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Rett syndrome (RTT), caused by loss-of-function mutations
in the MECP2 gene, is a neurological disorder characterized
by severe impairment of motor and cognitive functions. The
aim of this study was to investigate the impact of vector design,
dosage, and delivery route on the efficacy and safety of gene
augmentation therapy in mouse models of RTT. Our results
show that AAV-mediated delivery of MECP2 to Mecp2 null
mice by systemic administration, and utilizing a minimal
endogenous promoter, was associated with a narrow therapeu-
tic window and resulted in liver toxicity at higher doses. Lower
doses of this vector significantly extended the survival of mice
lacking MeCP2 or expressing a mutant T158M allele but had
no impact on RTT-like neurological phenotypes. Modifying
vector design by incorporating an extended Mecp2 promoter
and additional regulatory 30 UTR elements significantly
reduced hepatic toxicity after systemic administration. More-
over, direct cerebroventricular injection of this vector into
neonatal Mecp2-null mice resulted in high brain transduction
efficiency, increased survival and body weight, and an amelio-
ration of RTT-like phenotypes. Our results show that control-
ling levels of MeCP2 expression in the liver is achievable
through modification of the expression cassette. However, it
also highlights the importance of achieving high brain trans-
duction to impact the RTT-like phenotypes.
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INTRODUCTION
Rett syndrome (RTT; OMIM 312750) is a neurological disorder char-
acterized by a constellation of clinical diagnostic and associated
features and with overt onset occurring several months postnatally.1

Typical RTT is almost exclusively caused by de novo germline muta-
tions in the X-linked gene,MECP22 (as reviewed elsewhere3,4). Several
mouse models of RTT have been generated that harbor Mecp2 dele-
tions5–7 or knocked-in mutations.8–11 Many of these models recapitu-
late the principal features that characterize RTT in humans, although
there are differences that reflect the phenotypic variability seen in pa-
tients.12–14 Despite the severity of RTT-like phenotypes, genetic reac-
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tivation of silencedMecp2 in conditional knockout mice resulted in a
robust and enduring reversal of phenotypes.15–17

This inherent reversibility of the phenotype, added to the lack of
obvious targets for pharmacotherapy, makes gene therapy an obvious
therapeutic strategy in RTT. However, there are significant challenges
to a gene transfer approach, including the requirement to transduce
sufficient numbers of neurons in the brain16 and the avoidance of
deleterious overexpression.18

Previous attempts at MECP2 gene transfer using AAV9 vectors were
confounded by limited brain transduction efficiency and toxicity,19,20

while efficacy in other studies using self-complementary adeno-asso-
ciated virus (AAV) (scAAV)21 may have been compromised by the
use of a construct exceeding the packaging capacity of the vector.

The aim of the present study was to assess the therapeutic impact of
dose, route of administration, and expression cassette design in mice
modeling RTT. Our results show that modification of the vector
design by incorporating more regulatory elements is able to reduce
peripheral expression of vector-derived MeCP2 and prevent liver
toxicity. We also show that using the same vector design by direct
brain injection in mouse neonates resulted in higher brain transduc-
tion and improved the RTT-like phenotype.

RESULTS
Dose Escalation with AAV/MECP2 Revealed a Narrow

Therapeutic Window following Systemic Administration

In order to explore the relationship between vector dose and thera-
peutic benefits, we conducted a dose escalation experiment in which
17 ª 2017 The Authors.
vecommons.org/licenses/by/4.0/).
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Figure 1. Systemic Delivery of the First-Generation

Vector to Mecp2–/y Mice Revealed Therapeutic

Efficacy and a Narrow Therapeutic Window

(A) Kaplan-Meier survival plot for Mecp2�/y mice injected

with different doses (1 � 1011 [n = 10], 1 � 1012 [n = 8],

and 1 � 1013 [n = 5] vg per mouse] of first-generation

vector compared to vehicle-treated animals (WT; n = 9,

Mecp2�/y; n = 16). The median survival period in

Mecp2�/y mice treated with 1 � 1012 vg per mouse was

significantly higher than that in vehicle-treated controls

(27.14 versus 11.64 weeks; p = 0.001, Mantel-Cox test).

(B and C) Plots showing mean (B) body weight and (C)

aggregate severity scores forMecp2�/y mice treated with

1 � 1011 and 1 � 1012 vg per mouse or vehicle. Arrows

indicate age at injection; data are presented as mean ±

SEM. (D) Dose-dependent transduction efficiency (Myc-

positive nuclei as a proportion of DAPI-positive nuclei)

across different brain regions. Data are presented as

mean ± SEM (n = 3 mice per group). CA1 indicates hip-

pocampal region CA1.
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an scAAV2/9 vector was used to deliver a Myc-tagged human
MECP2_e1 cDNA under the control of a short, 229-bp region of
the murineMecp2 endogenous core promoter (MeP229),19,22 herein-
after referred to as the “first-generation vector”. Juvenile male
Mecp2�/y and wild-type (WT) mice were injected at the age of
4–5 weeks in the tail vein either with vehicle or with 1 � 1011 (low
dose), 1 � 1012 (moderate dose), or 1 � 1013 (high dose) viral ge-
nomes (vg) per mouse (dose range, �1 � 1013–1 � 1015 vg/kg). As
expected from previous studies of this knockout line,6,7,15 onset of
RTT-like phenotypic signs in control vehicle-treated Mecp2�/y

mice15 was observed from 4 to 5 weeks of age, and severity progres-
sively increased until death or censoring of all mice by 20 weeks of
age (Figures 1A–1C). Mecp2�/y mice treated with the low dose were
indistinguishable from vehicle-treatedMecp2�/ymice in terms of sur-
vival (median survival = 9.36 weeks versus 11.64 weeks, respectively;
p = 0.2, Mantel-Cox test,) and severity score (Figures 1A and 1C).
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However, when measured at 11 weeks (the
median survival time for the control vehicle-
treated Mecp2�/y mice), the mean body weight
of the treated Mecp2�/y mice was significantly
(p < 0.05) higher than that of the Mecp2�/y

vehicle controls (Figure 1B).

