Comparison of the Photosynthetic Characteristics of Three Submersed Aquatic Plants¹

Received for publication May 10, 1976 and in revised form August 13, 1976

THAI K. VAN, WILLIAM T. HALLER, AND GEORGE BOWES² Departments of Agronomy and Botany, University of Florida, Gainesville, Florida 32611

ABSTRACT

Light- and CO2-saturated photosynthetic rates of the submersed aquatic plants Hydrilla verticillata, Ceratophyllum demersum, and Myriophyllum spicatum were 50 to 60 µmol O2/mg Chl hr at 30 C. At air levels of CO₂, the rates were less than 5% of those achieved by terrestrial C₃ plants. The low photosynthetic rates correlated with low activities of the carboxylation enzymes. In each species, ribulose 1,5-diphosphate carboxylase was the predominant carboxylation enzyme. The apparent $K_m(CO_2)$ values for photosynthesis were 150 to 170 μ M at pH 4, and 75 to 95 μ M at pH 8. The K_m(CO₂) of Hydrilla ribulose 1,5-diphosphate carboxylase was 45 μ M at pH 8. Optimum temperatures for the photosynthesis of Hydrilla, Myriophyllum, and Ceratophyllum were 36.5, 35.0, and 28.5 C, respectively. The apparent ability of each species to use HCO₃⁻ ions for photosynthesis was similar, but at saturating free CO_2 levels, there was no indication of HCO_3^- use. Increasing the pH from 3.1 to 9.2 affected the photosynthetic rate indirectly, by decreasing the free CO₂. With saturating free CO₂ (0.5 mM), the maximum photosynthetic rates were similar at pH 4 and 8. Carbonic anhydrase activity, although much lower than in terrestrial C3 plants, was still in excess of that required to support HCO₃⁻ utilization.

Hydrilla and Ceratophyllum had CO₂ compensation points of 44 and 41 μ l/l, respectively, whereas the value for Myriophyllum was 19. Relatively high CO₂ compensation points under 1% O₂ indicated that some "dark" respiration occurred in the light. The inhibition of photosynthesis by O₂ was less than with terrestrial C₃ plants. Glycolate oxidase activity was 12.3 to 27.5 μ mol O₂/mg Chl hr, as compared to 78.4 for spinach. Light saturation of photosynthesis occurred at 600 to 700 μ einsteins/m² sec in each species grown under full sunlight. Hydrilla had the lowest light compensation point, and required the least irradiance to achieve the half-maximal photosynthetic rate.

Field measurements in a *Hydrilla* mat indicated that in the afternoon, free CO_2 dropped to zero, and O_2 rose to over 200% air saturation. Most photosynthetic activity occurred in the morning when the free CO_2 was highest and O_2 and solar radiation lowest. The low light requirement of *Hydrilla* probably provides a competitive advantage under these field conditions.

Hydrilla verticillata is a submersed, fresh-water angiosperm in the family Hydrocharitaceae. Since its introduction into Florida in 1960, it has become widely distributed, and is now regarded as a major aquatic weed problem in the Southeastern states (19). Once established in a body of water, it readily dominates and

² Department of Botany. To whom reprint requests should be sent.

replaces native submersed species (19), such as *Ceratophyllum* demersum. The reason for this rapid dominance is uncertain. Myriophyllum spicatum is a submersed macrophyte that was also introduced, although earlier, into the United States. It has become widespread in the Northeast, but for reasons unknown, its distribution in Florida is limited. A major objective of this study was to compare the photosynthetic characteristics of these aquatic species in an attempt to explain the competitive success of Hydrilla.

The majority of terrestrial plants can be classified as C₃ or C₄ plants, based on specific characteristics associated with their photosynthetic pathways (4). C4 plants typically have higher photosynthetic rates and greater productivity than C₃ plants (4). The photosynthetic mechanisms of submersed macrophytes, although basic to their productivity, have received limited attention. For Hydrilla and Ceratophyllum, the photosynthetic pathways and most of the associated characteristics are unknown. *Myriophyllum* apparently exhibits characteristics of both C_3 and C₄ plants. The initial product of CO₂ fixation is 3-P-glycerate (29), as in C₃ plants; but it reportedly also has a high optimum temperature for photosynthesis and a low CO₂ compensation point (29), which are characteristics usually associated with C₄ plants. In contrast, the submersed macrophytes Egeria densa and Lagarosiphon major, which belong to the same family as Hydrilla, possess CO₂ compensation points similar to those of C_3 plants, and their photosynthesis is inhibited by O_2 (9). Thus, aquatic macrophytes appear to exhibit some diversity in regard to their photosynthetic mechanism.

In an aquatic environment, the inorganic carbon can exist in several forms: free CO₂, H₂CO₃, HCO₃⁻, or CO₃²⁻, depending on the pH. For both aquatic and terrestrial plants, free CO₂ is the form most readily utilized for photosynthesis (25). A number of submersed plants, including Myriophyllum, reportedly can use HCO_3^- ions in addition to free CO_2 for photosynthesis (30). Recent work, however, suggests that several aquatic species are unable to use HCO_3^- ions (9). It has been argued that the ability to use HCO₃⁻ ions would provide an aquatic plant with a competitive advantage in alkaline waters (21). A further factor that may influence the competitive success of an aquatic plant is its photosynthetic response to light. Egeria, for example, reportedly replaces both Elodea and Lagarosiphon because of its lower light requirement for photosynthesis (9). In this study, we have examined the ability of Hydrilla, Ceratophyllum, and Myriophyllum to use HCO₃⁻ ions for photosynthesis and also the photosynthetic responses of these plants to varying irradiance. The possible ecological implications of these factors are discussed.

