Supplement 2: Counseling topics discussed with family/patient prior to initiation of whole genome sequencing

Counseling topics

Introduction

Explore parental/patient expectations/understanding of genome-wide sequencing (refers to both whole exome sequencing [WES] and whole genome sequencing [WGS])

Review parental/patient understanding of disease under investigation

Explore family support systems

Provide overview of genome-wide counseling sessions

Parent(s)/legal guardianship established as needed

Explain that counseling designed to inform, not a commitment to test

Discuss process of results disclosure in-person with recommendation of long-term genetics

Follow-up if no diagnosis established (at least annually or as determined by geneticist)

Evaluation

Review or generate four-generation pedigree

MD geneticist physical examination documenting phenotype (if not already done/or recent)

Medical/psychological risk assessment and referral(s) (if not already done)

Propose mode(s) of inheritance

MD geneticist proposes possible genetic disorder or group of disorders (e.g., genetic seizure disorders)

MD geneticist prepares list of possible genes based on hypothesized genetic disorder(s) (if appropriate)

Discussion of proposed disorders with family

Counseling genetic concepts needed to understand genome-wide sequencing

Cells, genes, chromosomes, and inheritance

About 20,000 genes in humans, about 3000 associated with disease(s), some with more than phenotype

http://www.omim.org/statistics/geneMap

Some genes well understood, most poorly understood, improving constantly

Genetic disorders treatable versus not treatable

Age of onset of disease varies (Tay-Sachs vs. Alzheimer's)

Patterns of inheritance reviewed including autosomal recessive, autosomal dominant, mitochondrial, X-linked inheritance, and multifactorial

Genetic change called a variant (pathogenic, VUS, benign) instead of a mutation

De novo versus inherited genetic changes

Variable penetrance and variable expressivity

Epigenetic etiologies

Modifier genes

Health affected by genetic factors and nongenetic factors such as lifestyle, diet, and medications

Counseling genome-wide sequencing

WES vs WGS—explain test, exome is 1% of genome (coding regions, understand most about these regions)

WES and number of samples included for sequencing (single, duo, trio, quad, etc.)

Parental and family member specimen use and reporting

Definition of result (sequence vs. report)

WES and WGS consent form and resulting protocols are laboratory specific

Consent form

One time result versus reanalysis available

No return of incidental findings versus required return of certain incidental findings versus patient/family choice of return of incidental findings

Sequence available versus not available for research use

Sequence data may be requested by family versus not available

Only certain types of variants generally reported by laboratories (pathogenic, likely pathogenic, and variants of uncertain significance)

Limitations of genome-wide sequencing

WES and WGS coverage is incomplete, certain types of variants not detected (e.g., trinucleotide repeat diseases, copy number variants)

Comparison to reference genome, no "normal" genome

About 15% of genes associated with a phenotype based on medical literature

Many uninterpretable variants

Limitations of genetic test results

For a given pathogenic variant, the phenotype is affected by penetrance, expressivity, modifier genes

Decision making

Goal of genome-wide sequencing is to establish diagnosis

Patient/family decide which incidental findings they wish to have reported if allowed by laboratory

Childhood onset treatable (some laboratories report automatically)

Childhood onset not treatable

Adult onset treatable

Adult onset not treatable

Carrier status for genetic disorder

Variants affecting drug metabolism

Variants associated with risk for a common disorder (e.g., hypertension)

Variants confirmed by Sanger sequencing will go into the medical record

Remainder of genome does not go into the medical record

Risk of genome-wide sequencing

Find out about genetic disorders/predisposition that family did not want to know

Results may find untreatable conditions

Nonpaternity/nonmaternity

Consanguinity

Ethnic origin

Test likely to be negative (75% of testing at present does not find the diagnosis)

May have psychological distress associated with unfavorable result

May find out information about a close biological relative that patient did not wish to know (e.g., ethnic background, BRCA1 in a relative)

Workplace and health insurance discrimination addressed by GINA legislation 2008.

Life insurance, disability insurance, and long-term disability insurance discrimination may still occur. Consider obtaining policies before testing

Error in data or interpretation that can occur with any laboratory test

Privacy concerns. Information in medical record protected by HIPPA

Once information revealed cannot retract

Benefits of genome-wide sequencing

Establish a diagnosis

Personal utility

Positive psychological impact

Review timeline of testing for blood draw to results disclosure

Laboratory retains sequence data that is protected information like all medical information Laboratory may use data for laboratory quality improvement

No rights or compensation to family for use of deidentified Where possible patient and parents drawn for segregation analysis All commercial insurance companies will be sent a preauthorization request before testing started due to cost of testing Financial responsibility of patient