In contrast, Mecp2�/y mice treated with the
moderate dose (1 � 1012) showed significantly
increased survival and body weight compared
to the vehicle controls (median survival =
27.3 weeks versus 11.64 weeks; p = 0.001,
Mantel-Cox test [Figure 1A]; p < 0.05 for
mean body weight measured at 11 weeks of
age [Figure 1B]). However, there was no differ-
ence in the RTT-like phenotype severity score at
this dose (Figure 1C). Finally, the cohort
receiving the highest dose showed acute toxicity
and lethality at 10–15 days post-injection (Figure 1A). Overall,
vehicle-treated WT mice differed from Mecp2�/y cohorts across all
measures (all ps < 0.001).

Patterns of transduction in treated Mecp2�/y mice were assessed
within the CNS by anti-Myc antibody immunofluorescence labeling
(Figure S1), which revealed vector-derivedMeCP2 protein expression
distributed in a punctate pattern within cell nuclei corresponding to
that observed for endogenous MeCP2 in WT mice. Samples from
the low-dose cohort revealed low transduction efficiencies across
brain regions (0.5% to 1%). The moderate dose resulted in �3%–
5% transduction efficiency, whereas the efficiency for the high dose
was 10%–22% (Figure 1D).

In order to measure cellular levels of vector-derived MeCP2 relative
to native levels, WT mice were treated with vector as described
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Figure 2. Intravenous Injection of the First-

Generation Vector Resulted in Pathological Changes

in the Liver

(A–D) Representative H&E-stained liver sections from WT

mice injected with (A) vehicle or (B–D) different doses of

vector. (E) Liver section from a mouse injected intrave-

nously with a GFP control vector, counterstained with DAPI.

(F) Representative H&E-stained liver section from a GFP

vector-treated mouse. Arrows indicate mononuclear cell

infiltration, vacuolation, and/or loss of hepatocytes. Dashed

white line indicates cellular swelling. Scale bars indicate

20 mm. CV, central vein.
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earlier. The low and moderate doses were tolerated and had no
observable effect on body weight or phenotypic severity score (Fig-
ures S2A–S2C). However, WT mice treated with the high dose
exhibited the acute toxicity and rapid lethality observed in the
knockout mice (Figures S2A–S2C). Quantification of cellular levels
of MeCP2 in mice given this high dose revealed that transduced hip-
pocampal pyramidal cells expressed vector-derived MeCP2 at a
mean level equivalent to 120% of the endogenous level, resulting
in total cellular levels of MeCP2 just over 2-fold higher than normal
for these cells (Figures S2D–S2F).

Systemic Delivery of First-Generation Vector Resulted in Liver

Toxicity

To further investigate toxic effects encountered after systemic injec-
tion of the first-generation vector at high doses, levels of vector-
derivedMeCP2 expression were tested in a range of peripheral tissues.
Bio-distribution of the vector genome in different organs was quanti-
fied using qPCR at the end of experiment (Figure S3) and revealed,
along with immunohistochemistry, that the proportion of Myc-pos-
itive cells in the liver was high (Figure S4). Endogenous MeCP2 levels
are known to be much lower in liver cells than in brain neurons23,24

and are typically below the detection threshold for immunohisto-
chemistry using available antibodies (Figure S4A). However, vector-
182 Molecular Therapy: Methods & Clinical Development Vol. 5 June 2017
derived MeCP2 levels in a subset of liver cells
(using anti-Myc-immunolabeling) of treated
WT mice were found to be higher than MeCP2
levels seen in neurons (Figures S4B and S4C)
and were thus�20 times higher than levels found
endogenously in such cells. Myc-positive cells
were detected also in the heart, kidney, and other
peripheral tissues in treated Mecp2�/y mice (data
not shown).

Histological investigation of liver sections from
mice injected with vehicle or a low dose of the
vector showed a largely normal liver structure
with occasional areas of mononuclear infiltration
(Figures 2A and 2B). In contrast, mice injected
with higher doses of the vector showed a dose-
dependent increase in pathological features,
including cellular destruction and vacuolation, loss of hepatocytes,
and mononuclear cell infiltration (Figures 2C and 2D).

To address whether the observed liver pathology was due to the high
copy number of viral particles per se or was a consequence of MeCP2
overexpression, we injected mice with a vector driving expression of
GFP but otherwise identical to the first-generation vector. Despite
detection of widespread GFP expression in the liver (Figure 2E), his-
tological examination of liver sections revealed no evidence of cellular
damage or immune cell infiltration (Figure 2F). In addition, no
changes in RTT aggregate severity score were observed with this vec-
tor (data not shown).

Systemic Administration of First-Generation Vector Improves

Survival in Mecp2T158M/y Knockin Mice

An important question for gene transfer in RTT is whether the pres-
ence of endogenous mutant MeCP2 might reduce the therapeutic ef-
fect of vector-derived wild-type MeCP2. Male mice expressing native
MeCP2 tagged with GFP as a fusion protein and harboring the
common RTT-causing p.T158M mutation,9 Mecp2T158M/y, display a
phenotype very similar to that of Mecp2 null mice (Figure S5), but
with somewhat enhanced survival (median survival = 20.3 weeks
and 12.4 weeks, respectively; p = 0.0016, Mantel-Cox test).



