Supporting Information for Newton *et al.*, "Structural and functional innovations in the real-time evolution of new ($\beta\alpha$)₈ barrel enzymes"

The Supporting Information comprises SI Materials and Methods, Figures S1-S4, Tables S1-S2 and SI References.

SI Materials and Methods

Molecular biology. The primers for introducing the D7N mutation into the genes encoding HisA(dup13-15/D10G) and HisA(dup13-15/D10G/G102A/Q24L/V106L) were 5'-CCG GCA TTA AAC TTA ATT GGC GGC ACC GTG GTG CG-3' and 5'-CGC ACC ACG GTG CCG CCA ATT AAG TTT AAT GCC GG-3' (mutated codon underlined).

Enzyme kinetics. For HisA and TrpF activity assays, two independently prepared batches of each enzyme were assayed with a range of substrate concentrations; technical triplicates were carried out at each concentration. All assays were at 25°C and the HisA assays were conducted as described previously (1).

The TrpF activity of each enzyme was quantified using a coupled spectrophotometric assay (2). Addition of the downstream enzyme TrpC (indoleglycerol phosphate synthase) allowed TrpF activity to be quantified *via* the formation of the TrpC product indoleglycerol phosphate (InGP), which absorbs strongly at 278 nm ($\epsilon = 5,590 \text{ M}^{-1} \text{ cm}^{-1}$). The TrpC enzyme was from *Pseudomonas aeruginosa* and its purification has been described previously (3). Reaction mixtures contained Tris·HCl pH 7.5 (50 mM), MgCl₂ (4 mM), β-mercaptoethanol (5 mM) and TrpC at 10 μ M. TrpD (anthranilate phosphoribosyltransferase; 5 μ M) from *Acinetobacter baylyi* (2) was used to synthesize the labile substrate, PRA, in the cuvette at concentrations from 0 to 2.0 mM, from the corresponding amount of anthranilate (Sigma Chemical Co.) and a 5-fold molar excess of phosphoribosyl pyrophosphate (Sigma Chemical Co.). Where it was not possible to saturate the enzyme with substrate (*i.e.* $K_{\rm M}^{\rm PRA} > 2$ mM), $k_{\rm cat}/K_{\rm M}$ was estimated from the slope of the regression line when the initial velocity was plotted against the substrate concentration. Controls confirmed that the enzyme with TrpF activity was catalyzing the rate determining step in InGP formation.

Relative quantification of enzyme expression levels. The relative expression level of each HisA variant was determined using multiplexed tandem mass tagging. The 11 *S. enterica* strains used in this analysis were constructed previously (4): DA25516; DA25518; DA25520; DA25522; DA25524; DA25530; DA25540; DA25544; DA25568; DA25570; and DA25578. Overnight cultures grown in LB supplemented with 0.2% glucose were diluted 125-fold into the same medium. The cultures were grown to $OD_{600} = 0.4$ before being chilled in an ice-water bath. The cells were pelleted, washed three times in PBS, and frozen at -80°C. Sample preparation and relative quantification of peptides by TMT10plex (Thermo Fisher Scientific) was performed by the Proteomics Core Facility at the Sahlgrenska Academy, University of Gothenburg, as described previously (5). Only peptides unique for a given protein were used for relative quantification and ratios were normalized using the protein median. Only peptides that were common between all HisA variants and were detected in all samples in the same 10-plex were used in the analysis.

Crystallization screening, data collection and refinement. The HisA mutants were subjected to commercial crystallization screens (JCSG-*plus* HT-96, Structure Screen 1 + 2 HT-96, and Morpheus HT-96), using the vapor diffusion method at 8°C and at room temperature. The protein concentrations used for screening were 10-30 mg.mL⁻¹. Crystallization conditions for each mutant are listed in Table S2. All crystals were cryoprotected in reservoir solution supplemented with 15% glycerol before being vitrified in liquid nitrogen, unless mentioned otherwise in Table S2.

Data were collected at ESRF (Grenoble, France), Diamond Light Source (Didcot, UK) and PETRA (Hamburg, Germany), and processed using XDS (6) and Aimless (7). The structures were solved by molecular replacement using Phaser (8), as described for wild type HisA (1), then rebuilt using Coot (9) and refined with phenix.refine (10). Data and refinement statistics are listed in Table S2.

