The hazard $h_i(t)$ represents the events occur to individual i at time t (defined in Equation 1),

$$h_{i}(t) = h_{0}(t) * \exp\{\beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{k}x_{ik}\}$$
(1)

where the baseline hazard function $h_0(t)$ can be any function of time t as long as $h_0(t) > 0$. x_i and β_i represent independent variables and corresponding coefficients. Equation 1 can also be formulated as Equation 2, where the ratio of two individuals' hazard functions does not depend on time t.

$$\frac{h_{i}(t)}{h_{j}(t)} = \exp\{\beta_{1}(x_{i1} - x_{j1}) + 1 + \beta_{k}(x_{ik} - x_{jk})\}$$
(2)

By using Maximum Likelihood Estimation, β can be estimated with regards to the hazard. $\beta_k = 0$ would indicate that independent variable x_k has no association with survival time; $\beta_k > 0$ means that independent variable x_k induces a higher hazard of event occurring, and vice versa. Correspondingly, $\exp{\{\beta_k\}}$ is the hazard ratio of independent variable x_k .