Figure 3. Improved Survival and Body Weight of

Mecp2T158M/Y Mice after Systemic Delivery of the First-

Generation Vector

(A) Survival plot for treatedMecp2T158M/ymice. Arrow indicates

age at injection. (B and C) Plots of (B) body weight and C)

aggregate severity score, respectively, for Mecp2T158M/y mice

treated with 1 � 1012 vg per mouse of first-generation vector

and control groups (Mecp2T158M/y and WT) treated with

vehicle. Data presented as mean ± SEM. (D) Transduction ef-

ficiency in the brain of treated mice (Myc-positive nuclei as a

proportion of DAPI-positive nuclei; n = 3 mice).
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Intravenous delivery of a moderate dose (1 � 1012 vg per mouse) of
the first-generation vector to 4- to 5-week-oldMecp2T158M/y mice re-
sulted in significantly increased survival (Figure 3A;median survival =
38.3 weeks in vector-treated mice versus 20.3 weeks in vehicle-treated
mice; p = 0.0019, Mantel-Cox test, n = 8–15 per group). There was a
modest increase in body weight in the vector-treated cohort (Fig-
ure 3B; p < 0.05, one-way ANOVA using data at 20 weeks of age).
However, there was no difference in RTT-like aggregate severity score
between groups (Figure 3C), consistent with a low brain transduction
efficiency (�2%–4%) as revealed by anti-Myc labeling (Figure 3D).
Overall, vehicle-treated WTmice differed fromMecp2T158M/y cohorts
across all measures (all ps < 0.01).

The p.T158M mutation affects the chromatin-binding capacity of
MeCP2, leading to loss of the punctate element of MeCP2 labeling
in the nucleus (Figure 4A).9 Immunolabeling of hippocampal
neurons from treated Mecp2T158M/y mice showed WT patterns of
MeCP2 expression, with restored localization to DAPI bright spots,
only in transduced (Myc-positive) cells (Figure 4B). This is consistent
with vector-derived MeCP2 being able to localize normally to heter-
ochomatin, despite the presence of mutant endogenous MeCP2 pro-
tein within the same nucleus.

Development of a Second-Generation Vector that Reduced Liver

Toxicity after Systemic Administration

In light of the data described earlier, it was evident that a higher AAV
vector dose is required to achieve therapeutically relevant levels of
Molecular Therapy: Meth
brain transduction after systemic delivery. However,
severe toxicity after delivery of high doses of our
first-generation cassette necessitated a new design.
We tested a range of modifications to the expression
cassette and capsid that were predicted to result in
lower cellular expression levels and/or reduce liver
tropism. This included the use of expression cas-
settes utilizing (1) an alternative, compact, and, pre-
sumably, weaker JeT promoter25; (2) a short syn-
thetic polyadenylation (SpA) signal (Figure S6A)26;
and (3) the original first-generation expression
cassette packaged in a scAAV9.47 capsid, which
emerged from an in vivo screen for liver de-targeted
capsid sequences relative to AAV9.27,28 Systemic in-
jection of these vectors at the moderate dose (1� 1012 vg per mouse)
into 4- to 5-week-old Mecp2�/y mice resulted in significantly
extended survival and improved body weight, but there was no
impact on the RTT-like aggregate severity score (Figure S6B). In sum-
mary, none of these modifications resulted in any significant im-
provements over the first-generation vector (p > 0.05 for all measures,
ANOVA and Mantel-Cox tests). Importantly, these modified vectors
all caused the development of liver pathology similar to that observed
with the first-generation vector (as previously shown in Figure 2;
Figure S6C).

The rationale for using an endogenous Mecp2 core promoter frag-
ment (MeP229) in the first-generation vector was that it had been
shown largely to recapitulate the endogenous tissue-level pattern
of MeCP2 expression.22 However, this core promoter fragment is
missing a number of predicted upstream regulatory elements that
may be important in cell-type-specific regulation of MeCP2 expres-
sion.29–31 Therefore, we designed a second-generation vector in
which we used an extended promoter fragment (MeP426) incorpo-
rating additional promoter regulatory elements and a putative
silencer element (Figure S7). We predicted that this might better
enable the regulation of vector-derived MeCP2 levels in transduced
cells. In addition to the extended promoter, we also incorporated a
novel 30 UTR, consisting of a fragment of the endogenous MECP2
30 UTR together with a selected panel of binding sites for microRNAs
(miRNAs) known to be involved in regulation of Mecp232–35

(Figure S7).
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Figure 4. Nuclear Localization of MeCP2 in