NMR experiments. ¹⁵N Carr-Purcell-Meiboom-Gill (CPMG) (11, 12) relaxation dispersion experiments were recorded for ¹⁵N labeled HisA(dup13-15) and HisA(dup13-15/D10G) at a static magnetic field strength of 14.1 T and a sample temperature of 25°C. The sample conditions for both variants were 0.7 mM protein in 50 mM Tris·HCl pH 7.5, 150 mM Na₂SO₄, 5 mM β-mercaptoethanol, 2 mM NaN₃, 10% D₂O. Data sets were obtained with a constant time relaxation delay of T = 20 ms and effective fields, ν_{CPMG} , between 50 and 1000 Hz. In both cases a total of 18 two-dimensional planes, including four duplicate data points and a reference experiment with the relaxation delay omitted, were recorded. The data was processed with NMRPipe (13) and peaks integrated using PINT (14). Effective transverse relaxation rates were calculated as $R_{2,eff}(v_{CPMG}) = \ln(I_0/I(v_{CPMG}))/T$ where $I(v_{CPMG})$ is the peak intensity for different effective fields and I_0 is the peak intensity in the reference experiment. Here, $v_{CPMG} = 1/(2\tau_{CP})$, where τ_{CP} is the interval between successive 180° refocusing pulses during the CPMG pulse train. Uncertainties in $R_{2,eff}(v_{CPMG})$ values were estimated from the duplicate measurements. All dispersion data was fitted on a per-residue basis to the Bloch-McConnell equations (15) including or excluding two-site exchange. Conformational dynamics were established by F-tests at a significance level of p < 0.01, and dispersion sizes were calculated as the difference between the effective transverse relaxation rates at the lowest effective field and in the limit of infinitely fast pulsing. Figure S1 (following page). Overview of structural results arranged according to the evolutionary trajectory (Fig. 1B). Additional structures are at the bottom left. Numbered footnotes refer to the five different crystal forms, as described below. All structures were superposed to the apo crystal structure of wild type HisA (1), which has 231 ordered residues. Structure superpositioning and calculation of the root mean square deviation (RMSD) for the matching C_{α} atoms was done using the LSQ commands in O (16, 17).

^{#1} Space group P6₁22; $a = b \approx 87$ Å, $c \approx 122$ Å; 1 molecule per asymmetric unit.

Loops 1 and 6 are disordered in this crystal form and loop 5 is involved in crystal packing, preventing formation of the HisA-active conformation even in presence of ProFAR.

^{#2} Space group P3₁21; $a = b \approx 47$ Å, $c \approx 198$ Å; 1 molecule per asymmetric unit.

^{#3} Space group P6₁22; $a = b \approx 62$ Å, $c \approx 607$ Å; 2 molecules per asymmetric unit.

^{#4} Space group P3₂21; $a = b \approx 61$ Å, $c \approx 393$ Å; 3 molecules per asymmetric unit.

^{#5} Space group P2₁2₁2₁; $a \approx 49$ Å, $b \approx 90$ Å, $c \approx 118$ Å; 2 molecules per asymmetric unit.

Figure S2 (following two pages). Electron density maps for each structure, showing ligands and mutation sites. Green mesh: *Fo-Fc* omit map contoured at 3.0 σ; gray mesh: *2Fo-Fc* map contoured at 1.0 σ. (**A**) PRFAR from HisA(D7N/D10G/dup13-15/Q24L/G102A) that was co-crystallized with its substrate, ProFAR (converted to the product PRFAR during crystallization). (**B**) Mutation sites from the HisA(D7N/D10G/dup13-15) structure co-crystallized with ProFAR. (**C-D**) Mutation sites from the HisA(D10G/dup13-15/G102A) apo structure. (**E**) Mutation site from the HisA(L169R) structure soaked with rCdRP. (**F**) Mutation sites from the HisA(D10G/dup13-15/V15[b]M/Q24L/G102A) apo structure. (**I**) Mutation site from the HisA(D10G/dup13-15) structure soaked with rCdRP. (**K-L**) Mutation sites from the HisA(D10G/G102A) apo structure. (**M-N**) Mutation sites from the HisA(D10G/dup13-15/V15[b]M/Q24L/G102A/V106L) structure soaked with rCdRP. (**O**) ProFAR from the structure of HisA(D7N/D10G/dup13-15) soaked with ProFAR. (**P-R**) Mutation sites from the HisA(D10G/dup13-15/Q24L/G102A) apo structure. (**S-T**) Mutation sites from the HisA(D10G/dup13-15/Q24L/G102A) apo structure. (**S-T**) Mutation sites from the HisA(D10G/dup13-15/Q24L/G102A) apo structure. (**S-T**) Mutation sites from the HisA(D10G/dup13-15/Q24L/G102A) apo structure. (**S-T**)

Figure S2. (legend on previous page.)

