
Column fractions					
4-8	10.4	9.1	11.7	GA₄	
13-14	14.4	15.3	15.2	GA ₁	
15-16	16.0	15.3	15.5	A (artifact?)	
17–19	20.4	19.4	20.6	GA ² (artifact)	
Standard GAs					
GA1	14.4	15.3	15.3		
GA ₂	20.4	19.6	20.5		
GA ₃	16.5	16.9	18.5		
GA₄	10.4	9.1	11.7		
GA ₈	17.3	25.0	18.6		
GA ₃₄	12.6	15.2	13.4		

radioactivity was determined by standard liquid scintillation counting techniques.

Uptake of $[{}^{3}H]GA_{1}$ and $[{}^{3}H]GA_{4}$ was followed into the roots, hypocotyls, and cotyledons of growing seedlings by placing 70 seeds under continuous white fluorescent light on 2 ml of $[{}^{3}H]GA_{1}$ (3.27 μ g, 4.58 \times 10⁶ dpm) or $[{}^{3}H]GA_{4}$ (3 μ g, 3.55 \times 10⁶ dpm) for 3 days. Three replicates of 20 seeds were then taken and dissected into the three parts (hypocotyl and root lengths were measured) and each part was subjected to tritium oxidation using a Packard Tricarb Sample Oxidiser. Total dpm in each seedling part was determined and for comparative purposes the values for $[{}^{3}H]GA_{1}$ uptake were adjusted to account for the lower specific activity of $[{}^{3}H]GA_{4}$.

RESULTS AND DISCUSSION

Relative Activity of GA₃, **GA**₄, **and GA**₇ **on Hypocotyl Elongation.** GA₄ and GA₇ are very effective in promoting lettuce seed germination (1, 4) relative to the commonly used GA₃. GA₄ is also more effective than GA₃ in promoting subsequent hypocotyl extension (18), although GA₇ was not tested. Using the same technique as Paleg and coworkers (18) we found that light-grown seedlings kept for 3 days on 0.1 μ g/ml and 1 μ g/ml GA₃ showed hypocotyl extension of 5.85 ± 0.28 mm and 8.04 ± 0.35 mm, respectively; on 0.1 μ g/ml and 1 μ g/ml GA₄, 6.94 ± 0.35 mm and 9.65 ± 0.12 mm respectively; and on 0.1 μ g/ml and 1 μ g/ml GA₇ an extension to 7.4 ± 0.19 mm and 11.0 ± 1.35 mm, respectively. Seedlings kept on water for the same period under the same conditions only exhibited hypocotyl elongation to 4.8 ± 0.16 mm. Thus, the potency in Grand Rapids appears to be GA₇ > GA₄ > GA₃.

Promoter and Inhibitor Action. The time courses of germination of seeds imbibed in 5-cm Petri dishes in darkness at 25 C in a total volume of 1.5 ml of 21 μ M GA₄, or 21 μ M GA₄ + 20 μ M ABA + 60 μ M BA, are shown in Figure 1. Seeds imbibed in 21 μ M GA₄ + 20 μ M ABA did not germinate and after 40 hr only 16% of those seeds imbibed on water in darkness had germinated. While BA overcame the inhibitory effect of ABA on GA₄-induced germination, there was a marked increase in the time required for radicle protrusion to occur. These observations are similar to those made for GA₃, ABA, and BA interactions (2, 13).

Seeds imbibed for 18 hr in darkness on 21 μ M GA₄ and then transferred to a solution containing 21 μ M GA₄ + 20 μ M ABA

for a further 18 hr in darkness exhibited no hypocotyl elongation, but seeds transferred to an equivalent GA_4 solution and kept under the same conditions produced hypocotyls 2 to 5 mm in length over the same time period.

[³H]GA₄ Metabolism in Light- and Dark-imbibed Seeds and Seedlings. Five hundred milligrams of seeds were imbibed at 25 C in 3 ml [³H]GA₄ (21 μ M, 15 × 10⁷ dpm) in the outer rim of a covered Conway unit for 1 or 4 days in continuous white fluorescent light, or in darkness. Seeds in the light and dark showed 98% germination after 24 hr, with radicles protruding 1 to 2 mm. After 4 days in the dark hypocotyls were 9 to 12 mm long and the cotyledons were expanded and green, indicating that 21 μ M GA₄ was insufficient to overcome completely the inhibitory effects of light on hypocotyl extension. Hypocotyl elongation of seedlings in Conway units was less than those planted in Petri dishes for the hypocotyl elongation studies.