Untreated and Treated Mecp2T158M/Y Mice

Representative confocal images of the CA1 region of

the hippocampus. (A) Endogenous MeCP2 exhibits

heterochromatin-enriched localization in WT nuclei, while

GFP-tagged MeCP2 exhibits decreased heterochromatin

localization (i.e., more diffuse labeling) in nuclei from

Mecp2T158M/y mice. (B) Images demonstrating hetero-

chromatin-enriched localization of vector-derived MeCP2

in nuclei of transduced cells inMecp2T158M/y mice treated

with the first-generation vector. White arrows indicate

transduced cells (Myc-positive). Scale bars indicate

20 mm.
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In order to test the therapeutic efficacy of the second-generation vec-
tor, a moderate dose (1 � 1012 vg per mouse) was injected intrave-
nously into 4- to 5-week-old Mecp2�/y mice. There was a significant
extension of survival in the vector-treated mice compared to the
vehicle-treated mice (median survival = 29.9 weeks and 11.6 weeks,
respectively; p < 0.0001, Mantel-Cox; Figure 5B). There was also sig-
nificant improvement in body weight at the age of 11 weeks (p < 0.05,
one-way ANOVA, with Tukey’s post hoc pairwise comparison test;
Figure 5C). In contrast, there was no effect on RTT-like aggregate
severity score (Figure 5D). The second-generation vector, thus,
showed no therapeutic advantages over the first-generation vector
after systemic delivery (Figures 5B–5D). Again, vehicle-treated
WT mice differed from Mecp2�/y cohorts across all measures (all
p < 0.001). In order to compare this vector head-to-head with the
first-generation vector in terms of liver safety, mice were injected
intravenously with either the first- or the second-generation vector
at a dose of 1 � 1012 vg per mouse. These mice were sacrificed after
30 days, and tissues were analyzed for vector-derived MeCP2 expres-
sion (using anti-Myc tag antibody) and signs of liver pathology (Fig-
ure 6). There was no significant difference in transduction efficiency
between vector constructs (Figure 6B), but cellular levels of vector-
derived MeCP2 (anti-Myc) in mice treated with first-generation
vector were significantly higher than those in mice treated with sec-
ond-generation vector (Figure 6C; p < 0.001, unpaired t test). Analysis
of the distribution of cellular MeCP2 expression levels in transduced
cells showed that MeCP2 expression was more tightly regulated in
mice injected with the second-generation vector (Figure 6D), with
fewer cells exhibiting very high expression levels. Moreover, there
was none of the disrupted hepatic architecture or vacuolation previ-
ously observed with the first-generation vector (Figure 6E). The den-
sity of inflammatory foci was significantly higher in liver samples
from mice injected with first-generation vector than from those in-
jected with the second-generation vector (Figure 6F).

Neonatal Cerebroventricular Injection of the Second-Generation

Vector Improved the RTT-like Aggregate Severity Score

The lack of impact on the phenotype after systemic administration is
consistent with the low brain transduction efficiencies observed, as it
184 Molecular Therapy: Methods & Clinical Development Vol. 5 June 20
has been established that phenotype severity and degree of improve-
ment after gene restoration correlate with the proportion of MeCP2-
expressing cells in the brain.16 Therefore, we decided to test the
second-generation vector by direct cerebroventricular injection in
mouse neonates, a delivery route that is known to afford widespread
transgene expression.19 When delivered at a dose of 1 � 1011 vg per
mouse (Figure 7A), there was a pronounced extension in the survival
of Mecp2�/y mice treated with the second-generation vector in
comparison to vehicle-treated mice (median survival = 38.5 and
12.4 weeks, respectively; p < 0.0001, Mantel-Cox test; Figure 7B).
While there was a negligible effect of vector on body weight (Fig-
ure 7C), an important observation was the clear improvement in
the RTT-like aggregate severity score compared to that of vehicle-
treated Mecp2-null mice (Figure 7D; p < 0.01 at 11 weeks, one-way
ANOVA, with Tukey post hoc pairwise comparison). Vector-derived
MeCP2 (revealed by anti-Myc tag immunolabeling) was detectable in
all brain regions, with transduction efficiencies across brain regions
ranging from �10%–40% (Figures 7E and 7F). Distribution analysis
revealed that the modal cellular MeCP2 level in transduced cells in
cortex was approximately twice that of endogenous MeCP2 (consis-
tent with a vector-derived expression level equal to the endogenous
level), with some cells expressing higher levels of vector-derived
MeCP2 (Figure 7G).

DISCUSSION
The reversal of a wide range of RTT-like phenotypes in mice
following the delayed unsilencing of Mecp2 provides a strong ratio-
nale for gene transfer as a therapeutic strategy in RTT.15,16 There
are likely to be a variety of barriers to translational success that will
need to be identified and addressed in order to secure optimal out-
comes in human clinical trials. In the present study, we identified
particular challenges associated with the systemic delivery of
aMECP2-bearing gene therapy vector in terms of a narrow therapeu-
tic window driven by low brain transduction efficiency and the
appearance of peripheral overexpression toxicity upon further dose
escalation. However, peripheral overexpression can be reduced by
refining the cassette design. We show that direct brain delivery of vec-
tor in neonatal mice can achieve therapeutically relevant levels of
17



Figure 5. Therapeutic Efficacy of Second-

Generation Vector after Systemic Delivery to

Mecp2–/y Mice

(A) Design features of our second-generation vector

summarized (see Results and Figure S7 for details). (B)

Survival plot forMecp2�/ymice treated intravenously with

1 � 1012 vg per mouse of the second-generation vector

(median survival = 29.9 weeks) or an identical dose of

first-generation vector (median survival = 27.1 weeks) or

vehicle (median survival = 11.6 weeks). Arrow indicates

age at injection. (C and D) Plots showing (C) mean body

weight and (D) aggregate severity scores, respectively, of

Mecp2�/y mice treated as in (B). See also Figure S7.
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transduction that result in phenotype amelioration. We also show
that the vector has similar effectiveness in mice expressing the most
common RTT-causing mutation, suggesting that the presence of
existing mutant forms of MeCP2 is unlikely to be an obstacle to trans-
lational success. These results are consistent with experiments
in transgenic mice expressing both mutant and WT forms of the
protein.36