Figure S2 (continued).

Figure S3. Overlay of all HisA mutant structures (listed in Table S2). HisA specialists are colored in blue, TrpF specialists in yellow and bi-functional enzymes in green. The catalytic face of the enzyme is oriented towards the viewer.

Figure S4. NMR ¹⁵N CPMG relaxation dispersions for resonances with significant conformational dynamics for HisA(dup13-15/D10G). Effective transverse relaxation rates, $R_{2,eff}$, at different effective fields, v_{CPMG} , are shown as filled circles and the lines represent the best fit to the Bloch-McConnell equations for two-site exchange. The insets show corresponding significant relaxation dispersions for HisA(dup13-15). The ordering of the panels is the same as the order of the bars in Fig. 3D.

 Table S1. Characteristics of bi-functional HisA mutants.

Enzyme	$\frac{(k_{cat}/K_{\rm M})^{\rm HisA}}{(\rm s^{-1}.M^{-1})}$	$\frac{(k_{cat}/K_M)^{TrpF}}{(s^{-1}.M^{-1})}$	$(k_{cat}/K_{M})^{HisA}$ \div $(k_{cat}/K_{M})^{TrpF}$	Growth rate as HisA (+Trp), h ⁻¹	Growth rate as TrpF (+His), h ⁻¹	Growth rate when bi- functional, <i>h</i> ⁻¹
HisA(dup13-15/D10G)	$2.8 imes 10^4$	51	550	0.189	0.295	0.143
HisA(dup13-15/D10G/G102A)	9.2×10^3	220	42	0.270	0.409	0.212
HisA(dup13-15/D10G/G102A/Q24L)	5.1×10^3	260	20	0.162	0.509	0.155
HisA(dup13-15/D10G/G102A/Q24L/G44E)	5.2×10^3	140	37	0.238	0.534	0.256
HisA(dup13-15/D10G/G102A/G11D/G44E)	6.7×10^{3}	130	52	0.526	0.531	0.423

Specificity constants are reproduced from Table 1. Growth rate data were reported previously (4).

Table S2. Summary of crystallographic data, refinement statistics and crystallization.

