

2 Fig S1. Primer extension assay suggests mRNA structure. (A) Schematic of the recA gene 3 and upstream region. The ATG is indicated in red, and primers used for primer extension assay 4 are shown in as blue arrows. (B) Multiple sequence alignment (CLC Genomics) showing the 5 RecA coding sequence conservation among different bacteria to determine starting methionine. 6 Ec, E. coli; Ab, A. baumannii; X sp., Xanthomonas species; Bs, Bacillus subtilis. Red boxes 7 indicate conservation. The consensus RecA sequence is shown underneath the compound sequences. (C) Separated products of extension assay on a 10% denaturing acrylamide gel 8 containing urea and visualized using the Typhoon 8600 Imager (General Electric Hartford, CT). 9 10 Using fluorescently labeled primers R1 downstream of the ATG and R2 upstream of it, first strand cDNA synthesis was performed at 65°C using the Maxima H Minus First Strand cDNA 11 12 Synthesis Kit (Thermo Fisher) on RNA extracted from A. baumannii cells with or without cip treatment as described in the main Methods section. This experiment should result in a size 13

14	product encompassing the reverse primer up to the +1 transcriptional start including the
15	ribosomal binding site. Control reactions did not contain RNA template. Unique bands were only
16	readily observed in lanes 3 and 5, which are estimated to be 35-40nt in length based on control
17	primers of known sizes run on the same gel. The increase in product in lane 5 indicates that there
18	was a higher amount of transcript template, as would be expected in cells that were treated with
19	DNA damage. The short product from Primer R1 is within the coding region of the recA gene,
20	indicating that the mRNA structure may be occluding further extension. No product observed
21	when using Primer R2 may indicate structural occlusion of the mRNA template.
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	

- in the dark under a UV germicidal lamp with 54 J/m2. Cells were recovered in 5mL of LB 44
- 45 medium for 3 hours before imaging.

D		
D		
_	•	

	k	R ²	Half-life (min, ± SD)
UTR(C::G)-mkate2	-0.155	0.99	4.5 (3.8-5.6)
UTR(G::G)-mkate2	-0.252	0.79	2.8 (2.5-3.2)
UTR(G::C)-mkate2	-0.144	0.83	4.8 (4.4-5.3)
UTR(∆OL)- <i>mkate2</i>	-0.153	0.99	4.5(4.0-5.1)

Fig S3. mKate2 mRNA decay curves and half-life. (A) Plot of the natural logarithm (ln) of relative *mKate2* mRNA expression for each time point post rifampicin treatment. Half-life was calculated as described in the methods. (B) Table summary of rate constants, R^2 , and half-life [± standard deviation (SD)] for each variant.

- Fig S4. Cells with the native P_{recA}-UTR(G::C)-*mKate2* reporter have increased expression
 upon DNA Damage treatment. Representative phase and fluorescent microscopy images of the *A. baumannii* WT cells with the P_{recA}-UTR(C::G)-*mKate2* reporter compared to the P_{recA}UTR(G::C)-*mKate2* reporter without (-) or with 10X MIC cip (+).

Fig S5. The elongation phenotype of A. baumannii $\triangle recA$ is not rescued by pNLAC1 71 72 bearing *mKate2* in place of *recA*, while DNA damage treatment alters RecA protein levels. 73 (A) The plasmid borne P_{recA} UTR(C::G)-*mKate2* reporter with the native UTR does not affect 74 cell physiology. Representative contrast phase images of WT A. baumannii cells with no plasmid and with the plasmid containing the native P_{recA} -UTR(C::G)-mKate2 reporter. Also shown are 75 images of A. baumannii $\Delta recA$ cells with no plasmid and with the native reporter. Cells shown 76 77 are in the absence of DNA damage treatment. Scale bar represents 10µm. (B) Immunoblot to detect RecA from UV treated (27 J/m²) WT cells and $\Delta recA$ cells with plasmid borne, P_{recA}. 78 UTR(C::G)-recA compared to P_{recA} .UTR(G::C)-recA. Total protein loaded per lane was 79 80 standardized to the RpoB loading control as shown in Fig 5B. Graph shows relative protein 81 expression with WT cells set as 1. A comparative experiment using the isogenic $\Delta recA$ strain and $\Delta recA$ with P_{recA} .UTR(G::G)-recA could not be performed due to their sensitivity to UV 82 83 irradiation.