Recent attempts to deliver MECP2 exogenously in mouse models of
RTT used widely varying vector doses but are difficult to compare
based on additional differences in cassette design and other variables,
including viral production, dosing protocol, and phenotype mea-
sures.19–21 In the present study, we used our previously published
cassette design (human MECP2_e1, under the control of a MeP229
core promoter fragment)19 to directly investigate the effect of dose
in terms of efficacy and safety. A notable finding was the overall
lack of efficacy across the range of doses tested in terms of an effect
on RTT-like phenotype severity score. This is not due to such pheno-
types being inherently resistant to reversal15,16 but is instead most
likely explained by the low levels of brain transgene expression af-
forded by this route of delivery. In contrast to the phenotype severity
score, there was a clear dose-response relationship for survival, with
the intermediate dose causing a modest increase in mean body weight
and a significant extension in survival. It is not clear whether the sur-
vival and body weight effects are due to sufficient (if low) transduction
levels in critical brain regions or to expression ofMeCP2 in peripheral
tissues relevant to mortality. Recent evidence suggests that MeCP2
levels in peripheral tissues can subtly affect body weight,23 and it is
possible that this may indirectly affect survival measures, as we are
obliged to use the acute loss of body weight as an endpoint criterion.
However, there was a clear divergence in survival between the 1011-
and 1012-vg doses without overt differences in mean body weight
between groups (Figure 1). Another potential explanation is that we
were underestimating levels of transduction efficiency related to sur-
vival, based on the sensitivity of our immunohistochemical detection.
However, vector biodistribution validation using qPCR was consis-
tent with our measurements, confirming very modest transduction
efficiencies following systemic delivery. Only the highest dose tested
Molecu
produced appreciable levels of brain transduction (>10%–20%),
and, unfortunately, the severe liver pathology and lethality associated
with this dose precluded assessment of the potential for brain-specific
therapeutic effects in this situation. Liver cells normally express rela-
tively low levels of MeCP2 compared to neurons,23 and identical
doses of a GFP-expressing vector were not toxic, so the dose-depen-
dent liver pathology is likely to be attributed to the overexpression of
vector-derived MeCP2. The difference in the severity score observed
in WT mice treated with the moderate dose (which showed no
apparent toxicity) and with the high dose (which showed high levels
of lethality) can potentially be explained in terms of the cellular levels
of MeCP2 that can be tolerated by liver cells—this tolerability
threshold may lie between the levels of MeCP2 achieved by the two
vector doses.

Previous preclinical RTT gene therapy studies19–21 have focused on
using the Mecp2�/y model to screen for vector efficacy and potential
toxicity. However, the presence of mutant endogenous MeCP2 could
potentially produce a quasi-dominant negative action on the vector-
derived MeCP2. We have shown here that, although this knockin
line9 exhibits RTT-like phenotype severity scores similar to those
observed in Mecp2�/y mice, it also exhibits prolonged survival, thus
indicating that the mutant allele may produce MeCP2 with some
residual function. Interestingly, AAV-mediated systemic delivery of
MECP2 to these mice resulted in a therapeutic effect similar to that
achieved in the Mecp2�/y mice treated with the same vector dose.
Therefore, we conclude that presence of the mutant protein does
not impede the functionality of vector-derived MeCP2. This finding
supports the potential translational application of augmentation
gene therapy in patients with missense MECP2 mutations.

Our initial attempts to lower toxic MeCP2 expression and/or reduce
liver tropism involved modifications to the expression cassette and
capsid. However, the use of putative weaker synthetic promoters
and polyadenylation signals was not sufficient to avoid liver toxicity.
Surprisingly, the use of an AAV9.47 capsid, which is purported to de-
target the liver relative to AAV9,27,28 resulted in liver pathology
similar to that seen with AAV9. Therefore, we focused efforts on a
lar Therapy: Methods & Clinical Development Vol. 5 June 2017 185
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Figure 6. Reduced Expression of Vector-Derived MeCP2 in the Livers of Mice Treated with Second-Generation Vector

(A) Flattened confocal stack images from livers of mice 1 month after being injected intravenously at 5 weeks of age with the second-generation vector or first-generation

vector at 1 � 1012 vg per mouse; confocal settings were the same in each case. Tissues were immunolabeled with anti-Myc and DAPI nuclear stain. Arrows indicate

transduced cells (Myc-positive), and arrowheads indicate non-transduced cells. (B) Transduction efficiencies in the liver for both vectors. (C) Quantification of cellular levels of

vector-derived MeCP2 measured as anti-Myc immunofluorescence in transduced cells in the liver (n = 3 mice, 1,400 transduced cells). Data are presented as mean ± SEM.

(D) Frequency distribution of cellular levels of vector-derived MeCP2 in the liver, measured as in (C). (E) Liver sections stained with H&E showing vacuolation of hepatocytes

(arrows) and sites of mononuclear cell infiltration (dashed circles). CV, central vein. White scale bar indicates 20 mm. (F) Quantification of density of inflammatory foci in the

livers of treated mice (n = 3 per group). Data are presented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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second-generation vector, whose design was based on the inclusion of
endogenous regulatory elements that may better regulate levels of
vector-derivedMeCP2 in transduced cells. This included the incorpo-
186 Molecular Therapy: Methods & Clinical Development Vol. 5 June 20
ration of an extended endogenous promoter and an endogenous
30 UTR fragment. Studies analyzing the well-conserved human
MECP2 and mouse Mecp2 promoter regions indicated the presence
17



Figure 7. Direct Brain Delivery of Second-

Generation Vector to Neonatal Mecp2–/y Mice

Revealed Therapeutic Efficacy

(A) Experimental design. KO, knockout. (B) Survival plot

showing extended survival of neonatally treatedMecp2�/y

mice (median survival = 38.6 weeks; p < 0.0001, Mantel-

Cox test) compared with vehicle-treated animals (median

survival = 12.4 weeks). (C and D) Plots showing mean (C)

body weight and (D) aggregate severity scores, respec-

tively, for the mice shown in (B). (E) Representative

confocal images from the cortex of injected wild-type

mice.White arrows indicate transduced cells; arrowheads

indicate non-transduced cells; scale bars indicate 20 mm.