S. enterica HisA variant	D10G, dup13-15	D7N, D10G, dup13-15	D10G, dup13-15,	D10G, G11D, dup13-15_C44F
		uup15-15	G102A	G102A
Data collection				
Beam line	ID23-2	102	ID23-1	ID23-2
Detector	CCD	Pilatus 6M-F	Pilatus 6M	CCD
Space group	P6122	P6122	P6122	$P2_{1}2_{1}2_{1}$
Unit cell parameters:				
a, b, c (Å)	87.2, 87.2, 121.9	62.0, 62.0, 607.1	86.4, 86.4, 122.0	49.2, 91.1, 117.9
α, β, γ (°)	90, 90, 120	90, 90,120	90, 90, 120	90, 90, 90
Molecules per asymmetric unit	1	2	1	2
Matthew's coefficient (A ³ /Da)	2.3	3.3	2.3	2.4
Resolution range (A)	50.00-1.70 (1.80-	50.00-1.90 (1.95-	50.00-1.70 (1.73-	50.00-2.59 (2.71-
	1.70)	1.90)	1.70)	2.59)
Wavelength	0.8726	0.9795	0.9763	0.8726
l otal reflections	330372 (52037)	213/134 (138/97)	578357 (21225)	82382 (6916)
Unique reflections	30/62 (4/52)	56836 (3669)	30311 (1516)	1/013 (2007)
Completeness (%)	99.9 (100)	99.8 (97.8)	99.8 (97.1)	99.7 (98.1)
Redundancy	10.7 (11.0)	37.6 (37.8)	19.1 (14.0)	4.8 (4.8)
$R_{\text{meas}}(\%)$	4.9 (45.6)	9.1 (115.9)	15.7 (216.5)	20.4 (79.5)
$1/\sigma(1)$	30.7 (5.4)	30.0 (4.1)	13.9 (1.3)	9.0 (2.7)
Wilson B-factor (A ⁻)	29.2	27.8	19.6	26.5
$CC \frac{1}{2} (\frac{9}{0})$	100 (95.2)	100 (93.6)	99.9 (40.7)	98.8 (80.0)
Data scaling software	XDS	Aimless	Aimless	Aimless
Refinement	20.55.1.70	40,10,1,00	47.20.1.70	10 50 0 50
Resolution range	28.55-1.70	49.10-1.90	4/.30-1./0	49.50-2.59
Reflection / test set	30/62/1539	565/6/2868	30248 / 1529	16926 / 856
Number of non-nydrogen atoms	2007	3981	1905	3420
macromolecules	1829	3720	1//9	3361
ligands	30 147	28	15	12
water	14/	233	109	4/
K_{work}/K_{free} (%)	17.2720.0	18.0/21.4	19.6/20.9	22.2/28.9
Average B-factors:	28.2	41.0	27.0	22.0
	20.2	41.9	27.9	32.0
ligende	27.4	41.9	27.3	52.1
ligands	41.4	39.0 40.4	44.7	42.5
PMSD from ideal bond longths	0.007	40.4	0.008	23.0
RMSD from ideal bond angles	1.06	0.007	1.15	1.27
Ramachandran plot:	1.00	1.10	1.15	1.27
Preferred (%)	99	98	98	97
Allowed (%)	1	2	2	3
Outliers (%)	0	0	0	0
Model	0	0	0	0
Protein residues [#]	1-15[b] 24-174	Chain A · 1-243·	1-15[a] 24-	ChainA ·1-15[b]
1 Totelli Testades	183-244	ChainB 1-244	179 184-244	23-142 151-174
	100 111		179,101 211	183-244 [.] ChainB [.]
				1-15[b], 23-141.
				150-173, 183-244
Ligands	HEPES, phosphate	Sulfate	Sulfate	Sulfate
Crystallization	0.1 M HEPES pH	2.0 M ammonium	2.0 M ammonium	0.2 M lithium
	7.5, 0.8 M sodium	sulfate, 0.1 M Bis-	sulfate. 0.1 M	sulfate. 0.1 M
	phosphate. 0.8 M	Tris pH 5.5	sodium acetate pH	sodium acetate pH
	potassium	1	4.6	4.5, 30% w/v
	phosphate			PEG8000
Ligand addition	1 f	Co-crystallized with		
~		ProFAR		
Comments				
PDB accession number	5G1T	5AC7	5AC8	5L9F

* Values in parentheses refer to the highest resolution shell.

[#] Residues 10-30 represent loop 1, 129-152 loop 5 and 172-183 loop 6.

