
SUPPLEMENTARY INFORMATION

Supplementary Note 1 ∣ Temperature calibration in NIS thermometry

The temperatures of the QCR and of the probe are each measured with a pair of current-

biased NIS junctions. For elastic single-electron tunnelling, the current through an NIS

junction with tunnelling resistance RT is given by1

I(V,Te) =
1

eRT
∫

∞

−∞

dE nS(E)[f(E − eV, Te) − f(E + eV, Te)] (1)

where Te ∈ {TQCR, Tprobe} is the electron temperature of the normal-metal resistor, and V

the voltage across the NIS junction. The Fermi–Dirac distribution is given by

f(E,T ) =
1

eE/(kBT ) + 1
(2)

and the quasiparticle density of states in the superconductor can be parametrized by

nS(E) =

RRRRRRRRRRR

Re
E/∆ + iγD

√
(E/∆ + iγD)2 − 1

RRRRRRRRRRR

(3)

The Dynes parameter γD accounts, for example, for deep-sub-gap (∣V ∣ ≪ ∆/e) leakage

current. Experimentally, γD and ∆ are obtained by fitting supplementary equation 1 to

the current–voltage characteristics of the NIS junctions used for thermometry. At sub-

gap voltages, supplementary equation 1 exhibits a strong dependence on the normal-metal

temperature, and hence an NIS junction can be utilized as a secondary thermometer to

probe the electron temperature of the normal metal. In our experiments, we apply constant

current bias, Ith,QCR/probe, across the thermometer junctions and measure the voltage drop

across each pair to obtain the signal used to extract the electron temperature.

At high bath temperatures, the electron temperature of the normal metal follows the

bath temperature, T0, giving rise to a faithful conversion function, g, of the observed ther-

mometer voltage, V (T0) = g−1(T0), into electron temperature, Te = g(V ). At low temper-

atures however, the electrons thermally decouple from the phonons leading to a saturation

of the electron temperature with decreasing phonon temperature. Before the saturation,

the thermometer voltage depends rather linearly on the bath temperature as shown in Sup-

plementary Fig. 1a. Throughout this paper, we employ such linear conversion from the

thermometer voltage to the electron temperature independently for each thermometer.
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Supplementary Note 2 ∣ Thermal Model

Our thermal model is presented in Fig. 3c. Several heat transport mechanisms are responsi-

ble for the observed temperature of the probe resistor: Firstly, the NIS junctions in the QCR

lead to exchange of energy with the resonator due to photon-assisted tunnelling, PT. Sec-

ondly, the heat exchange between the normal-metal electrons and the resonator is governed

by ohmic losses, PΓ,probe/QCR. Thirdly, the normal-metal electrons are coupled to the phonon

bath leading to the power flow Pep. Fourthly, our model accounts for weak residual heating

of the probe due to the power dissipation at the QCR, Pres, and leakage of photons to the

resonator from high-temperature stages of the cryostat, Pleak. Finally, we include an excess

power Px due to a constant thermal conductance Gx to an excess reservoir at temperature

Tx. Supplementary Table 1 shows the values of the parameters used in the model.

In our thermal model (Fig. 3c), the electron temperature of the probe resistor for a given

QCR temperature and operation voltage may be solved from the power balance equation

PΓ,probe − Pep − Pres − Px = 0 (4)

The power flowing from the probe electrons to the resonator photons due to ohmic losses

can be expressed as2

PΓ,probe = Γprobe
0→1 p0h̵ω0 − Γprobe

1→0 p1h̵ω0 (5)

where Γprobe
0→1 and Γprobe

1→0 are the excitation and relaxation rates of the resonator photons due

to the probe resistor, respectively, and p0 = 1 − p1 is the probability of the resonator to

be in its quantum-mechanical ground state. For simplicity, we consider here only the two

lowest-energy states of the resonator. In the steady state achieved in our experiments, we

have

ṗ0 = 0 = −Γ+p0 + Γ−p1 ⇒ p0 =
Γ−

Γ− + Γ+
, p1 =

Γ+

Γ− + Γ+
(6)

where the total excitation and relaxation rates of the resonator mode are given by

Γ+ = ΓQCR
0→1 + Γprobe

0→1 + ΓT
0→1 + Γleak

Γ− = ΓQCR
1→0 + Γprobe

1→0 + ΓT
1→0

(7)

respectively. Here, the rate Γleak determines the leakage power to the resonator Pleak =

h̵ω0Γleakp0 and the rate ΓT arises from the photon-assisted tunnelling at the QCR as de-

scribed in the next section. The rates arising from the ohmic losses are given by2