(F) Graph showing transduction efficiency in different brain

regions (n = 3 mice). (G) Frequency distribution of MeCP2

levels in transduced and non-transduced (“native”) cells in

the mouse cortex (n = 3 mice; 954 transduced cells) data

presented as mean ± SEM.
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of a number of putative regulatory elements within a 1-kb window
immediately upstream of the transcription start site.29–31 Conse-
quently, our extended endogenous promoter (426 bp) in the sec-
ond-generation vector comprised a putative silencer element at posi-
tion �274 to �335, with respect to the RefSeq transcription start site
(Figure S7).

An endogenous 30 UTR was also incorporated, containing the distal
MECP2 polyadenylation signal and a number of clustered putative
regulatory elements.37–39 In addition, we performed an analysis of
Molecular Therapy: Methods
miRNA binding sites in the 30 UTR of
MECP2, using a number of bioinformatic
tools,40–42 and incorporated a compact
sequence containing the binding sites of three
highly conserved miRNAs known to be
involved in regulation of MeCP2 in the brain;
miR-22,32 miR-19,33 and miR-132.34 Com-
bined, these modifications significantly reduced
MeCP2 expression in the liver, with subsequent
reduction of the hepatotoxicity encountered
with the first-generation vector. The relative
importance of different modifications (elements
within the extended promoter and novel 30

UTR) was not investigated. However, the effi-
cacy of both vectors after systemic injection of
moderate doses was not significantly different.
The important advantage of the second-genera-
tion vector is the lack of prominent liver pathol-
ogy at a dose that provides some therapeutic
benefit (i.e., 1 � 1012 vg per mouse). The
improved survival after systemic injection,
despite low brain transduction efficiency, could
be due to restoration of MeCP2 levels in suffi-
ciently numerous critical cells in the brain or
due to restoration in important peripheral tis-
sues. Targeting more cells in the brain through direct brain injection
in mouse neonates, along with potentially greater impact via earlier
intervention, led to pronounced survival enhancement at a dose
(1 � 1011 vg per mouse) approximately equivalent to the 1012 sys-
temic dose. Delivery by this direct brain injection route was associated
with an improvement in body weight but, importantly, also with an
improvement in RTT-like phenotype score. The improvement was
not as profound as that reported in genetic reversal experiments,16

and this is likely to be due to the combined effects of (1) the relative
inefficiency of MeCP2 re-expression across the brain (10%–40%),
& Clinical Development Vol. 5 June 2017 187
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compared to genetic reversal experiments (up to 90%), and (2) the
possible deleterious counteracting effects of overexpressing MeCP2
in a proportion of transduced cells. Analysis of MeCP2 levels, indeed,
indicates a significant pool of cells overexpressing MeCP2, presum-
ably transduced with multiple copies of vector delivering MECP2.
This may also account for the slightly elevated severity score in vec-
tor-treated WTmice (Figure 7D) in the form of mild hindlimb clasp-
ing. We cannot rule out very subtle consequences of MeCP2 overex-
pression that may be revealed by fine-grained behavioral testing.
Overall, the proof-of-concept experiments involving direct brain de-
livery in neonatal mice suggest that, if transduction efficiency across
the brain can reach sufficiently high levels, then a behavioral improve-
ment is conferred by this vector design.

Conclusions

The results of the present study highlight the challenges associated
with both systemic and direct brain delivery ofMECP2. The findings
suggest that achieving widespread brain expression, while at the same
time maintaining cell-type appropriate control of MeCP2 levels, will
be essential requirements for the successful development of a transla-
tional therapy. The development of expression cassettes capable of
producing effective and sub-toxic levels of MeCP2 may overcome
issues of cellular overexpression and enable direct delivery via the
cerebrospinal fluid compartment. While AAV9 appears to be insuffi-
ciently efficient in terms of brain transduction after systemic delivery
of MECP2 to achieve the desired therapeutic benefit, combining the
safer second-generation cassette together with capsids with improved
brain penetrance43 may effectively pair effective CNS gene transfer
with safe levels of peripheral MeCP2 transgene expression. Such a
combination would hold enhanced translational promise.

MATERIALS AND METHODS
Animals

All experiments were carried out in accordance with the European
Communities Council Directive (86/609/EEC) and with the terms
of a project license under the UK Scientific Procedures Act (1986).
TheMecp2 null,Mecp2tm1.1Bird, andMecp2T158M mice, originally pro-
vided as a kind gift from Professor Adrian Bird, were maintained on a
C57BL/6 background. Animals were maintained on 12-hr:12-hr light/
dark cycles with free access to normal mouse food. Mice were geno-
typed as described previously.9,15

Viral Vector Preparation

Recombinant AAV vector particles were generated at the University
of North Carolina (UNC) Gene Therapy Center Vector Core facility.
The scAAV particles (AAV2 ITR [inverted terminal repeat]-flanked
genomes packaged into AAV9 or AAV9.47 serotype capsids) were
produced from suspension HEK293 cells transfected using polyethy-
leneimine (Polysciences) with helper plasmids (pXX6-80 and pGSK2/
9) and a plasmid containing the appropriate ITR-flanked transgene
construct. All MeCP2-expressing constructs utilized the human
MECP2_e1 coding region with a C-terminal Myc epitope tag unless
stated otherwise. Virus production was performed as previously
described,44 and the vectors were prepared in a final formulation of
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high-salt PBS (containing 350 mmol/L total NaCl) supplemented
with 5% sorbitol.