S. enterica HisA variant	D7N, D10G, dup13-15, Q24L, G102A	D10G, dup13-15, V15[b]M, Q24L, G102A	D10G, dup13-15, Q24L, G102A	D10G, dup13-15, Q24L, G102A, V106L
Data collection	0102A	0102A		VIOOL
Beam line	102	ID14-4	P14	1023-2
Detector	Pilatus 6M-F	CCD	Pilatus	CCD
Space group	Platus Olvi-I D2221	D6122	P6122	D212121
Unit call parameters:	F 3221	F0122	F0122	F 212121
$a = b = a(\mathbf{A})$	61 2 61 2 201 0	860 860 1222	85 0 85 0 121 0	100 000 1170
a, b, c (A)	01.2, 01.2, 391.9	00.00.122.2	00 00 120	40.0, 00.00
α, p, γ () Molecules per esymmetric unit	90,90,120	90, 90, 120	90, 90, 120	90, 90, 90
Motthew's coefficient ($Å^3/D_0$)	20	1	2.4	22
Matthew S coefficient (A /Da) $P_{accelution manage}(\hat{A})^*$	2.0	2.5	2.4	2.3
Resolution range (A)	30.00-1.80 (1.84-	30.00-1.80 (1.84-	/4.43-1.00 (1./0-	2.40
Waralanath	1.80)	1.80)	1.00)	2.40)
wavelength	0.9/95	0.9/63	0.9/63	0.8/20
I otal reflections	/5544/ (414/4)	33/881 (110/3)	1359688 (223319)	81952 (7078)
Unique reflections	80382 (4268)	25362(1367)	35399 (5723)	19/89 (791)
Completeness (%)	99.6 (94.8)	99.5 (93.2)	99.8 (99.5)	95.5 (76.9)
Redundancy	9.4 (9.7)	13.3 (8.1)	38.4 (38.8)	4.1 (8.9)
$\mathbf{K}_{\text{meas}}(\%)$	7.2 (95.9)	9.9 (109.9)	8.2 (162.4)	16.8 (101.1)
$1/\sigma(1)$	15.7 (2.4)	19.0 (2.0)	36.1 (2.77)	9.9 (1.6)
Wilson B-factor (A)	27.9	1/.0	30.5	44.3
$CC \frac{1}{2} (\%)$	99.9 (88.0)	99.9 (64.5)	100 (80.7)	99.5 (65.6)
Data scaling software	Aimless	Aimless	XDS	Aimless
Refinement	40.10.1.00	17.05 1.00	54 40 1 60	45 10 0 65
Resolution range	49.10-1.80	47.25 - 1.80	/4.43-1.60	45.10-2.65
Reflection / test set	80205 / 4024	25335 / 1291	35398/1769	152767790
Number of non-hydrogen atoms	6206	1962	2015	3230
macromolecules	5521	1823	1886	3176
ligands	152	33	15	28
water	532	105	114	26
R _{work} /R _{free} (%)	17.2/20.6	16.6/21.0	15.5/18.9	24.0/29.9
Average B-factors:	10.2	20.0	21.0	15 (
overall	40.3	28.8	31.2	45.6
macromolecules	40.2	28.1	30.6	45.7
ligands	34.3	47.5	52.8	49.0
water	42.4	34.7	38.6	37.8
RMSD from ideal bond lengths	0.007	0.037	0.027	0.004
RMSD from ideal bond angles	1.08	1.81	2.55	0.760
Ramachandran plot:		00	0.0	24
Preferred (%)	97	98	98	96
Allowed (%)	3	2	2	3.75
Outliers (%)	0	0	0	0.25
Model				
Protein residues"	ChainA: 1-142,	1-15[a], 24-174,	1-15B, 22-174, 180-	Chain A: 1-17, 21-
	149-244; ChainB:	178-180, 182-244	181, 183-244	129, 138-141, 149-
	1-16, 19-141, 150-			172, 182-244;
	244; ChainC: 1-			Chain B: 1-15[a],
	142, 147-244			25-129, 151-172,
	DDD (D		G 10	182-244
Ligands	PRFAR	Sultate, glycerol	Sultate	0.10.10
Crystallization	0.1 M	0.2 M ammonium	0.2 M ammonium	0.18 M ammonium
	MOPS/HEPES-Na	sultate, 0.1 M	sultate, 0.1 M	acetate, 0.09 M
	pH7.5, 0.03 M	sodium acetate pH	sodium acetate pH	sodium acetate, pH
	MgCl ₂ , 0.03 M	4.6, 25% w/v	4.8, 25% w/v	5.15, 27% w/v
	$CaCl_2$, 10% w/v	PEG4000	PEG4000	PEG4000
	PEG20000, 20%			
T 1 111/2	v/v PEG MME 550			0 1 1 11 010-
Ligand addition	Co-crystallized with			Soaked with rCdRP
	ProFAR			100 141 1 1 1
Comments		—	—	138-141 in chain A
	5 4 D 2	* 0437	FT / T1	built as polyalanine
PDB accession number	5AB3	5G1Y	5L6U	5G4E

* Values in parentheses refer to the highest resolution shell.

[#] Residues 10-30 represent loop 1, 129-152 loop 5 and 172-183 loop 6.