MATERIALS AND METHODS

Materials. H. verticillata (L.F.) Royle, C. demersum L., and Cabomba caroliniana Gray were collected from Rodman Reservoir, Lake Killarney, or Orange Lake, and M. spicatum L. was collected from Crystal River, Fla. Photosynthetic and enzymic

¹ This study was supported in part by a Florida Department of Natural Resources Research grant, and by funds from the Center for Environmental Programs of the Institute of Food and Agricultural Sciences. Published as Journal Series No. 6189 of the Florida Agricultural Experiment Stations.

30

Plant Physiol. Vol. 58, 1976

measurements were made within 2 to 3 days of collection. Plants were held at 25 C in aerated lake water under a 12-hr day. All plants were washed free of epiphytes and bacteria before use. Spinach (*Spinacia oleracea* L.) was locally purchased. Soybean (*Glycine max* [L.] Merrill) and maize (*Zea mays* L.) were greenhouse-grown.

As used in this paper, NaHCO₃ refers to the total inorganic carbon, HCO_3^- refers to bicarbonate ions, and free CO_2 refers to H_2CO_3 and CO_2 , calculated on the basis of published equilibrium constants (16, 21).

Field Measurements. Environmental parameters were measured in Lake Killarney, in the surface 5 cm of a *Hydrilla* mat over a 24-hr period. Free CO_2 and HCO_3^- levels were determined according to standard methods (1). Temperature and O_2 were measured with a Yellow Springs O_2 meter, model 54. Irradiance was determined with a Lambda quantum meter, model LI-185.

Polarographic O₂ Determinations. Unless otherwise stated, photosynthetic rates were measured as O₂ evolution at 30 C using a Clark O₂ electrode (Yellow Springs Instrument Co., model 53). The reaction vessels were irradiated with two 150-w incandescent lamps, which gave a saturating intensity of 1000 μ einstein/m²·sec (400-700 nm). Leaves from the apical portions of the plants were immersed in 3 ml of 25 mm buffer and photosynthesis was initiated by the injection of 0.1 ml NaHCO₃ at various concentrations. Citrate-phosphate buffer was used to obtain pH values between 3.1 and 5.8, phosphate buffer for 5.8 to 6.9, and tris-HCl for 6.9 to 9.2. The buffering capacity of the higher NaHCO₃ concentrations was compensated for by the addition of predetermined amounts of 0.2 M HCl. Preliminary experiments indicated no effect of the buffers per se on rates of O₂ evolution during the 10 min required for one rate determination. All treatments were run in triplicate.

Infrared Gas Analyzer Determinations. To measure CO₂ compensation points, three or four apical plant segments, 12 cm long, were excised under water and immersed in 150 ml of 10 mm MES-NaOH, pH 5.5, and 5% v/v Hoagland solution contained in a 200-ml gas washing bottle fitted with a fritted glass gas filter. The bottle was then immersed in a glass-sided water bath and connected into a circuit consisting of a peristaltic pump, a moisture trap, a silica gel drying column, a Beckman model 215A infrared CO₂ gas analyzer, and a Beckman model 1008 O₂ analyzer. The plant material was irradiated through the water bath by a 1000-w quartz-halogen lamp (Berkley Colortran, multi-10A) providing 1000 μ einstein/m² · sec (400-700 nm). An equilibrium period of 1 hr was used to reduce interference by residual gases in the lacunal system of the plants. The system was flushed with gas mixtures containing accurately metered concentrations of O₂, CO₂, and N₂; it was then closed and the gases were circulated by the peristaltic pump at 1 liter/min. The equilibrium point attained by the CO₂ concentration was taken as the CO₂ compensation point. Determinations were usually made in duplicate, the first starting above the CO₂ compensation point, the second from below it. The CO₂ leakage rate was found to be negligible. To avoid complicating effects from HCO₃⁻ formation, the medium was held at pH 5.5.

This system was also used for measurements of photosynthetic rates at air levels of CO_2 , by determining the time required for the plant material in the closed system to reduce the CO_2 level of the circulating gas mixture from 340 to 335 μ l CO_2/l . The amount of CO_2 taken up was calculated from the volume of the total system (550 ml). Where necessary, the irradiance was varied with neutral density filters.

Enzyme Assays. Leaf samples of approximately 500 mg fresh weight were ground at 4 C in a TenBroeck homogenizer with 10 ml of 50 mM tris-HCl, pH 8, containing 10 mM MgCl₂, 0.1 mM EDTA, 5 mM DTT,³ 5 mM D-isoascorbate, and 2% w/v PVP-40.