scAAV Vector Injection and Mouse Phenotyping

Frozen scAAV9 viral particle aliquots were thawed and diluted to
100 mL in PBS/350 mmol/L NaCl containing 5% sorbitol. Control in-
jections were made using the same diluent lacking vector (“vehicle
control”). For direct brain injection into mouse neonates, littermates
were sexed at birth, and direct bilateral injections of virus (3 mL per
site) were delivered into the neuropil of unanesthetized males at post-
natal day (P)0–P3, as described previously.19 The injected pups were
returned to the home cage containing their non-injected female litter-
mates. Genotyping was carried out at 3 weeks, at which time pheno-
typing was initiated. For injection into juvenile male mice, injections
were made via the tail vein at 4–5 weeks of age. Following injection, all
mice were weighed weekly. Phenotyping was carried out, blind to ge-
notype and treatment, twice a week. Mice were scored on an aggregate
severity scale using an established protocol (mice were scored for
RTT-like phenotypes comprising mobility, gait, breathing, hindlimb
clasping, tremor, and general condition).15,16,19,21 For survival anal-
ysis, mice were censored after natural death or if body weight losses
exceeded 20% of peak body weight.

Vector Biodistribution Analysis

For these analyses, mice were sacrificed, blood was collected transcar-
dially, andorganswere harvested forDNApurification.GenomicDNA
was recovered from tissues using the DNeasy Blood and Tissue Kit
(QIAGEN). A Qiacube (QIAGEN) was used to carry out automated
purifications. Genomic qPCR reactions and analysis were performed
on a Roche Lightcycler 480, following the manufacturer’s instructions.
For the quantification of vector biodistribution, the amount of vector
genome present in each sample was standardized against an amplicon
froma single-copymouse gene, Lmnb2, amplified fromgenomicDNA.
Lmnb2 primers and “universal”MECP2 primers (that amplify mouse
and humanMECP2) were published previously.19,45

Immunohistochemistry

Mice were anesthetized with pentobarbitone (50 mg, intraperitone-
ally) and transcardially perfused with 4% paraformaldehyde (0.1
mol/L PBS). A vibrating microtome (Leica VT1200) was used to
obtain 80-mm sections of brain, spinal cord, and liver. Sections were
dehydrated by incubation in 50% ethanol in distilled water (v/v) for
30 min and then were washed three times in 0.3 mol/L PBS, followed
by incubation in 10 mM sodium citrate (pH 6, 85�C, 30 min) for an-
tigen retrieval. Sections were then incubated in the blocking solution
(5% normal goat serum in 0.3mol/L PBS with 0.3% Triton X-100)
for 1 hr at room temperature. Samples then were incubated for
48 hr on a shaker at 4�C with the following primary antibodies: rabbit
anti-Myc (Abcam, ab9106), mouse monoclonal anti-MeCP2 (Sigma,
WH0004204M1), and chicken anti-GFP (Abcam, ab13970). The pri-
mary antibodies were then washed off (3� 0.3 mol/L PBST), and sec-
ondary antibodies were applied to the sections overnight at 4�C: Alexa
Fluor 488 goat anti-mouse/rabbit (Invitrogen; 1/500), Alexa Fluor
546 goat anti-mouse/rabbit (Invitrogen; 1/500), Alexa Fluor 649,
17
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goat anti-mouse (Jackson ImmunoResearch Laboratories, 112-495-
003JIR). Finally, sections were incubated with DAPI nuclear stain
(Sigma; 1/1,000) for 30 min at room temperature before mounting
with Vectashield (Vector Laboratories).

H&E Staining

Liver samples were rinsed with 0.1 mol/L PBS and then dehydrated
through ascending grades of ethanol, and they were then cleared in
amyl acetate using an automated tissue processor. Specimens were
embedded in Paraplast, and sections (10 mm thick) were collected
on APES (aminopropyltriethoxysilane)-coated slides and dried over-
night in the oven at 37�C. Sections were then deparaffinized through
two changes of Histo-Clear (Agar Scientific) for 15 min and rehy-
drated through descending grades of alcohol (100%, 90%, and
70%). The sections were stained with Mayer’s hematoxylin for
8 min and then rinsed using tap water. The nuclei were stained
blue by placing the slides into Scott’s solution for 1 min and were
then rinsed using tap water. Sections were then stained with 1% eosin
for 2 min and washed by water. Finally, the sections were dehydrated
through ascending grades of alcohol and Histo-Clear before being
mounted with DPX. Images were captured using an AxioCam MRc
(Zeiss) mounted on a light microscope (Zeiss).

Image Analysis

Analysis of expression patterns, transduction efficiency, and quantifi-
cation of vector-derivedMeCP2 levelswithin nuclei was carried out on
image stacks captured using aZeiss LSM710 or ZeissAxiovert LSM510
laser confocal microscope (Zeiss). The z series were taken at 1-mm in-
tervals through the section of interest using a 40� objective. To ac-
count for antibodies’ penetrability, stack images were taken close to
the surface of sections to a maximum depth of 20 mm. To estimate
transduction efficiency, images were captured as described earlier,
and the ratio of Myc-immunopositive nuclei to DAPI-stained nuclei
was calculated for random fields (n = 12 images per region:4 images
from each of three mice) from sections of hippocampus (CA1 region),
layer 5 of primary motor cortex, thalamus, hypothalamus, brain stem,
and striatum. To quantify levels of vector-derived MeCP2 per nucleus
inWTmice, confocal stacks (20 mm thick) were obtained as described
earlier, and ImageJ software (http://rsbweb.nih.gov/ij/) was used to
determine mean MeCP2-channel fluorescence intensity within trans-
duced (Myc +ve) and non-transduced (Myc �ve) cells. Fluorescence
in the DAPI channel was used to define the nuclear boundary.