Γ
QCR/probe
0→1 =

γ

eh̵ω0/(kBTQCR/probe) − 1
, Γ

QCR/probe
1→0 =

γ

1 − e−h̵ω0/(kBTQCR/probe)
(8)
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where we employ the same base rate γ = 2ω0R sin2(πx/L)/(πZ0) for the QCR and the probe

due to the symmetry in their resistances R and distances from the edge of the resonator

x. The characteristic impedance Z0 =
√
Ll/Cl of the resonator of length L is given by the

inductance and capacitance per unit length Ll and Cl, respectively.

supplementary equation 4 also includes the term Pep that arises from the coupling between

the normal-metal electrons and the substrate phonons. This heat flow is given by1

Pep = ΣCuΩprobe(T
5
0 − T

5
probe) (9)

where Ωprobe is the volume of the probe resistor and ΣCu = 2 × 109 W K−5 m−3 is the known

electron–phonon coupling constant of copper1.

In the control sample, we observed weak heating of the probe due to the power dissipation

at the QCR. This heating is approximately linearly dependent on the bath temperature, and

hence we include a residual heating power to our thermal model in the form

Pres = α(β − T0)IQCRVQCR (10)

We fix the values of the parameters α and β (see Supplementary Table 1) using the mea-

surement data of the control sample and use the same values also in the case of the active

sample. Importantly, the contribution of this residual heating at subgap voltages is much

weaker than that of the other heat conduction mechanisms. The microscopic origin of the

residual heating remains to be studied further but the existence of such very weak channel

is not surprising.

In supplementary equation 4, we choose the excess power to assume the form

Px = Gx(Tx − Tprobe) (11)

where, for simplicity, Gx is a constant thermal conductance and Tx is the temperature of

the excess bath. We assume that the dominating thermal coupling of the excess bath to the

phonon bath is through electron–phonon coupling and that the excess bath is so large that

its temperature is essentially independent of the temperature of the probe. However, we

assume a constant heating power, P con
x , at the excess bath which leads to a finite saturation

temperature, T sat
x , even at zero phonon bath temperature. Equating P con

x with the power due

to the electron–phonon coupling (see supplementary equation 9) yields Tx = [(T sat
x )5+T 5

0 ]
1/5.

We adjust Gx and T sat
x to match Tprobe predicted by the thermal model to that measured

at bath temperatures T0 = 25 mK and 50 mK without operating the QCR (VQCR = 0).
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Supplementary Fig. 1b shows the measured probe temperature in this case together with

the prediction of the thermal model. Although the model is fitted to the measured data only

at the two lowest bath temperatures, very good agreement with the experimental results and

the theoretical prediction is achieved in the whole temperature regime, in which the linear

temperature calibration is valid.

As described below, there are no free parameters in the resonator excitation and relaxation

rates that give rise to the power

PT = h̵ω0(Γ
T
0→1p0 − ΓT

1→0p1) (12)

from the photon-assisted tunnelling. Thus Γleak is the only parameter we adjust to fit the

thermal model to the temperature drops observed in Figs. 3 and 4 at the probe due to

the QCR. Since we adjust the value of Γleak to obtain a good match at the lowest bath

temperature T0 = 25 mK, the results of the thermal model at higher temperatures such as

those at T0 = 150 mK in Fig. 3a may be considered as a theoretical prediction.

Supplementary Note 3 ∣ Photon-assisted single-electron tunnelling

In our case, the single-electron tunnelling through the NIS junctions can be described by

Fermi golden rule taking into account the voltage fluctuations arising from the electromag-

netic environment of the junction. In this P (E) theory3, the forward tunnelling rate, i.e.,

the rate for an electron to tunnel from the normal metal to the superconductor, is given

by3,4

Γ⃗(VQCR) =
1

e2RT
∫

∞

−∞

∫

∞

−∞

dE dE′ nS(E
′)fN(E − eVQCR)[1 − fS(E

′)]P (E −E′) (13)

where the Fermi distribution functions fN(E) = f(E,TQCR) and fS(E) = f(E,T0) are given

by supplementary equation 2 and P (E) is the probability density function for the envi-

ronment to absorb E amount of energy. For simplicity, we have assumed above that the

quasiparticle excitations in the superconductor are well thermalized with the phonon bath.