[³H]GA₄ was readily taken up by germinating seeds and seedlings (Table II). GA₁ is the major metabolite of GA₄; unknown compound A and GA₂ must be considered artifacts of the workup procedure until further experiments determine unequivocally whether they are produced by the seed or seedling (Table II). There was little or no metabolism of [³H]GA₄ up to 24 hr, the time at which germination is obvious and the radicles have emerged and begun to grow. In the seedling stage, while the hypocotyl was elongating, there was massive conversion to GA₁. There was slightly more conversion of GA₄ to GA₁ in darkgrown seedlings (44%) than in the light (37%), and the hypocotyls of the former were up to twice the length of the latter. The difference in rate of metabolism of GA₄ in light- and dark-grown seedlings noted here is much lower than the difference in the conversion of GA₅ to a GA₁-like compound between dark- and

FIG. 1. Time course of germination of seeds imbibed on 21 μ M GA₄ (O) or 21 μ M GA₄ + 20 μ M ABA + 60 μ M BA (\bullet).

Table II	L. Level of Ethyl	Acetate-soluble	Metabolites in	Seeds	and
		Seedlings			

The tissues imbibed $[^{a}H]GA_{4}$ in continuous light or darkness for 1 day (seed) or 4 days (seedlings).

	Radioactivity					
Metabolite	Se	Seed		lling		
	Dark	Light	Dark	Light		
	· · · ·	dpm 3	× 10 ⁻⁶			
GA₄	69.6	79.4	76.3	93.6		
GA ₁	2.0	2.2	59.5	53.9		
Α	1.2	1.2	0.9	0.7		
GA ₂	3.5	5.5	3.6	2.7		
GA ₈ ?	0	0	0.4	0.3		

A small peak, tentatively identified by gas-liquid radiochromatography as GA_8 , was observed in the seedlings, but not consistently in the seeds. It has been demonstrated that GA_8 is a metabolite of GA_1 (16, 17, 19).

It appears that GA_4 itself promotes seed germination but that GA_1 could be responsible for the stimulation of hypocotyl elongation. In cv. Grand Rapids, exogenous GA_4 is a very potent germination promoter and GA_1 is relatively ineffective (1, 3). Surprisingly, GA_4 is slightly more promotive than GA_1 in the Grand Rapids lettuce hypocotyl extension test (18), although such differences could possibly be explained on the basis of differential uptake.

Uptake of [³H]GA₁ and [³H]GA₄ by Seedlings. Seeds were germinated and grown in continuous light for 3 days on [3H]GA4 or [³H]GA₁ and then dissected into roots, hypocotyls, and cotyledons. Uptake of radioactive label into each seedling part after this 3-day period is shown in Table III. Exogenously applied GA₄ was slightly more promotive for hypocotyl elongation than was GA₁ (confirming the observation in [17]) but root growth was (un)affected equally by these GAs, thus eliminating any possibility that differential uptake was due to variabilities in root surface area. That GA₄ was taken up more effectively by the seedlings than was GA₁ is clearly shown: in fact, 250% more label from GA₄ was absorbed into the whole seedling and 310% more into the hypocotyls. While conversion of GA_4 to GA_1 appears to be an event associated with hypocotyl elongation, any potentially greater promotion by exogenously applied GA₁ is restricted by impaired uptake.

Metabolism of [3H]GA4 by Roots, Hypocotyls, and Cotyledons of Light- and Dark-grown Seedlings. From the histograms showing the distribution of radioactive gibberellins in the dissected parts of 5-day-old light- and dark-grown seedlings (Fig. 2) total uptake into the seedling and seedling parts was calculated (Table IV). Hypocotyls and roots were significantly longer in dark-grown seedlings. The greatest increase in labeled gibberellin was in the dark-grown roots (Table IV), where 62% of the label had been converted to GA₁ and only 18.2% remained as GA₄ (Fig. 2). In light-grown seedlings the same amount of gibberellin was present as GA1 (62.5%) and only 11.2% was unconverted GA₄ (Fig. 2). The growing roots appear to be an important site for the conversion of GA4 to GA1, with light apparently inhibiting the uptake of GA4 into this organ. The expanded radicles of 1-day-old seeds were incapable of the GA4 to GA₁ conversion (Table II). It has been indicated that conversion from one gibberellin to another can occur within the roots of light-grown Phaseolus coccineus: one of the products of this conversion is GA_1 (7).