Statistical Analysis

Tests for differences between treatment groups were carried out in
GraphPad PRISM using one-way ANOVA, Student’s t test, and the
Mantel-Cox test (survival curves), as appropriate. p < 0.05 was used
to define statistical significance. In multi-group comparisons, multi-
ple testing correction for pairwise tests among groups was applied
using Tukey’s post hoc analysis.
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Figure S1. Expression of vector-derived MeCP2 in the brain after intravenous 

injection of the 1st generation vector.  

Representative confocal micrographs showing transgene expression in the hippocampal 

CA1 region in Mecp2-/y mice treated intravenously with 1x1011,1x1012 and 1x1013 

vg/mouse of the 1st generation vector (as revealed by anti-Myc tag immunolabelling). 

Arrows denote transduced cells and the lower panel shows co-localisation with DAPI. 

Scale bar = 20 µm 
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Figure S2. Systemic delivery of the 1st generation vector to wild-type mice is 

tolerated at low doses but toxic at high doses. 

(a) Survival plot showing the early toxicity observed after IV injection of a 1x1013 

vg/mouse dose of the 1st generation vector (green) compared to other doses and 

vehicle control. Arrow indicates age at injection. (b-c) Plots showing mean bodyweight 

and aggregate severity score, respectively, for these cohorts after injection. Data 

presented as mean ± SEM. (d) Flattened confocal stack images of the hippocampus 

CA1 region of wild-type mice injected with 1x1013 vg/mouse of the 1st generation vector. 

Tissues were immunolabelled with anti-Myc and anti-MeCP2 antibodies. White arrows 

indicate transduced cells. Scale bar indicates 20 μm. (e) Quantification of cellular levels 

of native MeCP2 and vector-derived MeCP2 in transduced and non-transduced cells in 

the hippocampus CA1 region of wild-type mice (n=2 mice; 131 transduced cells and 172 

non-transduced cells). Data presented as mean ± SEM and normalised to native 

MeCP2. (f) Frequency distribution of normalised MeCP2 level in transduced and non-

transduced cells. # indicates lethality at high dose. 
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Figure S3. Biodistribution of 1st generation vector after intravenous injection. 

Graph showing vector biodistribution in Mecp2-/y mice (n=3) as calculated by qPCR. 

Mice were injected intravenously at 5 weeks of age with 1x1012 vg/mouse and samples 

were taken approximately 22 weeks later. Data were standardised to host genomic DNA 

and are presented as mean ± SEM.  
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Figure S4. Intravenous injection of 1st generation vector resulted in high level of 

vector-derived MeCP2 expression in the liver. 

(a) Representative confocal images of liver taken from WT mice injected intravenously 

with 1st generation vector at the dose of 1x1013 vg/mouse. Sections were 

immunolabelled with anti-Myc (green), anti-MeCP2 (red) and DAPI nuclear stain (blue). 

White arrows indicate transduced cells, whereas yellow arrows indicate non-transduced 

cells. (b) Flattened confocal stack images taken from the CA1 region of the 

hippocampus (top) and from the liver (mice were injected intravenously with 1x1013 

vg/mouse) using the same confocal settings. Arrows indicate nuclei with a high level of 

vector-derived MeCP2 expression (based on fluorescence intensity of the anti-Myc 

antibody) and arrowheads indicate nuclei with low expression levels. Scale bar in (a) & 

(b) = 20 µm. (c) measurement of the integrated pixel intensity per nucleus in liver (55 

transduced cells and CA1 (131 transduced cells) of the same mice (n = 3 mice). Data 

presented as mean ± SEM.  
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Figure S5. Comparison of Mecp2T158M/y and Mecp2-/y mice. 

(a) Survival plot for Mecp2T158M/y mice (n=15) and Mecp2-/y mice (n=29). (b-c) Plots 

showing no significant differences in mean bodyweight and aggregate severity score, 

respectively, between Mecp2T158M/y and Mecp2-/y mice. Data presented as mean ± SEM. 
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Figure S6. Novel vector design features, efficacy and liver phenotype. 

(a) A summary of the design differences for three of the novel vectors described in the 

text. (b) Efficacy of these three novel vectors after intravenous injection of 1x1012 

vg/mouse to 4-5 weeks old Mecp2-/y mice, , expressed as increase in median survival 

relative to the vehicle controls (left; compared using Mantel-Cox test) and mean 

bodyweight at the age of 11 weeks (right) relative to the vehicle controls (one-way 

ANOVA with Tukey’s post-hoc pairwise comparisons). * p < 0.05, ** p < 0.01, *** p < 

0.001. (c) Representative H&E-stained liver sections from mice injected with JeT, 9.47 

or spA vectors. Arrows indicate vacuolation of hepatocytes; scale bar indicates 20 µm. 
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Figure S7. Design of the 2nd generation vector construct.  

Putative regulatory elements (RE) in the extended mMeP426 promoter and endogenous 

distal 3’-UTR are indicated. The extent of the mMeP229 promoter (used in the 1st 

generation vector) is indicated by the dashed line. Two non-endogenous cytosine 

nucleotides precede the ATG start codon. The RDH1pA 3’-UTR consists of several 

exogenous microRNA (miR) binding sites incorporated as a ‘binding panel’ adjacent to a 

portion of the distal endogenous MECP2 polyadenylation signal and its accompanying 

regulatory elements. References with an asterisk indicate human in vitro studies, not 

rodent. 
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