In the zero-temperature limit for the fundamental mode of the resonator acting as the

environment, we have for an NIS tunnel junction3

P (E) ≈ e−ρ
∞

∑
k=0

ρk

k!
δ(E − kh̵ω0) =

∞

∑
k=0

qkδ(E − kh̵ω0), (14)

where ρ is an environmental parameter

ρ =
π

CRKω0

(15)
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that depends on the effective capacitance, C = ∣L/2 − x∣Cl/2 ≈ LCl/2 for x ≪ 1, of the LC

oscillator which is used to model the fundamental mode. Here, RK = 25.8 kΩ is the von

Klitzing constant. The coefficient qk equals the probability of emitting k quanta of energy

to the resonator in the course of single-electron tunnelling. Since ρ = 4.7×10−3 ≪ 1 with our

parameters (see Supplementary Table 1), the elastic tunnelling events, k = 0, for which no

heat exchange with the resonator takes place, clearly dominate in the probabilities.

In our case of finite temperature, the probability for the tunnelling electron to absorb

a quantum of energy from the resonator, q−1, is related to the emission probability by

the detailed-balance condition q−1 = q1exp[−h̵ω0/(kBTr)], where Tr is the temperature of the

resonator. For simplicity, we consider only zero- and single-photon events, justified by ρ≪ 1.

In the following, we consistently assume the low-temperature limit for the resonator,

which is required by the fact that we take only the zero- and single-photon states of the

lowest resonator mode into account. Thus we obtain the approximate probabilities

q0 =
1

1 + ρ
, q1 =

ρ

1 + ρ
×

1

1 + e−h̵ω0/(kBTr)
, q−1 =

ρ

1 + ρ
×

e−h̵ω0/(kBTr)

1 + e−h̵ω0/(kBTr)
(16)

and

P (E) =
1

∑
k=−1

qkδ(E − kh̵ω0) (17)

Using supplementary equations 13, 16 and 17, we obtain the tunnelling rates for the

electrons in the forward direction,
→

Γ. The backward rate
←

Γ can be obtained in a similar

fashion3. The rates can further be expressed as sums of contributions from the different

processes: emission (
→

Γ1 and
←

Γ1), absorption (
→

Γ−1 and
←

Γ−1), and elastic tunnelling (
→

Γ0 and
←

Γ0).

These electron tunnelling rates are distinct from the photon-assisted resonator excitation and

relaxation rates in supplementary equation 7 which can be expressed as

ΓT
0→1 =

→

ΓT
0→1 +

←

ΓT
0→1

ΓT
1→0 =

→

ΓT
1→0 +

←

ΓT
1→0

(18)

where
→

ΓT
0→1 =

→

Γ1/p0,
←

ΓT
0→1 =

←

Γ1/p0,
→

ΓT
1→0 =

→

Γ−1/p1, and
←

ΓT
1→0 =

←

Γ−1/p1 since the average number

of electrons tunnelled in a given process is equal to the average number of photons exchanged

in this process. Here, the direct dependence of the resonator excitation and relaxation rates

on the temperature of the resonator is canceled by the temperature dependence of the

resonator populations (see supplementary equation 6). Thus the resonator experiences the
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QCR as a voltage-tunable environment. Using the above results, the forward resonator rates

assume the forms

→

ΓT
0→1 =

ρ

1 + ρ

1

e2RT
∫

∞

−∞

dE fN(E − eV )nS(E − h̵ω0)[1 − fS(E − h̵ω0)]

→

ΓT
1→0 =

ρ

1 + ρ

1

e2RT
∫

∞

−∞

dE fN(E − eV )nS(E + h̵ω0)[1 − fS(E + h̵ω0)]

(19)

Thus the photon-assisted resonator relaxation and excitation rates (supplementary equa-

tion 18) can be theoretically predicted without any free parameters. Consequently, these

rates affect the power flowing into the probe resistor through supplementary equations 5–7.

Supplementary Note 4 ∣ Minimizing undesired losses due to the QCR

Internal quality factors of a bare superconducting coplanar-waveguide resonators, Qint,bare,

of the order ∼ 106 have been demonstrated in the single-photon regime6–8. Such state-of-

the-art values may be obtained with sophisticated fabrication techniques employing proper

choices of materials such as TiN on a high-purity silicon substrate7,9,10. In this section, we

discuss the sources of dissipation added by the introduction of the QCR into the resonator

and give a sample design which is optimized for low losses although not hindering the

desired operation characteristics of the QCR. Using realistically achievable parameters, our

analysis indicates that the optimized design allows us to make the additional losses due to

the QCR small compared with an internal quality factor of 106. Importantly, the optimized

design is also compatible with the fabrication techniques of the low-loss resonators and other

superconducting quantum devices, and hence the QCR holds great potential in introducing

temporally controlled dissipation without degrading the coherence properties when inactive.