Table S1. Variant *A. baumannii recA* UTR Sequences

Name	Sequence
UTR(C::G)	GAGAAAAAATCTGTCACTATTAGCCCTGTGAAACAAGTTGAGATTCAATACATCCACTTGGGTT
(native)	AAACGTGATGAACATAGAGTATTGAGGTTTTTGAG
UTR(G::G)	GAGAAAAAATCTGTCACTATTAGGGGTGTGAAACAAGTTGAGATTCAATACATCCACTTGGGTT
	AAACGTGATGAACATAGAGTATTGAGGTTTTTGAG
UTR(G::C)	GAGAAAAAATCTGTCACTATTAGGGGTGTGAAACAAGTTGAGATTCAATACATCCACTTCCCTT AAACGTGATGAACATAGAGTATTGAGGTTTTTGAG
UTR(ΔOL)	GAGAAAAAATCTGTCACTATTAGCCCTGTGAAACAAGTTGAGATTCAATACATCCACTTGGGTT
	AAACGIGAIGAACAIGIIIIIGAG

119	Table S2.	Plasmids	and Strains	used in	this study
-----	-----------	----------	-------------	---------	------------

Plasmid	Description	Reference
pNLAC1	<i>ori-repM (A.baumannii), oripMB1(E. coli),</i> Amp ^R Tet ^R	Gift of T. Russo
		([1])
pCC1 (PrecA-UTR(C::G)-	pNLAC1 containing recA (A1S_1962) promoter-UTR(C::G)-mKate2, with,	This work
mKate2)	Tet ^R	
pCC2(P _{recA} -UTR(G::G)-	pNLAC1 containing <i>recA</i> (A1S_1962) promoter–UTR(G::G)– <i>mKate2</i> , Tet ^R	This work
mKate2)		
$pCC3(P_{recA}-UTR(\Delta OL)-mKate2)$	pNLAC1 containing <i>recA</i> (A1S_1962) promoter–UTR(ΔOL)– <i>mKate2</i> , Tet'	This work
pCC4 (P _{recA} -UTR(C::G)–recA)	pNLAC1 containing recA (A1S_1962) promoter–UTR(C::G)–recA, Tet	This work
pCC5 (P _{recA} -UTR(G::G)–recA)	pNLAC1 containing recA (A1S_1962) promoter–UTR(G::G)–recA, Tet	This work
pCC6 (P _{recA} -UTR(G::C)–recA)	pNLAC1 containing recA (A1S_1962) promoter–UTR(G::C)–recA, Tet	This work
pCC7 (P _{trpB} -UTR(C::G)–mkate2)	pNLAC1 containing <i>trpB</i> (A1S_1692) promoter–UTR(C::G)– <i>mKate2</i> , Tet ^R	This work
pCC8 (Promoterless mKate2)	pNLAC1 containing promoterless <i>mKate2</i> , Tet ^R	This work
pCC9 (PrecA-NO UTR-mKate2)	pNLAC1 containing <i>recA</i> (A1S_1962) promoter– <i>mKate2</i> , Tet ^R	This work
pCC10 (P _{trpB} -NO UTR-mKate2)	pNLAC1 containing <i>trpB</i> (A1S_1692) promoter- <i>mKate2</i> , Tet ^R	This work
pYC251	contains mKate2 coding sequence	Gift of Y. Chai
Strain	Description	Reference
A. baumannii	ATCC17978 Parental strain	American Type
		Culture
		Collection
A. baumannii ∆recA	ATCC17978 recA::km	Gift of G. Bou
		([2])
CC002	ATCC17978 with pCC1	This work
CC034	ATCC17978 ΔrecA with pCC1	This work
CC068	ATCC17978 with pCC3	This work
CC302	ATCC17978 with pCC2	This work
CC314	ATCC17978 with pCC4	This work
CC315	ATCC17978 ΔrecA with pCC4	This work
CC334	ATCC17978 ΔrecA with pCC5	This work
CC357	ATCC17978 ΔrecA with pCC6	This work
CC364	ATCC17978 with pCC7	This work
CC382	ATCC17978 with pCC10	This work
CC401	ATCC17978 with pCC9	This work
E. coli P _{recA} -gfp	Escherichia coli P90C, F- ara Δ (lac-proB)XIII thi, with pUA66-recA–GFP,	([3])
	kan ^R	

121 References:

 Luke NR, Sauberan SL, Russo TA, Beanan JM, Olson R, Loehfelm TW, Cox AD, Michael FS, Vinogradov E V., Campagnari AA (2010) Identification and characterization of a glycosyltransferase involved in *Acinetobacter baumannii* lipopolysaccharide core biosynthesis. *Infect Immun* **78**: 2017–2023.

Aranda J, Bardina C, Beceiro A, Rumbo S, Cabral MP, Barbé J, Bou G (2011) *Acinetobacter baumannii* RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. *J Bacteriol* **193**: 3740–3747.

1293.Benson RW, Norton MD, Lin I, Du Comb WS, Godoy VG (2011) An active site aromatic triad in130Escherichia coli DNA Pol IV coordinates cell survival and mutagenesis in different DNA damaging131agents. PLoS One 6: e19944.