S. enterica HisA variant	D7N, D10G,	dup13-15	D10G, G102A	L169R
	dup13-15			
Data collection				
Beam line	ID23-2	BM30	ID14-4	IO2
Detector	Pilatus	ADSC	ADSC	Pilatus M6
Space group	P6122	P6122	P6122	P6122
Unit cell parameters:				
a, b, c (Å)	87.0, 87.0, 120.5	86.6, 86.6, 121.4	86.0, 86.0, 121.6	86.0, 86.0, 122.7
α, β, γ (°)	90, 90, 120	90, 90, 120	90, 90, 120	90, 90, 120
Molecules per asymmetric unit	1	1	1	1
Matthew's coefficient (Å'/Da)	2.4	2.4	2.4	2.4
Resolution range (Å)*	50.00-2.30 (2.44-	50.00-1.60 (1.70-	50.00-2.10 (2.23-	50.00-1.90 (2.02-
	2.30)	1.60)	2.10)	1.90)
Wavelength	0.8726	0.9797	0.9763	0.9795
Total reflections [*]	170686 (27112)	754966 (123820)	277592 (44157)	314134 (49510)
Unique reflections	22042 (3547)	35938 (5789)	16100 (2515)	40024 (6473)
Completeness (%)*	97.3 (97.2)	99.4 (98.4)	99.8 (99.4)	100 (99.8)
Redundancy*	7.7 (7.6)	21.0 (21.4)	17.2 (17.6)	7.8 (7.6)
$R_{meas}(\%)^*$	26.6 (117.8)	5.5 (62.4)	9.0 (62.2)	17.8 (75.8)
$I/\sigma(I)^*$	8.5 (1.8)	42.1 (6.1)	29.2 (5.3)	9.2 (2.3)
Wilson B-factor (Å ²)	34.7	26.2	35.8	25.7
CC ½ (%)	99.1 (57.8)	100 (95.7)	99.9 (93.7)	99.5 (79.9)
Data scaling software	XDS	XDS	XDS	XDS
Refinement				
Resolution range	47.00-2.30	47.18-1.60	47.10-2.10	47.40-1.90
Reflection / test set	22041 / 1100	35934 / 1797	16099 / 805	40017 / 1982
Number of non-hydrogen atoms	1865	1952	1828	1987
macromolecules	1747	1809	1766	1827
ligands	49	16	10	39
water	69	125	52	121
R _{work} /R _{free} (%)	19.9/26.4	18.3/20.6	16.8/22.0	16.9/21.2
Average B-factors:				
overall	30.1	25.4	36.6	25.8
macromolecules	29.8	24.8	36.4	25.1
ligands	38.5	28.3	57.7	37.8
water	31.6	32.8	38.5	32.6
RMSD from ideal bond lengths	0.004	0.006	0.009	0.010
RMSD from ideal bond angles	0.792	1.06	1.07	1.19
Ramachandran plot:	···· -	****	±	**=-
Preferred (%)	97	99	98	98
Allowed (%)	3	1	2	2
Outliers (%)	Ő	0	0	- 0
Model	v	V	V	V
Protein residues [#]	1-15[a] 24-174	1-15[b] 24-174	1-14 26-174 183-	1-16 24-175 178-
1 Iotem residues	180 _ 24	187_744	20-17-1, 105 244	744
Ligands	ProFAR	Phosnhate	Sulfate	Sulfate glycerol
Crystallization	2 M ammonium	0.8 M sodium	0.2 M ammonium	2 3 M ammonium
Crystamzation	nhosnhate	nhosnhate	acetate 0.1 M	sulfate 0.1 M
	monobasic 0.1 M	monobasic 0.8 M	sodium acetate nH	sodium acetate nH
	Trie nH 8 5	notassium	5 15 20%	
	1115 p11 0.5	nhoenhate	DEC4000	7.0
		monobasic 0.1 M	LO4000	
		UEDES pU 7 5		
Ligand addition	Soakad with	Sooked with rCdPP		Soakad with rCdDD
	BroEAD in aruo	Soaked with reality		in arvo huffor:
	huffor: 50 mM			50 mM HEDES
	UEDES sodium nU			sodium pH 7, 150
	7 150 mM sodium			mM sodium
	7, 150 milli Soutum			ablarida 20%
	DEC/000_15%			DEC4000 15%
	alveerol			alveerol
Commonta	giyceioi			giyceioi
PDP accession number		5021	5C2W	5021
I DD accession number	JG4 W	3021	3G2 W	JU2H

* Values in parentheses refer to the highest resolution shell.

[#] Residues 10-30 represent loop 1, 129-152 loop 5 and 172-183 loop 6.