In this paper, we measure the resonator temperature using a probe resistor that couples

through ohmic losses to the resonator. However, such dissipative measurement technique

is not necessary in the future. For example, if the QCR is used to cool a high-quality

resonator, the photon occupation numbers may be measured using a dispersively coupled

superconducting qubit11. Thus we consider below a case, in which there is no probe resistor

in the system. In this case, we differentiate three possible sources of dissipation: ohmic

losses at the QCR, losses due to the smearing of the superconductor density of states, and

losses at the metal insulator interfaces. We discuss each of these below. In addition, we

investigate in the next section the losses owing to the photon-assisted tunnelling giving rise to

the operation of the QCR. Classically, the normal-metal resistor, R, of the QCR introduces
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dissipation in the resonator mode due to the electric current, I(x), carried by the excitations

of the mode and the Ohm’s law Pres = RI2(x). Thus it is natural that the ohmic losses can

be greatly reduced by reducing the resistance value and moving the resistor close to the

end of the resonator where the current profile of the mode linearly vanishes. Employing

the quantum-mechanical treatment used in supplementary equation 8, the internal quality

factor due to this loss mechanism only assumes the form2

Qint,ohm ≈
ω0

γ
(20)

where γ = 2ω0R sin2(πx/L)/(πZ0) is the resonator internal dissipation rate due to ohmic

losses. For the optimized sample design shown in Supplementary Fig. 2a, the resistor is

at the very end of the resonator, and hence corrections to the mode current profile from

the total junction capacitance, Ctot
J , are significant. Thus we estimate the effective distance

from the resonator end to be given by x = Ctot
J /Cl = 3.4 µm. Together with the resistance

R = 0.3 Ω of the copper block this implies Qint,ohm = 1.3 × 108. Another way to arrive

at an equal Qint,ohm is the following: (i) treat the resistor and the junction capacitors as

a lumped-element termination impedance, Z, for the resonator, (ii) calculate the current

through the impedance, Iz, using the impedance Z and the undisturbed voltage of the

resonator mode, and (iii) obtain the dissipated power from Ohm's law, RI2
z . Hence these

losses have a negligible effect on the total internal quality factor of the resonator assuming

that Qint,bare = 106 .

The Dynes density of states for the tunnel junctions of the QCR may also contribute to

the internal loss of the resonator. For a single NIS junction, we estimate this loss as

Qint,Dynes = 2π ×
nh̵ω0

PDynes/f0

=
nh̵ω2

0

PDynes

(21)

where PDynes = (⟨V̂res⟩
2 − z.p.f)/RDynes is the photon power dissipation due to the subgap

resistance RDynes = RT/γD, n is the average photon number, and z.p.f. denotes the contribu-

tion arising from the zero-point voltage fluctuations. The voltage operator of the resonator

fundamental mode V̂res is given by

V̂res =

√
h̵ω0

LCl

(â + â�)cos(
πx

L
) (22)
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where â and â� represent the bosonic annihilation and creation operators of the mode,

respectively. Thus we may express supplementary equation 21 as

Qint,Dynes =
RTLClω0

2γD

cos−2(
πx

L
) ≈

πRT

2γDZ0

(23)

where the cosine term is approximated to be unity for x≪ 1 . Even for the sample realized

in this paper, supplementary equation 23 yields a Dynes quality factor well above 106. Thus

these losses are negligible for the optimized sample, the parameters of which yield a Dynes

quality factor above 1010 because of the larger tunnelling resistance and smaller Dynes

parameter. A typical reason for the smearing of the density of states is photon-assisted

tunnelling arising from noise coupled through the dc leads of the NIS junctions, which can

be suppressed by introducing shunt capacitors to ground4. This additional photon-assisted

tunnelling may be treated independent of that due to the resonator photons since the voltage

fluctuations related to these two mechanisms are uncorrelated.

In addition to the above-discussed loss mechanisms, in principle, there may be additional

dissipation arising from the normal-metal–insulator interfaces which have not yet been thor-

oughly investigated in the context of cQED. Typically, such losses are attributed to quantum

fluctuators coupling to the voltage drop across the interface. Since we expect such loss mech-

anisms to be very weak, we have utilized in the optimized design capacitive coupling of the

normal-metal to the resonator. Instead of the parallel-plate design, a finger capacitor may

be used as well. Furthermore, the normal metal may as well be galvanically connected to

the superconducting resonator implying essentially no voltage drop at the arising normal-

metal–superconductor interface due to the large series impedance of the NIS tunnel junction,

and hence no losses arise from possible fluctuators here. Although the capacitor at the NIS

junction cannot be removed, the junction can be fabricated purely from the same type of

aluminum as is used in the Josephson junctions of typical cQED architectures by employing

the inverse proximity effect as described in ref. 12. Thus it is possible to distinguish the any

unwanted dissipation arising from normal-metal–insulator interfaces.