Aliquots were taken for Chl determinations and the homogenates were then centrifuged for 10 min at 1000g and 4 C. The supernatants were assayed immediately for PEP and RuDP carboxylase activity. The assay solutions for RuDP carboxylase contained in 1 ml: 50 mм tris-HCl, pH 8; 10 mм MgCl₂; 0.1 mм EDTA; 5 mm DTT; 0.4 mm RuDP; 20 mm NaH¹⁴CO₃ (0.2µCi/ μ mol); and 0.1 ml leaf extract. The PEP carboxylase assays were similar, except 5 mm PEP was substituted for RuDP and only 10 mM NaH¹⁴CO₃ was used. Before addition of buffer, NaH¹⁴CO₃, RuDP or PEP, and the leaf extract, the assay solutions at pH 5 were flushed and shaken for 5 min with He gas to remove dissolved CO₂ and O₂. The assay flasks were sealed and the remaining components, with the exception of RuDP or PEP, were injected and preincubated for 3 min. The reactions were initiated with RuDP or PEP and halted after 3 min at 30 C with 0.1 ml of 6 м HCl saturated with 2,4-dinitrophenylhydrazine. Aliquots were placed in scintillation vials, dried at 35 C under an air stream, and the radioactivity determined by liquid scintillation spectroscopy. All assays were run in triplicate.

Glycolate oxidase activity was assayed polarographically at 30 C in the presence of 14 mM glycolate (15). Carbonic anhydrase activity was determined by a modified Veronal indicator method (13). The Chl concentration was determined by the method of Arnon (2).

RESULTS

Field Measurements. In many Florida lakes during spring through autumn, *Hydrilla* plants form mats of vegetation just below the water surface. Light penetration through the mat is small, and net photosynthesis appears confined to the apical portions of the plant at the mat surface (19). In Figure 1 are plotted various photosynthesis-related parameters, measured over a 24-hr period in the surface 5 cm of water covering a naturally occurring *Hydrilla* mat. Day 1, when measurements

FIG. 1. Diurnal fluctuations in free CO_2 , HCO_3^- , O_2 , and pH measured in the surface 5 cm of water over a *Hydrilla verticillata* mat. Data were collected on October 14 and 15, 1975, at Lake Killarney, Fla. Figures in parentheses refer to the water temperature (C) at the time of sampling.

³ Abbreviations: DTT: dithiothreitol; PEP: phosphoenolpyruvate; RuDP: ribulose 1,5-diphosphate.

763

commenced, was overcast, whereas day 2 was clear and warmer, which accounts for the slight variation in results between the two days. Large diurnal fluctuations in pH, O₂, HCO₃⁻, and free CO_2 were found. Free CO_2 and HCO_3^- were highest at night, presumably due to respiration, but soon after sunrise (06.30 hr), they began to decline, and by the afternoon of day 2, they were both virtually zero. Conversely, due to the changes in inorganic carbon, the pH reached a low value of 7.1 at night but rose to a high of 10.2 in the afternoon of day 2. Oxygen during the night was low, being less than the air-saturated level, but by noon of day 2, it reached a maximum of 16.7 mg/l, equivalent to over 200% air saturation. Similar diurnal fluctuations have been previously reported for dense areas of aquatic vegetation (9). During this 24-hr period, temperatures varied from 25.2 to 31.8 C, however July values as high as 38 C have been measured in Hydrilla mats.

From the O_2 and temperature data in Figure 1, it was possible to calculate the approximate photosynthetic and respiratory activity of the mat over the 24-hr period (18). The data indicate (Table I) that the bulk of the photosynthetic activity occurred between sunrise and noon; net photosynthesis in the afternoon hours was very low. The negative values for the evening and night hours denote respiratory O_2 uptake.

In Figure 2 is plotted the irradiance intercepted by a mat as a function of time after sunrise. The day was clear and the full sun value was 2150 μ einsteins/m²·sec. Even 3 hr after sunrise, the irradiance at 5 cm depth was still only about half of the maximum attainable. Corresponding values for the surface, and light

Table I. Photosynthetic and Respiratory Activity in a <u>Hydrilla</u> verticillata Mat over a 24 hr Period. Data calculated from the 0_2 and temperature values in Figure 1.

Time Period	0 ₂ Evolution (+) or Uptake (-)	
hr	g 0 ₂ /m ³	
16:00 - 20:00	- 1.25	
20:00 - 05:30	- 4.87	
05:30 - 12:00	+11.68	
12:00 - 16:00	+ 0.35	
16:00 - 16:00 (24 hr)	+ 5.91	

penetration in clear water at 30 and 60 cm depth are also shown.

Laboratory Measurements. Unless otherwise stated, all measurements were made at 30 C, which corresponds closely to the mean day temperature for Florida lakes in the summer. Optimal temperatures for photosynthetic CO₂ fixation by *Hydrilla, Myriophyllum*, and *Ceratophyllum* were found to be 36.5, 35.0, and 28.5 C, respectively (data not shown). All three species exhibited measurable CO₂ fixation at temperatures as low as 10 C and as high as 44 C.