132

133

- 134
- 135

136

Table S3. Oligonucleotides used in this study

Name	Sequence (5' to 3')
16SRNAF	GACTCCTACGGGAGGCWGCAG
16SRNAR	GTATTACCGCGGCTGCTGG
F1	GTTGAGATTCAATACATCCACTTGG
F2	CCTGTGAAACAAGTTGAGATTCAA
F3	GTCACTATTAGCCCTGTGAAAC
F4	AGAAAAATCTGTCACTATTAGCC
F5	AGAAGCTAGAGAAAAAATCTGTC
F6	CATATACAATATAGAAGCTAGAG
MCSmKate2F	GTACCTGCAGGAGCTCTCTAGATTGAGGTTTTTGAGATGGATTCAATAG
MCSmKate2R	GTACCTGCAGGGTACCATCGGATCCTTATCTGTGCCCCAG
mKate2F	TGATGGATTCAATAGAAAAGGTAAGCGAGCTGATTAAG
mKate2gPCRF	GGTAAGCGAGCTGAATTAAGGA
mKate2qPCRR	GCTTGCCTTCGCCCTCG
mKate2R	ACCACGATGCCTGCAGATCGGATCCTTATCT
PNLACF	AGTTTGCGCAACGTTGTTGCCA
PNLACR	AACGACGAGCGTGACACCAC
PrecAF	GTTGCCATTGCTGCACGACCTGACCATAGA
PrecAF2	GTACGAGCTCCGACCTGACCATAGACCAAG
PrecAR	GTACTCTAGATCTAGCTTCTATATATTGTATATGTGAGTG
PtroF	GTACGAGCTCGTCGTAGGTGATGCCAGTAT
PtroR	GTACTCTAGAATCATCCCTCTTTTTAAATTATTAAAG
R1	Cv5-CAAAGCATTACAAGCCGCTT
R2	Cv5-ATCACGTTTAACCCAAGT
recAmKate2R	CTATTGAATCCATCAGTGTTATCACCAAGACG
recAmidF	GCACGCAAACTTGGTGTAGA
recAmidR	GCGCCTGAACGGACAAG
recAR	ACCACGATGCCTGCAAATTACGATTCTAATAAAAGATCT
SD1F	ATCTGTCACTATTAGGGGTGTGAAACAAGTTGAGATTC
SD1R	CTAATAGTGACAGATTTTTTCTCTAGCTTCTATATATTGT
SD2F	GGGTTAAACGTGATGAACATGTTTTTGAGATGGATGAGAA
SD2R	ATGTTCATCACGTTTAACCCAAGTGGATGTATTGAATCTC
SD3F	TCAATACATCCACTTCCCTTAAACGTGATGAACATAGAG
SD3R	AAGTGGATGTATTGAATCTCAACTTGTTTCACAGGGCTAA
Ptro-UTR(C::G)-	GTTGCCATTGCTGCAGAGCTCGTCGTCGTAGGTGATGCCAGTATGGCACCGTATGAGCTGA
mKate2	AATCGGTAGGTGGCTCAGTTGAATATATGAATGATGAAGCTGGTGAAGTTTGGTTACGT
	CGCCTACGCCAGCATTTTGATAAAACAGCATGGTTAAACCCTGAAACAGAAGGGTATT
	GGCATTACACTCAAACAATTGGTTGGATTAAAGAGATTTTTGAAAAACCATATGTATCCAA
	TGACCCTAAAAGGCATTGAAGATTTGACGCGTTACCTTTCTCGATAAACTTGATAACTTT
	AATAATTTAAAAAGAGGGATGATTCTAGAAAAAAATCTGTCACTATTAGCCCTGTGAAAC
	AAGTTGAGATTCAATACATCCACTTGGGTTAAACGTGATGAACATAGAGTATTGAGGTT
	TTTGAGATGGATTCAATAGAAAAGGTAAGCGAGCTGATTAAGGAGAACATGCACATGA
	CCCATCCAACGGCCCTGTGATGCAGAAGAAAACACTCGGCTGGGAGGCCTCCACCGA
	GACGCTGTACCCCGCTGACGGCGGCCTGGAAGGCAGAGCCGACATGGCCCTGAAGC

CCGCTAAGAACCTCAAGATGCCCGGCGTCTACTATGTGGACAGAAGACTGGAAAGAAT CAAGGAGGCCGACAAAGAGACCTACGTCGAGCAGCACGAGGTGGCTGTGGCCAGATA CTGCGACCTCCCTAGCAAACTGGGGCACAGATAAGGATCCGATCGCGGCCGCCTGCA GGCATCGTGGT	TCGTGGGCGGGGGCCACCTGATCTGCAACTTGAAGACCACATACAGATCCAAGAAAC
CAAGGAGGCCGACAAAGAGACCTACGTCGAGCAGCACGAGGTGGCTGTGGCCAGATA CTGCGACCTCCCTAGCAAACTGGGGCACAGATAAGGATCCGATCGCGGCCGCCTGCA GGCATCGTGGT	CCGCTAAGAACCTCAAGATGCCCGGCGTCTACTATGTGGACAGAAGACTGGAAAGAAT
CTGCGACCTCCCTAGCAAACTGGGGCACAGATAAGGATCCGATCGCGGCCGCCTGCA GGCATCGTGGT	CAAGGAGGCCGACAAAGAGACCTACGTCGAGCAGCACGAGGTGGCTGTGGCCAGATA
GGCATCGTGGT	CTGCGACCTCCCTAGCAAACTGGGGCACAGATAAGGATCCGATCGCGGCCGCCTGCA
	GGCATCGTGGT