In summary, the optimized sample design shown in Supplementary Fig. 2 is expected to

add insignificant amount of undesired dissipation to the resonator mode. Since a resonator

is a central component in cQED and many of the state-of-the-art qubits can be described as

slightly anharmonic oscillators, these estimates suggests that the QCR can be used in the

future to directly cool a multitude of quantum technological components.
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Supplementary Note 5 ∣ Temporal control of dissipation using the QCR

The QCR appears to the coupled quantum device as a dissipative environment, the

temperature and the coupling strength of which can be temporally controlled using the

operation voltage. Supplementary Fig. 3a shows the excitation (ΓT
0→1) and relaxation (ΓT

1→0)

rates of the resonator mode due to the photon-assisted tunnelling at the QCR. Even for the

parameters of the measured sample, this photon-assisted tunnelling rate gives rise to very

weak dissipation at vanishing operation voltage in comparison to a bare internal quality

factor of 106 (see Supplementary Fig. 3b). However, the rates increase exponentially with

the operation voltage providing the possibility of a fast refrigeration of the resonator mode

when desired. We find in Supplementary Fig. 3a an optimal operation voltage with respect

to the temperature corresponding to the photon-assisted tunnelling. This optimal voltage

depends on the Dynes parameter and the electron temperature of the normal metal. After

one reaches the desired temperature of the refrigerated quantum device, it is beneficial to

quickly ramp down the QCR operation voltage to zero.

Supplementary Note 6 ∣ Temperature of the resonator during refrigeration

At high operation voltages, the QCR is not cooling the resonator mode but substantially

heating it. In this operation regime, we expect to have considerable multi-photon occupation

in the mode, which is not accurately captured by the two-state approximation employed

above. Thus for an improved accuracy in the estimation of the resonator temperature and

of the average photon number, we utilize an upgraded thermal model which includes also

the multi-photon states.

In this upgraded model, supplementary equations 5–8 and 12 are replaced by the corre-

sponding equations containing contributions from all photon number states as detailed in

ref. 13. By invoking the typical assumption used in P (E) theory that the resonator is in

a thermal state, we may express the power flows into and out of the resonator using its

temperature, or equivalently the average photon number

n =
1

exp[h̵ω0/(kBTres)] − 1
(24)

In the simulation, the average photon number changes according to

h̵ω0δtn = PT + PΓ,QCR + PΓ,probe + Pleak (25)
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until a stationary state is achieved. In the stationary state, the power flows (see Fig. 3c)

balance each other.

Figure 3d and Supplementary Fig. 4 show the results of the upgraded thermal model:

temperature and average photon number of the fundamental mode of the resonator as func-

tions of the QCR operation voltage. At maximum cooling, the average photon number is

reduced down to n = 0.3 using parameters corresponding to the measured sample. This

number is well above the state of the art in cQED. However, the aim of this work is not to

show record-low photon numbers but to introduce a quantum-circuit refrigerator. In fact,

a relatively high initial photon number is beneficial in our experiments since is renders the

temperature drop of the probe resistor observable when the QCR is operated. Nevertheless,

the QCR is theoretically expected operate also in a state-of-the-art setup with very small

photon leakage rates and very low temperatures.

Although Supplementary Fig. 4 show that the two-level approximation for the resonator

mode is compromised at certain operation regimes of the QCR, this simple model captures

the essential physics well and provides a quantitative match with the experimental results

with as many fitting parameters as the upgraded model. Furthermore, we verified that

the upgraded many-state model also yields a good quantitative match with the experiments

leading to the same conclusions as the original thermal model. Thus for simplicity, we choose

to work within the two-state model except for Fig. 3d and Supplementary Fig. 4.

Supplementary Note 7 ∣ Analytical considerations of the QCR cooling power

The cooling power does not well characterize the QCR. Instead, one should consider the

transition rates that the QCR induces on the quantum device. Nevertheless, let us derive

analytical results for the cooling power of the QCR and compare them with the cooling power

of typical NIS tunnel junctions. Note that the QCR cools the resonator mode, whereas a

typical NIS junction cools the electron gas in the normal-metal part. Thus these two powers

behave distinctly different as functions of the electron temperature.