A number of laboratories have reported that the photosynthetic rates of submersed aquatic macrophytes decrease as the pH of the bathing medium increases (28, 30). With 0.6 mm NaHCO₃ as the inorganic carbon source, we observed similar results for O₂ evolution by Hydrilla (Fig. 3). The concentration of 0.6 mm NaHCO₃ (equivalent to 36.6mg HCO₃^{-/l}) approximated the highest inorganic carbon levels in the lakes from which the plants were collected. The highest, light-saturated, photosynthetic rates were obtained at pH values between 3.1 and 5.8. Above pH 5.8, the rate declined, falling to almost zero at 9.2 (Fig. 3). Although experimentally the highest photosynthetic rates were obtained at low pH, the measured pH values in Hydrilla mats from which the plants were collected ranged from pH 7.1 to 10.2 (Fig. 1). The data in Figure 3 for pH values above 7 probably reflect the range of light-saturated photosynthetic rates that occurs in the natural environment. In Figure 3, the per cent free CO₂ present at the various pH values is also shown. With an exception at about pH 5.8, the photosynthetic rate paralleled the free CO₂ concentration.

In Figure 4, photosynthetic rates of Hydrilla, Ceratophyllum, and Myriophyllum, as a function of the free CO₂ concentration, are compared at pH 4 and pH 8. At pH 4, free CO₂ comprised 99.3% of the total inorganic carbon in solution, while at pH 8 it was only 1.4%. For reference, the total concentrations of NaHCO₃ at pH 8 are also plotted on the abscissa. For each species, the maximum rate of O₂ evolution was similar at pH 4 and pH 8. However, at pH 4, saturation was achieved with 0.5 mм NaHCO₃, whereas at pH 8, 35 mм NaHCO₃ was required to saturate photosynthesis. The free CO₂ level at these two NaHCO₃ concentrations was similar, approximately 0.5 mm. It would appear that the apparent inhibition by high pH in Figure 3 was an indirect effect of high pH decreasing the free CO₂ level. There was no evidence that pH per se had any direct effect on the photosynthetic rate during these short term experiments. For a given subsaturating level of free CO₂, the photosynthetic rates of the three species were actually higher at pH 8 than at pH 4 (Fig.

FIG. 2. Light penetration in clear lake water as function of the time after sunrise. Full sun value was 2150 µeinsteins/m²·sec.

FIG. 3. Effect of pH on the photosynthetic rate of *Hydrilla verticillata* and on the calculated per cent free CO₂ in solution. Total concentration of inorganic carbon was 0.6 mm.

4.) The higher rates at pH 8 may be attributable to use of $HCO_3^$ ions in addition to free CO_2 (25, 30). The enhancement of photosynthetic rate at pH 8 was similar for each of the three species. On a percentage basis, the enhancement was greatest at the lowest levels of free CO_2 and declined to zero at saturating free CO_2 concentrations. It would appear that free CO_2 was the preferred form of inorganic carbon, because at saturating levels of free CO_2 , increasing the HCO_3^- concentration had a negligible effect on the photosynthetic rate (Fig. 4) and compared with HCO_3^- , much lower concentrations of free CO_2 were required to achieve a given photosynthetic rate.

Carbonic anhydrase, which catalyzes the reversible hydration of CO_2 , may be involved with the ability of plants to use $HCO_3^$ ions for photosynthesis (13, 25). The activity of this enzyme in leaf extracts of *Hydrilla*, *Ceratophyllum*, and *Myriophyllum* was found to be only 253, 292, and 207 units/mg Chl, respectively, as compared to 6283 units/mg Chl in a spinach leaf extract, spinach being representative of terrestrial C₃ plants. However, in terms of absolute rates at 0 C (31), the carbonic anhydrase activity in the aquatic species was still far in excess of that required to support HCO_3^- utilization.

In Table II are listed photosynthetic rates, for the three aquatic species at light and CO_2 saturation at pH 8. They probably represent close to the maximum rates attainable by these three species at 30 C, and as far as can be ascertained, they are the highest rates reported for submersed aquatic angiosperms. However, they are only about 10% of the maximum light and CO_2 -saturated photosynthetic rates achieved by terrestrial angiosperms (26) and by the fresh-water alga, *Chlamydomonas* (5). Also listed in Table II are light-saturated photosynthetic

rates at air levels of CO₂ (340 μ l CO₂/l in the gas phase, or 0.42 mg CO₂/l in the aqueous phase) at pH 5.5. The rates observed for the three aquatic species were less than 5% of those obtainable with terrestrial C_3 plants under comparable CO_2 levels (24). The observation in Table II that the apparent $K_m(CO_2)$ values for photosynthesis of the three aquatic species were as high as 150 to 170 μ M at pH 4 is probably related to the very low photosynthetic rates seen at air levels of CO₂. Apparent $K_m(CO_2)$ values for the photosynthesis of terrestrial plants are reportedly much lower (17), being approximately 10 µM CO₂ (0.03%). Increasing the pH from 4 to 8 decreased the apparent $K_m(CO_2)$ of photosynthesis (Table II), although still not to the level attained by terrestrial plants. This effect of pH on the apparent $K_m(CO_2)$ may be related to the decreased $K_m(CO_2)$ observed at high pH with RuDP carboxylase from spinach (8), or it may reflect the use of HCO_3^- ions at alkaline pH values.