In dark-grown hypocotyls 60.7% of the [³H]GA was in the form of GA₁ and 12% as GA₄, whereas in the shorter light-

Table III. Uptake of [³H]GA₄ and [³H]GA₄ into Light-grown Lettuce Seedling Hypocotyls, Roots, and Cotyledons

	GA,		GA,		
	Length ± SE	dpm/seedling part	Length ± SE	dpm/seedling part	
	mm		mm		
Hypocotyl	6.53 ± 0.22	489 ± 44	8.1 ± 0.27	1.550 ± 37	
Root	19.13 ± 0.62	4,609 ± 557	18.93 ± 0.68	10.309 ± 834	
Cotyledons		796 ± 48		3,007 ± 380	
Total uptake		5,894		14.866	

FIG. 2. Conversion of $[^{3}H]GA_{4}$ to other gibberellins by roots, hypocotyls and cotyledons of light and dark-grown seedlings. For details on uptake into, and growth of, seedling parts see Table IV. Column fractions 5 to 8: GA₄; 13 to 16: GA₁; 17 and 18: GA₂; 21 and 22: GA₈ (?).

Table IV. Uptake of [³H]GA₄ into Light- and Dark-grown Lettuce Seedling Hypocotyls, Roots, and Cotyledons

See Fig. 2 for distribution of radioactivity in	various	gibberellins.
---	---------	---------------

	Light-grown		Dark-grown		
	Length ± SE	dpm/20 seed- ling parts × 10 ⁻³	Length ± SE	dpm/20 seeding parts × 10 ⁻³	
	mm		mm		
Hypocotyl	7.0 ± 0.36	55.3	11.20 ± 0.52	55.8	
Roots	13.55 ± 0.62	153.0	17.73 ± 1.35	241.3	
Cotyledons		60.3		29.8	

grown hypocotyls (Table IV) only 43.3% was present as GA_1 and 9.25% as GA_4 (Fig. 2). Total radioactivity in the hypocotyls from light- and dark-grown seedlings was the same (Table IV). At present we do not know whether the GA_1 in the hypocotyls was formed from GA_4 in situ or transported there as GA_1 from the growing roots. If GA_4 was transported from the roots for conversion in large amounts in the aerial parts, then that GA_4 would at some stage have to avoid the very effective GA_4 to GA_1 conversion mechanism present in the roots. Whatever the source of GA_1 , it is obvious that there is a restriction imposed by white light on its synthesis in, or transport to, the hypocotyl. Furthermore, there is a good correlation between endogenous GA_1 levels and length of the hypocotyls. In light-grown cotyledons 45% of the gibberellin present was maintained as GA₄ and 31.2% converted to GA₁. In dark-grown cotyledons, which contained less than 50% of the radioactivity found in the light-grown ones (Table IV), approximately the same level of GA₄ was noted (47%) and conversion to GA₁ (27.4%) was similar (Fig. 2). Since light-grown cotyledons appear more expanded than dark-grown ones, and green, they may act as a better sink for transported gibberellins. It is also possible that conversion of GA₄ to GA₁ could take place in the cotyledons themselves from [³H]GA₄ absorbed directly from the imbibition solution, since these organs would take up gibberellin during germination and early growth, until lifted by the expanding hypocotyl. No significant conversion occurred in the cotyledons during the 1st day of imbibition, however (Table II).

It is clear from these results that the growing roots, and not the emerging radicles, are a major site of conversion from GA_4 to GA_1 . It is also interesting that while the conversion of GA_4 to GA_1 in the whole dark-grown seedlings is only slightly higher than in the whole light-grown seedlings (7%, Table II; 1%, Fig. 2), it is in the hypocotyl, whose expansion is known to be affected by gibberellins, that the only increase (17%) in GA_1 levels is observed. We have yet to determine the time during seedling growth at which this conversion commences.

Effects of ABA and BA on [³H]GA₄ Metabolism. Three hundred milligrams of seeds were imbibed under the same conditions as in the experiment presented in Figure 1, except that [³H]GA₄ was used. Seeds were either imbibed in 21 μ M [³H]GA₄ (15 × 10⁷ dpm) for 10 hr (a time prior to visible germination), for 16 hr in [³H]GA₄ + 20 μ M ABA, or for 16 hr (a time prior to visible germination) in 60 μ M [³H]GA₄ + ABA + BA. To inhibit hypocotyl elongation, seeds were imbibed on 21 μ M [³H]GA₄ for 18 hr and then transferred to a fresh solution of 21 μ M labeled GA₄ with ABA (a parallel treatment without ABA was also performed). Transfer was effected under a dim green safelight. Seedlings were harvested after a further 18 hr; hypocotyls had not emerged from those seeds imbibed upon ABA.