Using the P (E) theory and and considering only the two lowest levels of the fundamental

resonator mode, the photon absorption power due to forward tunnelling across a QCR tunnel

junction is given by

→

P −1 = −
h̵ω0

e2RT

q−1∫

∞

−∞

dEnS(E)f(E,TS)[1 − f(E + h̵ω0 + eVQCR/2, TN)] (26)
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The corresponding photon emission power is given by

→

P 1 =
h̵ω0

e2RT

q1∫

∞

−∞

dEnS(E)f(E,TS)[1 − f(E − h̵ω0 + eVQCR/2, TN)] (27)

If the quasiparticle temperatures of the normal metal, TN, and of the superconductor, TS,

are suffciently low, kB max(TN, TS) ≪ min(∆, h̵ω0),the Fermi distribution functions can be

approximated with step functions. Here, the powers in supplementary equation 26 and

supplementary equation 27 can then be simplified to

→

P −1 = −
h̵ω0

e2RT

q−1∫

0

−h̵ω0−eVQCR/2
dE nS(E)

→

P 1 =
h̵ω0

e2RT

q1∫

0

h̵ω0−eVQCR/2
dE nS(E) (28)

For a suffciently small Dynes parameter, the density of states of the superconductor in

supplementary equation 3 is given by

nS(E) =
∣E∣

√
E2 −∆2

θ(∣E∣ −∆) (29)

where θ(Ē) is the Heaviside step function. Thus integration of supplementary equation 28

yields

→

P −1 = −
h̵ω0∆

e2RT

q−1

√

(
eVQCR/2 + h̵ω0

∆
)

2

− 1 θ(eVQCR/2 −∆ + h̵ω0)

→

P 1 =
h̵ω0∆

e2RT

q1

√

(
eVQCR/2 − h̵ω0

∆
)

2

− 1 θ(eVQCR/2 −∆ − h̵ω0) (30)

The step functions in the above equations imply that photon-assisted cooling of the resonator

dominates over heating for ∆ − h̵ω0 < eVQCR/2 < ∆ + h̵ω0.

In typical NIS electronic coolers, the cooling power at the optimal bias point VQCR ≈

2(∆ − 0.66 × kBTN/e) can be approximated by5

Q̇opt ≈
∆2

e2RT

⎡
⎢
⎢
⎢
⎢
⎣

0.59(
kBTN

∆
)

3/2

−

√
2πkBTS

∆
× exp(−

∆

kBTS

)

⎤
⎥
⎥
⎥
⎥
⎦

(31)

At the considered low-temperature limit, the ratio of photonic and electronic cooling

power is given by

→

P −1

Q̇opt

≈
h̵ω0q−1

∆1/2

⎡
⎢
⎢
⎢
⎢
⎣

√
(eVQCR/2 + h̵ω0)

2 −∆2

0.59 (kBTN)
3/2

⎤
⎥
⎥
⎥
⎥
⎦

≈ 2.4 × q−1 (
h̵ω0

kBTN

)

3/2

(32)
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where the last expression is obtained by setting eVQCR/2 = ∆. We observe that this ratio

increases with decreasing electron temperature, and may in principle, exceed unity. With

our typical experimental parameters however, the ratio is of the order of ρ.

Supplementary Note 8 ∣ Analytical considerations of the coefficient of perfor-

mance

In addition to the cooling power, typical refrigerators are characterized by the coefficient of

performance, η, which is the ratio of the net cooling power and the work done by the voltage

source per unit time. For the QCR, we make an estimate

ηQCR =
PΓ − PΓ,QCR

VQCRIQCR

≈
PT

VQCRIQCR

<
2h̵ω0

eVQCR

≈
h̵ω0

∆ − h̵ω0

(33)

where we first neglect the weak ohmic losses and then employ the fact that the current

related to photon absorption is lower than the total current. We also employed an operation

voltage eVQCR/2 ≈ ∆− h̵ω0 which is in the quantum-circuit refrigeration regime discussed in

the main text. With our experimental parameters however, we fall well below the derived

upper bound owing to relatively frequent elastic tunnelling compared with photon-assisted

tunnelling. To increase the coefficient of performance, we may increase the photon energy

or decrease the electron temperature and the Dynes parameter.

For a usual NIS cooler, the coefficient of performance at the optimal bias point is given

by1

ηNIS ≈ 0.7 ×
TN

Tc

(34)

where Tc is the critical temperature of the superconductor. Thus typically ηNIS falls between

0.1 and 0.01. In contrast to ηQCR, the above equation shows that ηNIS decreases with

decreasing electron temperature5, which again highlights the conceptual differences between

the QCR and a typical NIS refrigerator.