Among terrestrial C_3 plants, RuDP carboxylase has been suggested to be an important rate-limiting step in light-saturated photosynthesis (3). The activity of this enzyme, together with the activity of PEP carboxylase, was determined in crude extracts of the three aquatic species (Table III). In each case, RuDP carboxylase was the predominant carboxylation enzyme. On a Chl basis, the RuDP carboxylase activities corresponded closely with the maximum photosynthetic rates attained by the three species (Table II). Although for the aquatic species, the activities of both carboxylases were lower than for spinach (Table III), the ratio of PEP to RuDP carboxylase was similar to spinach, being in the range generally found with C_3 plants (6, 23). Hydrilla and spinach were also similar with regard to the apparent K_m(HCO₃⁻ and CO₂) values of their extracted RuDP

FIG. 4. Photosynthetic rates of Hydrilla verticillata, Ceratophyllum demersum, and Myriophyllum spicatum at pH 4 and pH 8 as a function of the free CO_2 concentration. For reference, the total inorganic carbon (NaHCO₃) concentration is also shown.

carboxylases (Table III), despite the high apparent $K_m(CO_2)$ for photosynthesis in the aquatic species (Table II).

Terrestrial C_3 plants, because of the O_2 sensitivity of the initial carboxylation enzyme, RuDP carboxylase (6, 7), exhibit a marked inhibition of photosynthesis at atmospheric levels of O_2 . Figure 5 shows the effect of O_2 on photosynthetic CO_2 fixation by the three aquatic species at 340 μ l CO_2/l in the gas phase. On the abscissa is plotted per cent O_2 in the gas phase, and for reference, the equivalent mg O_2/l dissolved in the aqueous phase. The photosynthesis of all three species was inhibited by O_2 . At 21% O_2 (7.9 mg/l), Hydrilla and Ceratophyllum were inhibited 20.5% and 20.2%, respectively, whereas Myriophyllum was only inhibited 9.3%.

A further characteristic of C₃ plants is a high CO₂ compensation point due to photorespiratory CO₂ release in the light (12). Table IV presents the CO₂ compensation points at 25 C of the three aquatic species in 21% and 1% O₂ gas phase, and for comparison the values for soybean and maize leaves. The aquatic species were freshly collected from their aquatic habitats. The pH of the medium was held at pH 5.5 because in preliminary experiments, high pH levels reduced the CO₂ compensation point, confirming the report of Brown et al. (9). In our system, this was found to be an artifact. Bicarbonate formation in high pH solutions acted as a sink for free CO₂, and thus reduced the CO₂ in the gas phase measured by the analyzer. At pH 5.5 and 21% O_2 , the aquatic species exhibited higher CO_2 compensation points than are found with terrestrial C₄ plants such as maize (Table IV). Hydrilla and Ceratophyllum were similar to the terrestrial C₃ plant, soybean; however Myriophyllum was intermediate between soybean and maize (Table IV). In terrestrial C₃ plants at 1% O₂, photorespiration is negligible, and hence the CO₂ compensation point is typically close to zero. For the three aquatic species, relatively high values were obtained at 1% O₂ (Table IV).

Glycolate oxidase activity is associated with an active photorespiratory pathway, being relatively high in C_3 plants and usually much lower in C_4 plants (22). In the three aquatic species under investigation, glycolate oxidase activity was detectable in leaf extracts, but at a level lower than in spinach (Table IV). It was appreciably higher than measured in leaf extracts of maize (Table IV).

In Figure 6 is shown the effect of increasing irradiance on the photosynthetic CO₂ fixation rate of the three aquatic species and also Cabomba caroliniana, a native submersed macrophyte common to Florida waters. As in the natural habitat, the CO₂ concentration was subsaturating at 340 μ l/l in the gas phase. All of the plants were freshly collected from surface waters exposed to full sun. The species tested did not differ greatly in the irradiance required to saturate photosynthesis; saturation occurred at about 600 to 700 µeinsteins/m² · sec (Fig. 6). Hydrilla and Ceratophyllum had similar photosynthetic rates at light saturation (Fig. 6), Cabomba had the lowest rate. The rates of dark respiration were similar for the species investigated, being 2 to 3 μ mol CO₂ evolved/mg Chl·hr. Of the species examined, Hydrilla exhibited the lowest light compensation point (Fig. 6) and the lowest irradiance requirement to achieve half of the lightsaturated rate $(1/2V_{max})$. Thus, at the light compensation of Ceratophyllum (35 μ einsteins/m²·sec), Hydrilla was capable of photosynthesizing at 27% of its light-saturated rate.

DISCUSSION

The classification of submersed fresh-water plants in terms of their photosynthetic carbon fixation pathway is somewhat obscure (4). In this study, *Hydrilla*, *Ceratophyllum*, and *Myriophyllum* exhibited a number of characteristics associated with the C_3 photosynthetic pathway. The predominant carboxylation enzyme was RuDP carboxylase, which supports the finding that 3-PGA is the major first product of photosynthetic carbon fixa-

 Table II.
 Photosynthetic Rates at Saturating and Air Levels of CO2, and the Apparent Km(CO2) Values for Photosynthesis of <u>Hydrilla verticillata</u>, <u>Myriophyllum spicatum</u>, and <u>Ceratophyllum demersum</u>.

Light and Co Species Saturated Photosynthetic	Light and CO ₂ Saturated	Light Saturated Photosynthetic Rate at 340 µl CO ₂ /1 (gas phase)	Apparent Km(CO ₂) for Photosynthesis	
	Photosynthetic Rate		рН 4	рН 8
	µmole 0 ₂ /mg Chl.hr	umole CO ₂ /mg Chl.hr		ıM
. verticillata	54	4.6	170	90
. spicatum	51	3.3	150	75
. demersum	58	4.9	165	95

¹ Derived from 1/2 Vmax.