When the seedlings began to grow there was a large increase in $[^{3}H]GA_{1}$ production (Table IV [seedlings]), and this was markedly suppressed in the presence of ABA over the 36-hr incubation period (Table V [seedlings]). Thus GA₄ conversion to GA₁ is not merely an event associated with the length of time that seeds have been exposed to GA₄, but is indeed related to the growth of the seedling. The levels of GA₁ are probably reduced in all organs since hypocotyl extension, radicle elongation, and cotyledon expansion are all inhibited by ABA.

The low level of $[{}^{3}H]GA_{1}$ in the ABA-treated seeds is apparently not due to enhanced conversion of this compound to GA₈ and GA₈-glucoside (as occurs in barley aleurone layers [17]), since no detectable levels of GA₈ were found nor were BuOH soluble dpm increased (Table VI). Thus, ABA may inhibit GA₄induced growth in Grand Rapids lettuce by blocking directly or

Table V. Levels of Ethyl Acetate-soluble Metabolites in Seeds treated with GA_4 , ABA, and BA

The seeds were imbibed in darkness with $[^{3}H]GA_{4}$ (10 hr seeds and 36 hr seedlings), $[^{3}H]GA_{4} + ABA$ (16 hr seeds and 36 hr seedlings) and $[^{3}H]GA_{4} + ABA + BA$ (16 hr seeds only).

	Counts				
Ireatment	GA.	GA1	A (artifact)	A ₂	
	dpm × 10 ⁻⁶				
[³ H]GA ₄ (seeds)	52.6	0	0.94	2.3	
[³ H]GA₄ + ABA (seeds)	48.7	0.13	0.56	0.83	
$[^{3}H]GA_{4} + ABA + BA (seeds)$	55.6	0.78	1.1	2.4	
[³ H]GA₄ (seedlings)	76.2	35.1	0.20	0.37	
[³ H]GA ₄ + ABA (seedlings)	78.1	4.1	0.14	4.8	

Table VI. Distribution of Radioactivity in Total Methanolic Extract and Four Fractions from this Extract from Seeds Imbibed in Darkness

The seeds were imbibed in darkness with $[^{3}H]GA_{4}$ (10 hr seeds and 36 hr seedlings), $[^{3}H]GA_{4} + ABA$ (16 hr seeds and 36 hr seedlings) and $[^{3}H]GA_{4} + ABA + GA$ (16 hr seeds only).

	Counts				
Treatment	Methyl al- cohol	Ether	Ethyl ace- tate	Butyl alco- hol	Buffer
			dpm × 10 ⁻⁶		
[³ H]GA ₄ (seeds)	53.4	0.48	52.7	0.57	0.24
[³ H]GA ₄ + ABA (seeds)	49.8	0.27	49.2	0.66	0.16
$[^{3}H]GA_{4} + ABA + BA (seeds)$	61.2	0.18	59.8	0.67	0.15
[³ H]GA ₄ (seedlings)	121.5	0.27	116.0	4.11	0.70
[³ H]GA ₄ + ABA (seedlings)	85.3	0.28	86.6	1.50	0.36

indirectly, conversion of GA_4 to GA_1 , thus preventing hypocotyl expansion. We cannot determine from experiments using this inhibitor whether GA_1 formation is essential for hypocotyl expansion since growth of the roots, a major site of GA_1 production, is also prevented.

On the basis of the results presented here we can only speculate that the conversion of GA_4 to GA_1 is necessary for enhanced hypocotyl elongation. Whether the 17% increase in GA_1 could account for the 60% increase (Table IV) in length of dark- over light-grown hypocotyls is not known, although it is interesting that it is only in the hypocotyl of dark-grown seedlings that GA_1 levels increase.

In this study we have monitored the conversion of GA₄ to GA₁ only after 5 days. We cannot ignore the possibility that there was a consistently higher synthesis of GA1 throughout the several days of hypocotyl expansion, or that the conversion was initially higher when the rate of hypocotyl growth was higher. Studies of the kinetics of hypocotyl growth and GA₁ synthesis are planned. Also, we do not known whether GA₁ causes hypocotyl elongation, or if it is present as a consequence of increased growth. We tend to favor the first possibility, for if increased growth resulted in increased GA₁ production, then dark-grown seedlings should produce substantially more than the smaller light-grown seedlings. The relationship between hypocotyl extension and GA1 production is complex because it is not easy to apply the converse argument, namely that increased growth is a consequence of increased GA₁ production: other factors may well be involved.

Acknowledgments – We are grateful to W. Morf for technical assistance and to Hoffmann-La Roche Ltd. for their generous gift of abscisic acid.