Supplementary Note 9 ∣ Losses due to high-order tunnelling

In the above theoretical considerations, we focus on sequential electron tunnelling since it

accurately explains our experimental observations. In the future, it is important to study

in detail how high-order processes such as Andreev reflection14 affect the losses in the sys-

tem. See refs. 15–19 for studies of Andreev reflection in NIS junctions. In this section,

12



we give worst-case estimates on the effect of the Andreev reflections on the QCR electron

temperature and conclude that it seems not to pose a problem for the operation of the QCR.

Note that in our results above, we measure the electron temperature of the QCR and use

this temperature as an input to the thermal model. Thus we implicitly include in the model

any possible Andreev heating of the QCR electrons.

In the experimental QCR sample, the tunnel resistance per junction is about 23.4 kΩ.

Although this is well less than 100 kΩ, and hence typically implying the existence of a so-

called zero-bias anomaly17, we cannot differentiate such anomaly in the experimental data

and model the corresponding current voltage characteristics using a linear slope characteris-

tic for ballistic Andreev reflection. In the subgap region, the ballistic Andreev current, IAR,

can be calculated as18

IAR =
1

8N

RK

R2
T

VQCR (35)

where the number of conduction channels N = A/Ach ≈ 2100 is given by the junction area,

A ≈ 0.063 µm2, and the area for a single channel19, Ach ≈ 30 nm2. The Joule heating power

due to this Andreev current is given by

PAR = IARVQCR. (36)

As a worst-case estimate for the Andreev heating, we employ VQCR = 2∆/e and conse-

quently obtain PAR = 500 aW. This worst-case heating power is low compared with the

electron–phonon coupling and with the cooling power of the NIS junctions near the gap

voltage, and hence Andreev Joule heating is not visible in Fig. 3a.

In the optimized sample, our worst-case estimate for the Andreev Joule heating is an

order of magnitude lower, 50 aW. If this is the only heating power subject to the QCR

electrons coupled to a 10-mK phonon bath, we obtain TQCR = [T 5
0 + PA/(ΣCuΩQCR)]

1/5 =

27 mK. This electron temperature is much lower than the lowest assumed temperature of the

QCR in Supplementary Fig. 3, and hence will likely have a negligible effect on the optimized

sample.
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Supplementary Figure 1 ∣ Thermometer calibration and experimental wiring. a, Ther-

mometer voltages of the quantum-circuit refrigerator (QCR) and of the probe as functions of the

phonon bath temperature. The solid lines are linear fits to the experimental data (markers) and

they are used to convert the measured thermometer voltages into the electron temperatures at the

QCR and at the probe. b, Measured electron temperature of the probe using the calibration from

a as a function of the bath temperature. The dashed line shows the electron temperature extracted

from the thermal model of Fig. 3c. The deviation of the theoretical prediction from the measure-

ment data at high bath temperatures is due to the failure of the linear thermometer calibration

also visible in a. In both panels, the QCR operation voltage is set to zero. c, Wiring scheme for the

measurements. For the rf signal, 20-dB attenuators are attached at different temperature stages of

the cryostat for improved thermalization. Below 4-K temperature, superconducting coaxial cables

are used. Resistive Thermocoax cables are employed for the dc lines.
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Supplementary Figure 2 ∣ Optimized sample design. a, Quantum-circuit refrigerator (QCR)

with two dc bias leads and bonding pads (on the left) is capacitively coupled to the end of a

high-quality co-planar waveguide resonator (on the right). b, View of the design in the area

indicated by the red rectangle in a. c, Close view of the 3×3-µm2 copper block forming the normal

metal of the QCR. The block is partially overlapping the end of the resonator centre conductor to

induce capacitive coupling. Due to shadow evaporation, there is a 20-nm layer of aluminum below

most of the copper parts. d, Close view of the bottom NIS junction (white dashed rectangle).

The lithographic junction size is 50×70 nm2, giving rise to an effective junction area of roughly

70×70 nm2 due to the 20-nm aluminum layer. See Supplementary Table 2 for the parameters of

the optimized QCR sample. e, SEM image of a sample similar to the optimized design but with

four NIS junctions and a larger normal-metal island. The scalebars for panels a, b, c, d, and e

correspond to 100 µm, 10 µm, 1 µm, 100 nm, and 10 µm, respectively.
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Supplementary Figure 3 ∣ Voltage-dependent operation characteristics. a, Resonator

excitation (ΓT
0→1) and relaxation rates (ΓT

1→0) as functions of the QCR operation voltage, VQCR, for

the measured quantum-circuit refrigerator (QCR) sample (solid lines), the optimized sample using

the measured QCR electron temperature (dashed lines), and the optimized sample using 50 mK