 Table III.
 RuDP and PEP Carboxylase Activities in Leaf Extracts of Hydrilla verticillata, Myriophyllum spicatum, Ceratophyllum demersum, and Spinacia oleracea.

Species	Carboxylase Activity		Km ^l Values for RuDP Carboxylase	
	RuDP	PEP	HC03	co ₂
	µmole CO ₂ f	ixed/mg Chl.hr	mМ	μM
. verticillata	50.6	18.5	3.2	45
. spicatum	69.7	7.1	-	-
. demersum	69.9	5.5	-	-
. oleracea	329.6	40.2	3.6	50

Derived from 1/2 Vmax.

tion in Myriophyllum (29); however, the activity of this enzyme was much lower than in spinach. The aquatic species had low photosynthetic rates, in fact substantially lower than terrestrial C_3 plants, and were inhibited by 21% O_2 in the gas phase. At similar O_2 and CO_2 levels, terrestrial C_3 plants show 30 to 40% inhibition of net photosynthesis (12, 14); for the aquatic species, the inhibition was only 10 to 20%. Under 21% O_2 , the CO_2 compensation points of Hydrilla and Ceratophyllum were similar to those of C₃ plants, but with Myriophyllum, it was significantly lower. It was not, however, zero, as Stanley and Naylor (29) inferred. It appeared to be intermediate between C₃ and C₄ plants, and in this respect, resembled Panicum millioides, a terrestrial C₃ plant with a reduced O₂ inhibition of photosynthesis and CO₂ compensation point (10, 23). With several aquatic macrophytes, we have observed large, intraspecific variations in the CO₂ compensation point that appear to be environmentally related (Bowes, G. and A. S. Holaday, unpublished

FIG. 5. Effect of O₂ on the photosynthetic CO₂ fixation rates of *Hydrilla verticillata*, Ceratophyllum demersum, and Myriophyllum spicatum at pH 5.5. Measurements were made at 340 μ l CO₂/l in the gas phase (equivalent to 0.42 mg CO₂/l in the aqueous phase).

data), which may account for the conflicting reports with submersed aquatic plants (9, 29). Unlike more typical C_3 plants, the CO₂ compensation points of the aquatic species remained quite high under 1% O₂ in the gas phase. A similar result has been reported for *Egeria densa* (9). It may indicate that dark respiration in these aquatic species continues unabated in the light. At 340 μ l/l CO₂ in the gas phase, dark respiration was equivalent to over 50% of the light-saturated net photosynthetic rate. For terrestrial plants, dark respiration in the photosynthetic tissues is typically only 5 to 10% of photosynthesis (33).

A high CO₂ compensation point under 21% O₂ suggests an active photorespiratory pathway, with concomitantly high glycolate oxidase activity (4, 12, 22). In the aquatic species examined, the activity of glycolate oxidase was between 15 and 35% of that

Table IV. CO₂ Compensation Points and Glycolate Oxidase Activity of <u>Hydrilla verticillata</u>, <u>Myriophyllum spicatum</u>, and <u>Ceratophyllum demersum</u> in <u>Comparison with Terrestrial</u> $\overline{C_3}$ and $\overline{C_4}$ Species.

Species	CO ₂ Compensation Point		Glycolate Oxidase
	21% 0 ₂	1% 0 ₂	Activity
	μ1/1		µmole 0 ₂ /mg Chl.hı
I. verticillata	44	17	12.3
A. spicatum	19	9	27.5
C. demersum	41	11	22.2
. max	44	5	-
. oleracea	-	-	78.4
. mays	0	0	8.6

found in spinach leaves. This may indicate that the photorespiratory capacity of aquatic species is less than terrestrial C_3 plants. Hough and Wetzel (20) reported that photorespiratory ¹⁴CO₂ release by the submersed macrophyte Najas flexilis was limited in comparison with terrestrial C_3 plants because of the limited solubility of O₂ in water. However, for aquatic and terrestrial plants, O_2 has to dissolve to become available to the cells. Our field measurements (Fig. 1) suggest that aquatic plants under certain conditions may be exposed to dissolved O₂ levels far in excess of those faced by terrestrial plants. It appears more likely that any reduced photorespiration in aquatic plants is a function of generally lower enzyme activities. When the low photosynthetic rate and reduced activities of RuDP carboxylase and glycolate oxidase are taken into account, the ratio of photosynthesis to photorespiration may be similar to that occurring in more typical C_3 plants, a conclusion supported by the CO_2 compensation point measurements (Table IV).

A further characteristic associated with the C_3 pathway is a low (25 C) optimum temperature for photosynthesis (4, 12). *Ceratophyllum*, with a value of 28.5 C, is thus similar to C_3 plants. A lower optimum of 20 C has been observed with *Ceratophyllum* growing in cooler waters (11). Both *Hydrilla* and *Myriophyllum* exhibited high optimum temperatures for photosynthesis reminiscent of C_4 plants (4). The high optimum temperature in C_4 plants is at least partially related to the absence of an inhibitory effect of 21% O_2 on photosynthesis (22). This explanation is unlikely to apply to *Hydrilla* and *Myriophyllum*, as both species exhibited some O_2 inhibition.