S. enterica HisA variant	D10G		
Data collection			
Data conection Deem line	ID14.4		
Detector	ID14-4 CCD		
Delector Space group	D6122		
Unit cell peremeters:	P0122		
$a = b = a \begin{pmatrix} \lambda \end{pmatrix}$	95 0 95 0 121 4		
a, b, c(A)	85.9, 85.9, 121,4		
$(\alpha, \beta, \gamma(\beta))$	90, 90, 120 1		
Motthews's coefficient (λ^3/D_0)	2.4		
Matthew S coefficient (A /Da) $P_{absolution range} (Å)^*$	2.4		
Resolution range (A)	2.00)		
Wayalangth	2.00)		
Tatal reflections*	0.9104		
Luique reflections	210/90 (280/4)		
Onque reflections	18439(2409)		
Completeness (%)	99.7 (98.2)		
Redundancy	11.7 (11.7)		
$R_{\text{meas}}(\%)$	12.2 (85.6)		
$1/\sigma(1)$	17.5 (3.4)		
Wilson B-factor (A ⁻)	32.5		
CC ¹ / ₂ (%)	99.9 (87.8)		
Data scaling software	XDS		
Refinement	17.00.0.00		
Resolution range	47.00-2.00		
Reflection / test set	18458 / 923		
Number of non-hydrogen atoms	1866		
macromolecules	1755		
ligands	30		
water	81		
R_{work}/R_{free} (%)	17.1/21.0		
Average B-factors:			
overall	32.1		
macromolecules	31.6		
ligands	47.3		
water	35.9		
RMSD from ideal bond lengths	0.008		
RMSD from ideal bond angles	1.13		
Ramachandran plot:			
Preferred (%)	98		
Allowed (%)	2		
Outliers (%)	0		
Model #			
Protein residues"	1-15, 24-175, 184- 244		
Ligands	Phosphate		
Crystallization	0.8 M sodium		
	phosphate		
	monobasic, 0.8 M		
	potassium		
	phosphate		
	monobasic, 0.1 M		
	HEPES pH 7.5		
Ligand addition	r ···		
Comments	_		
PDB accession number	5G5I		
*			

Values in parentheses refer to the highest resolution shell.

 $^{\scriptscriptstyle \#}$ Residues 10-30 represent loop 1, 129-152 loop 5 and 172-183 loop 6.

SI References

- Söderholm A, et al. (2015) Two-step ligand binding in a (βα)₈ barrel enzyme: substrate-bound structures shed new light on the catalytic cycle of HisA. *J Biol Chem* 290:24657-24668.
- 2. Patrick WM, Matsumura I (2008) A study in molecular contingency: glutamine phosphoribosylpyrophosphate amidotransferase is a promiscuous and evolvable phosphoribosylanthranilate isomerase. *J Mol Biol* 377:323-336.
- 3. Gerth ML, Nigon LV, Patrick WM (2012) Characterization of the indole-3-glycerol phosphate synthase from *Pseudomonas aeruginosa* PAO1. *Protein J* 31:359-365.
- 4. Näsvall J, Sun L, Roth JR, Andersson DI (2012) Real-time evolution of new genes by innovation, amplification, and divergence. *Science* 338:384-387.
- 5. Knöppel A, Näsvall J, Andersson DI (2016) Compensating the fitness costs of synonymous mutations. *Mol Biol Evol* 33:1461-1477.
- 6. Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66:125-132.
- Winn MD, et al. (2011) Overview of the CCP4 suite and current developments. *Acta* Crystallogr D Biol Crystallogr 67:235-242.
- McCoy AJ, et al. (2007) Phaser crystallographic software. *J Appl Crystallogr* 40:658-674.
- 9. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. *Acta Crystallogr D Biol Crystallogr* 66:486-501.
- 10. Afonine PV, et al. (2012) Towards automated crystallographic structure refinement with phenix.refine. *Acta Crystallogr D Biol Crystallogr* 68:352-367.
- Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. *Phys Rev* 94:630-638.
- 12. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. *Rev Sci Instrum* 29:688-691.
- Delaglio F, et al. (1995) NMRPipe a multidimensional spectral processing system based on UNIX pipes. *J Biomol NMR* 6:277-293.
- Ahlner A, Carlsson M, Jonsson BH, Lundström P (2013) PINT: a software for integration of peak volumes and extraction of relaxation rates. *J Biomol NMR* 56:191-202.
- McConnell HM (1958) Reaction rates by nuclear magnetic resonance. *J Chem Phys* 28:430-431.

- Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. *Acta Crystallographica* A47:110-119.
- 17. Kleywegt GJ, Jones TA (1997) Detecting folding motifs and similarities in protein structures. *Methods Enzymol* 277:525-545.