lower electron temperatures (dash-dotted lines). See Supplementary Table 2 for the parameters of

the optimized sample. Each operation voltage yielding the minimum temperature corresponding

to the photon-assisted tunnelling, Tres,ΓT = h̵ω0/[log(ΓT
0→1/Γ

T
1→0)kB], is denoted by an arrow. Here,

the temperature assumes the value 60 mK (solid line), 50 mK (dashed line), and 31 mK (dash-

dotted line). b, Resonator quality factor corresponding to the photon-assisted tunnelling, Qint,ΓT ,

as a function of the QCR operation voltage for the three cases shown in a.
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Supplementary Figure 4 ∣ Resonator temperature and average photon number. a,

Resonator temperature and b, average photon number as functions of the quantum-circuit re-

frigerator (QCR) operation voltage at phonon bath temperature of 25 mK (solid lines), 150 mK

(dashed lines), and 475 mK (dash-dotted lines). The results are obtained using an upgraded ther-

mal model where the two-state approximation for the resonator mode is not utilized. Here, we

employ the experimental data of the QCR electron temperature. The simulation parameters are

given in Supplementary Table 1 except for T sat
x = 64 mK, Γleak = 4.5 × 107 s−1, ΩQCR = 0.01 µm3,

and Gx = 1.2 × 10−14 W/K.
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Supplementary Figure 5 ∣ Quality factor of the control sample. Experimentally observed

electron temperature at the probe resistor (markers) as a function of the frequency of the external

microwave excitation. See Fig. 1a for the measurement scheme. The input power is -56 dBm at

room temperature and it is attenuated according to Supplementary Fig. 1c before reaching the

sample. The solid line is a Lorenzian fit to the data.
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Supplementary Table 1 ∣ Device and model parameters. Identical parameters are used for

the active sample and for the control sample unless the specific parameter value for the control

sample is given in parenthesis.

Parameter Symbol Value Unit

Resonator length L 6.833 mm

Inductance per unit length Ll 4.7 × 10−7 H/m

Capacitance per uni length Cl 1.3 × 10−10 F/m

Fundamental resonance frequency f0 9.32 GHz

Resistance of QCR and probe resistors R 46 Ω

Distance of the resistors from resonator edge x 100 µm

Volume of QCR and probe resistors ΩQCR,Ωprobe 4200 × 250 × 20 nm3

Superconductor gap parameter ∆ 214 (216) µeV

Dynes parameter γD 1 × 10−4

Normal state junction resistance RT 23.4 (20.5) kΩ

Thermometer bias current Ith,QCR, Ith,probe 17 pA

Material parameter for Cu ΣCu 2 × 109 W K−5 m−3

Residual heating constant α 1.5 × 10−3 K−1

Residual heating constant β 0.38 K

Resonator constant excitation rate Γleak 8.062 × 107 s−1

Heat conductance to excess bath Gx 8.8695×10−14 WK−1

Excess bath saturation temperature T sat
x 65.4 (104.5) mK
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Supplementary Table 2 ∣ Parameters for the optimized sample. The resistance of the

optimized quantum-circuit refrigerator (QCR) sample (see Supplementary Fig. 2) is estimated using

the measured resistivity of copper in the realized sample and the revised dimensions of the copper

block (3000×3000×200 nm3). The total capacitance of the two NIS junctions in the optimized

sample, Ctot
J , is obtained using a conveniently realizable junction area of 70×70 nm2 and the usual

junction capacitance per unit area 45 fF/µm2. The effective distance of the QCR from the edge of

the resonator, x, is calculated from the total junction capacitance as described in Supplementary

Note 4. The value of the Dynes parameter is obtained from ref. 20 for NIS junctions with proper

filtering and shielding. The normal-state junction resistance can be increased compared with the

realized sample by increasing the oxidation time and pressure in the fabrication process.

Parameter Symbol Value Unit

Resonator length L 6.833 mm

Inductance per unit length Ll 4.7 × 10−7 H/m

Capacitance per uni length Cl 1.3 × 10−10 F/m

Fundamental resonance frequency f0 9.32 GHz

Resistance of QCR resistor R 0.3 Ω

Total junction capacitance Ctot
J 440 aF

Distance of the resistors from resonator edge x 3.4 µm

Volume of QCR resistor ΩQCR 3000 × 3000 × 200 nm3

Superconductor gap parameter ∆ 214 µeV

Dynes parameter γD 2 × 10−7

Normal state junction resistance RT 200 kΩ

Material parameter for Cu ΣCu 2 × 109 W K−5 m−3
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