LITERATURE CITED

- 1. BEWLEY, J. D. 1968. The participation of gibberellins in the germination of light-sensitive lettuce seeds. Ph.D. Thesis. University of London. U.K.
- BEWLEY, J. D. AND D. W. FOUNTAIN. 1972. A distinction between the actions of abscisic acid, gibberellic acid, and cytokinins in light-sensitive lettuce seed. Planta 102: 368-371.
- BEWLEY, J. D., M. NEGBI, AND M. BLACK. 1968. Immediate phytochrome action in lettuce seeds and its interaction with gibberellins and other germination promoters. Planta 78: 351-357.
- BRIAN, P. W., H. G. HEMMING, AND D. LOWE. 1962. Relative activity of the gibberellins. Nature 193: 946-948.
- CAVELL, B. D., J. MACMILLAN, R. J. PRYCE, AND A. C. SHEPPARD. 1967. Thin layer and gas-liquid chromatography of the gibberellins; direct identification of gibberellins in a crude plant extract by gas-liquid chromatography. Phytochemistry 6: 867-874.
- CROSS, B. E., R. H. B. GALT, AND R. J. HANSON. 1962. New metabolites of Gibberella fujikuroi. I. Gibberellin A₇ and gibberellin A₉. Tetrahedron 18: 451-459.
- CROZIER, A. AND D. M. REID. 1971. Do roots synthesize gibberellins? Can. J. Bot. 49: 967-975.
- CROZIER, A., C. C. KUO, R. C. DURLEY, AND R. P. PHARIS. 1970. The biological activities of 26 gibberellins in nine plant bioassays. Can. J. Bot. 48: 867-877.

- DURLEY, R. C. AND R. P. PHARIS. 1973. Inconversion of gibberellin A₄ to gibberellins A₁ and A₃₄ by dwarf rice, cultivar Tan-ginbozu. Planta 109: 357-361.
- DURLEY, R. C., A. CROZIER, R. P. PHARIS, AND G. E. MCLAUGHLIN. 1972. Chromatography of 33 gibberellins on a gradient eluted silica-gel partition column. Phytochemistry 11: 3029-3033.
- DURLEY, R. C., I. D. RAILTON, AND R. P. PHARIS. 1973. The metabolism of gibberellin A₁ and gibberellin A₁₄ in seedlings of *Pisum sativum*. Proceedings of the 8th International Conference on Plant Growth Substances, Tokyo. pp. 285-293.
- DURLEY, R. C., I. D. RAILTON, AND R. P. PHARIS. 1973. Interconversion of gibberellin As to gibberellin As in seedlings of dwarf *Pisum sativum*. Phytochemistry 12: 1609-1612.
- FOUNTAIN, D. W. and J. D. BEWLEY. 1976. Lettuce seed germination. Modulation of pregermination protein synthesis by gibberellic acid, abscisic acid and cytokinin. Plant Physiol. In press.
- 14. GLEEN, J., C. C. KUO, R. C. DURLEY, AND R. P. PHARIS. 1972. Use of insoluble polyvinylpyrrolidone for purification of plant extracts and chromatography of plant hor-

mones. Phytochemistry 11: 345-351.

- MUSGRAVE, A. AND H. KENDE. 1970. Radioactive gibberellin As and its metabolism in dwarf peas. Plant Physiol. 45: 56-61.
- 16. NADEAU, R. AND L. RAPPAPORT. 1972. Metabolism of gibberellin A₁ in germinating bean seedlings. Phytochemistry 11: 1611-1616.
- NADEAU, R., L. RAPPAPORT, AND C. F. STOLP. 1972. Uptake and metabolism of [³H]gibberellin A₁ by barley aleurone layers: response to abscisic acid. Planta 107: 315-324.
- PALEG, L., D. ASPINALL, B. COOMBE, AND P. NICHOLLS, 1964. Physiological effects of gibberellic acid. VI. Other gibberellins in three test systems. Plant Physiol. 39: 286-290.
 RAILTON, I. D., R. C. DURLEY, AND R. P. PHARIS. 1973. Interconversion of gibberellin A1
- to gibberellin A₈ by shoots of dwarf *Oryza sativa*. Phytochemistry 12: 2351-2352. 20. STOLP, C. F., R. NADEAU, AND L. RAFFARORT. 1973. Effect of abscisic acid and metabolism
- STOLP, C. F., R. NADEAU, AND L. KAPPAPORT. 1973. Effect of abscisic acid and metabolism of [³H]gibberellin A, and [³H]pseudogibberellin A, by barley half-seeds. Plant Physiol. 52: 546-548.