Leaf anatomy has been widely used to differentiate between C_3 and C_4 plants (4). In C_3 plants, the chloroplasts are distributed throughout the leaf, whereas in C_4 plants, they are generally restricted to the bundle sheath cells and an abutting ring of mesophyll cells. The leaves of *Myriophyllum* (27), *Hydrilla*, and *Ceratophyllum* (Bowes, G., unpublished observations), appear

FIG. 6. Effect of light on the photosynthetic CO₂ fixation rates of *Hydrilla verticillata*, Ceratophyllum demersum, Myriophyllum spicatum, and Cabomba caroliniana at pH 5.5. All measurements were made at 340 μ l CO₂/l in the gas phase (equivalent to 0.42 mg CO₂/l in the aqueous phase). L.S.: irradiance required for light saturation; L.C.P.: irradiance at the light compensation point; $1/2V_{max}$: irradiance required for half-maximal photosynthetic rate.

anatomically more similar to C_3 than to C_4 plants. From these considerations, it appears that the three aquatic species examined are basically C_3 plants, although in certain respects they are atypical of this grouping.

In the field, *Hydrilla* often appears luxuriant, and this, coupled with its ability to dominate large areas of water, belies its low photosynthetic capability. The ability to cover large areas despite a low photosynthetic rate is probably related to the low dry to fresh weight ratio of aquatic plants. The dry weight of a *Hydrilla* plant comprises only 8.8% of the fresh weight, whereas the value for a terrestrial soybean leaf is about 22%. In aquatic systems, it is likely that less photosynthate has to be used for support of the plant. The low photosynthetic rate measurements reflect productivity data, as on a dry weight basis, submersed fresh-water plants are less productive than terrestrial systems (32).

The low photosynthetic rates cannot be attributed solely to diffusion limitations in an aquatic environment, as certain aquatic multicellular and unicellular algae photosynthesize at rates comparable to terrestrial angiosperms (5, 26). The low RuDP carboxylase activity and the high apparent $K_m(CO_2)$ values are probably contributory factors to the low photosynthetic rates. In the lake, the maximum free CO₂ level was equivalent to only 48 µm, indicating that in the natural habitat these plants not only photosynthesize at CO₂ levels below saturation but also below their apparent $K_m(CO_2)$. The high apparent $K_m(CO_2)$ values for photosynthesis are not of universal occurrence in aquatic species as the fresh-water alga, Chlamydomonas, reportedly has a low value similar to terrestrial plants (5). It is unlikely that the high apparent $K_m(CO_2)$ values are due to RuDP carboxylase kinetics, as Hydrilla and spinach RuDP carboxylases exhibited similar $K_m(CO_2)$ values.

At subsaturating CO_2 levels, the enhancement in photosynthetic rate at pH 8 as compared with pH 4 has traditionally been regarded as evidence for HCO_3^- utilization (25, 30). However, an increase in the affinity of RuDP carboxylase for CO_2 at high pH and HCO_3^- concentrations (8) may provide an alternative explanation for the phenomenon. If the enhancement does reflect HCO_3^- use, it appears unlikely that it could be a factor enabling *Hydrilla* to replace native species, because for the three species examined, the degree of enhancement was similar. The importance of HCO_3^- use for the growth of aquatic plants is difficult to estimate, and has yet to be unequivocally demonstrated.

In areas of dense aquatic vegetation most of the daily photosynthetic activity occurs during the early morning hours (Table I). It is during this period that solar radiation is low (Fig. 2), and thus the photosynthetic response of the plants to light should be an important determinant of competitive success. For the aquatic species examined, the irradiance required to saturate photosynthesis was similar. Saturation occurred at 28 to 33% of the equivalent full sun intensity. Thus, in the field, photosynthesis in the surface regions should not be light-limited for large parts of the day, and Hydrilla and Ceratophyllum might be expected to have equivalent photosynthetic rates (Fig. 6). However, the aquatic species differed in the irradiance required to achieve the half-maximal photosynthetic rate and the light compensation point. To achieve a given, light-limited photosynthetic rate, Hydrilla had the lowest light requirement of the species examined. In the hours following sunrise, when free CO₂ is highest and most photosynthetic activity occurs, this low light requirement would appear to provide Hydrilla with a distinct advantage.

Acknowledgments – We wish to thank L. A. Garrard for helpful discussions and M. H. Gaskins for use of the gas analyzer.

LITERATURE CITED

- 1. AMERICAN PUBLIC HEALTH ASSOCIATION. 1971. Standard Methods for the Examination of Water and Waste Water. Government Printing Office, Washington, D. C.
- ARNON, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in *Beta vulgaris*. Plant Physiol. 24: 1-15.
- BJÖRKMAN, O. 1968. Carboxydismutase activity in shade-adapted and sun-adapted species of higher plants. Physiol. Plant. 21: 1-10.
- BLACK, C. C., JR. 1973. Photosynthetic carbon fixation in relation to net CO₂ uptake. Annu. Rev. Plant Physiol. 24: 253-286.
- BOWES, G. AND J. A. BERRY. 1972. The effect of oxygen on photosynthesis and glycolate excretion in *Chlamydomonas reinhardtii*. Carnegie Instit. Year Book 71: 148-158.
- BOWES, G. AND W. L. OGREN. 1972. Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J. Biol. Chem. 247: 2171-2176.
- BOWES, G., W. L. OGREN, AND R. H. HAGEMAN. 1971. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45: 716-722.
- BOWES, G., W. L. OGREN, AND R. H. HAGEMAN. 1975. pH Dependence of the K_m(CO₂) of ribulose 1,5-diphosphate carboxylase. Plant Physiol. 56: 630-633.
- BROWN, J. M. A., F. I. DROMGOOLE, M. W. TOWSEY, AND J. BROWSE. 1974. Photosynthesis and photorespiration in aquatic macrophytes. *In:* R. L. Bieleski, A. R. Gerguson, and M. M. Cresswell, eds., Mechanisms of Regulation of Plant Growth, Bulletin 12. The Royal Society of New Zealand, Wellington. pp. 243-249.
- BROWN, R. H. AND W. V. BROWN. 1975. Photosynthetic characteristics of Panicum millioides, a species with reduced photorespiration. Crop Sci. 15: 681-685.
- CARR, J. L. 1969. The primary productivity and physiology of *Ceratophyllum demersum*. II. Micro primary productivity, pH, and the P/R ratio. Aust. J. Mar. Freshwat. Res. 20: 127-142.
- CHOLLET, R. AND W. L. OGREN. 1975. Regulation of photorespiration in C₃ and C₄ species. Bot. Rev. 41: 137-179.
- EVERSON, R. G. AND C. R. SLACK. 1968. Distribution of carbonic anhydrase in relation to the C₄ pathway of photosynthesis. Phytochemistry 7: 581-584.
- FORRESTER, M. L., G. KROTKOV, AND C. D. NELSON. 1966. Effect of oxygen on photosynthesis, photorespiration, and respiration in detached leaves. I. Soybean. Plant Physiol. 41: 422-427.
- FREDERICK, S. E., P. J. GRUBER, AND N. E. TOLBERT. 1973. The occurrence of glycolate dehydrogenase and glycolate oxidase in green plants. An evolutionary survey. Plant Physiol. 52: 318-323.
- GIBBONS, B. H. AND J. T. EDSALL. 1963. Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25 C. J. Biol. Chem. 238: 3502-3507.
- 17. GOLDSWORTHY, A. 1968. Comparison of the kinetics of photosynthetic carbon dioxide fixation in maize, sugarcane and its relation to photorespiration. Nature 217: 6.
- HALL, C. A. S. AND R. MOLL. 1975. Methods of assessing aquatic primary productivity. *In:* H. Lieth and R. H. Whittaker, eds., Primary Productivity of the Biosphere. Springer-Verlag, New York. pp. 19-53.
- HALLER, W. T. AND D. L. SUTTON. 1975. Community structure and competition between Hydrilla and Valisneria. Hyacinth Contr. J. 13: 48-50.
- 20. HOUGH, R. A. AND R. G. WETZEL. 1972. A ¹⁴C-assay for photorespiration in aquatic plants. Plant Physiol. 49: 987-990.
- 21. HUTCHINSON, G. E. 1957. A Treatise on Limnology, Vol. I. John Wiley & Sons, New York.
- JACKSON, W. A. AND R. J. VOLK. 1970. Photorespiration. Annu. Rev. Plant Physiol. 21: 385-432.
- KESTLER, D. P., B. C. MAYNE, T. B. RAY, L. D. GOLDSTEIN, R. H. BROWN, AND C. C. BLACK. 1975. Biochemical components of the photosynthetic CO₂ compensation point of higher plants. Biochem. Biophys. Res. Commun. 66: 1439-1446.
- LILLEY, R. MCC. AND D. A. WALKER. 1975. Carbon dioxide assimilation by leaves, isolated chloroplasts, and ribulose bisphosphate carboxylase from spinach. Plant Physiol. 55: 1087-1092.
- RAVEN, J. A. 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45: 167-221.
- RAVEN, J. A. AND S. M. GLIDWELL. 1975. Photosynthesis, respiration and growth in the shade alga Hydrodictyon africanum. Photosynthetica 9: 361-371.
- 27. SCULTHORPE, C. D. 1967. The Biology of Aquatic Vascular Plants. E. Arnold, London.
- SHIYAN, P. N. AND A. I. MEREZHRO. 1972. Effect of hydrogen ion concentration on photosynthesis and radiocarbon metabolism in aquatic plants. Hydrobiol. J. 8: 23-29.
- STANLEY, R. A. AND A. W. NAYLOR. 1972. Photosynthesis in Eurasian watermilfoil (Myriophyllum spicatum L.). Plant Physiol. 50: 149-151.
- STEEMANN NIELSEN, E. 1960. Uptake of CO₂ by the plant. In: W. Ruhland, ed., Encyclopedia of Plant Physiology, Vol. 5, Part 1. Springer-Verlag, Berlin, pp. 70-84.
- 31. WAYGOOD, E. R. 1955. Carbonic anhydrase (plant and animal). Methods Enzymol. 2: 836-846.
- 32. WESTLAKE, D. F. 1963. Comparisons of plant productivity. Biol. Rev. 38: 385-425.
- 33. ZELITCH, I. 1975. Improving the efficiency of photosynthesis. Science 188: 626-633.