# **Supporting Information**

## Ammonia-Promoted One-Pot Tetrazolopiperidinone Synthesis by Ugi Reaction

Pravin Patil,<sup>1</sup> Katarzyna Kurpiewska,<sup>2</sup> Justyna Kalinowska-Tłuścik,<sup>2</sup> Alexander Dömling<sup>1</sup>\*

<sup>1</sup> University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands. Fax: (+31)503637582.

E-mail: a.s.s.domling@rug.nl, www.drugdesign.nl.

<sup>2</sup> Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Biocrystallography Group, Ingardena 3, 30-060 Kraków, Poland.

#### Table of Contents

| General Methods                                                            | S2      |
|----------------------------------------------------------------------------|---------|
| Preparations of Compounds C                                                | S2      |
| <sup>1</sup> H NMR, <sup>13</sup> C NMR and SFC-MS data for Compounds      | S3-S13  |
| <sup>1</sup> H NMR, <sup>13</sup> C NMR and SFC-MS Spectrums for Compounds | S14-S89 |
| Crystal structure determination                                            | S90-S94 |
| References                                                                 | S95     |

#### **Experimental section**

#### 1. General methods

Nuclear magnetic resonance spectra (NMR) were recorded on a Bruker Avance 500 spectrometer (<sup>1</sup>H NMR (500 MHz), <sup>13</sup>C NMR (126 MHz)). Chemical shifts for <sup>1</sup>H NMR were reported as  $\delta$  values and coupling constants were in hertz (Hz). The following abbreviations were used for spin multiplicity: s = singlet, d = doublet, t = triplet, dd = double doublet, m =multiplet, bs = broad singlet. Chemical shifts for  ${}^{13}C$  NMR reported in ppm relative to the solvent peak. Thin layer chromatography was performed on Fluka precoated silica gel plates (0.20 mm thick, particle size 25 µm). Flash chromatography was performed using SiliCycle silica gel type SiliaFlash P60 (230 – 400 mesh) as obtained from Screening Devices or with automated column chromatography using a Reveleris flash purification system purchased from Grace Davison Discovery Sciences. Reveleris pre-fabricated silica cartridges were purchased and used, for automated column chromatography, containing 40 µm silica. Reagents were available from commercial suppliers and used without any purification unless otherwise noted. All isocyanides were made in house by performing the Ugi procedure. Other reagents were purchased from Sigma Aldrich, ABCR, Acros and AK Scientific and were used without further purification. Electrospray ionization mass spectra (ESI-MS) were recorded on a Waters Investigator Semi-prep 15 SFC-MS instrument.

#### 2. General Procedure

#### **Procedure A (One-pot Ugi Reaction followed by cyclization):**

To a stirred solution of oxo compound (**A**, 1 equiv.) in methanol:H<sub>2</sub>O (3:1; 0.5M) was added ammonium chloride (1.2 equiv.) and stirred for 10 min., followed by addition of isocyanide (**B**, 1 equiv.) and sodium azide (1.2 equiv.). The reaction was allowed to stir at room temperature for 18 h. Then, the ammonium hydroxide (0.1 equiv.) was added to the reaction mixture and stirred at 50 °C for additional 18 h. The solvents were evaporated under vacuum and the crude mass obtained was purified by using flash column chromatography to give pure product **C**.

#### 1c: 5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one

The product was obtained using procedure **A**, 67 % as white solid, M.P. = 142-144 °C; SFC-MS (ESI) m/z calcd for C<sub>9</sub>H<sub>13</sub>N<sub>5</sub>O [M]<sup>+</sup>: 207.11; found [M+H]<sup>+</sup>: 208.16. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (s, 1H), 5.08 (s, 2H), 2.24 – 2.14 (m, 2H), 2.03 – 1.94 (m, 2H), 1.90 – 1.83 (m, 2H), 1.78 – 1.58 (m, 4H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  162.9, 154.0, 54.3, 47.5, 38.1, 24.2, 20.9.

#### 2c: 8,8-diethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one

The product was obtained using procedure **A**, 58 % as white solid, M.P. = 150-N, N, NH N, SOD (M, 1)<sup>+</sup>: 195.11; found [M+H]<sup>+</sup>: 196.20. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (s, 1H), 5.09 (s, 2H), 2.28 (dq, J = 14.7, 7.4 Hz, 2H), 1.97 (dq, J = 14.7, 7.4 Hz, 2H), 0.80 (t, J = 7.4 Hz, 6H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.6, 152.1, 60.3, 47.4, 34.7, 8.0.

#### 3c: 1-benzyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



The product was obtained using procedure **A**, 67 % as white solid, M.P. = 204-206 °C; SFC-MS (ESI) m/z calcd for  $C_{15}H_{18}N_6O$  [M]<sup>+</sup>: 298.15; found [M+H]<sup>+</sup>: 299.18. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.95 (s, 1H), 7.35 – 7.31 (m, 4H), 7.28 – 7.23 (m, 1H), 5.12 (s, 2H), 3.58 (s, 2H), 2.76 – 2.65 (m, 4H), 2.04 – 1.95 (m, 4H); <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  162.9, 153.3, 138.6, 128.8, 128.2, 126.9,

61.8, 51.8, 48.0, 47.5, 37.0.

### 4c: benzyl 6'-oxo-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazine]-1carboxylate



The product was obtained using procedure **A**, 69 % as white solid, M.P. = 138-140 °C; SFC-MS (ESI) m/z calcd for  $C_{16}H_{18}N_6O_3$  [M]<sup>+</sup>: 342.14; found [M-H]<sup>+</sup>: 341.08. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.82 (s, 1H), 7.42 – 7.29 (m, 5H), 5.14 (s, 2H), 5.06 (s, 2H), 3.99 – 3.74 (m, 4H), 2.23 – 2.07 (m, 2H), 2.04 – 1.82 (m,

2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 163.4, 155.0, 152.4, 136.2, 128.5, 128.1, 127.8, 67.4, 52.8, 47.4, 39.3, 37.3.

#### 12c: 8-(4-chlorophenyl)-5,5-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one



The product was obtained using procedure A, 22 % as white solid, M.P. = 130-132 °C; SFC-MS (ESI) m/z calcd for C<sub>12</sub>H<sub>12</sub>ClN<sub>5</sub>O [M]<sup>+</sup>: 277.07; found [M-H]<sup>+</sup>: 276.10. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.53 (s, 1H), 7.41 – 7.36 (m, 2H), 7.35 - 7.30 (m, 2H), 6.11 (d, J = 2.2 Hz, 1H), 1.92 (s, 3H), 1.84 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 170.0, 148.2, 135.7, 134.7, 129.7, 127.8, 62.6, 51.6,

27.6, 26.3.

#### 13c: 5,5,8,8-tetramethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one

The product was obtained using procedure A, 72 % as white solid, M.P. = 207-209 °C; SFC-

MS (ESI) m/z calcd for C<sub>8</sub>H<sub>13</sub>N<sub>5</sub>O [M]<sup>+</sup>: 195.11; found [M+H]<sup>+</sup>: 196.20; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.99 (s, 1H), 1.88 (d, *J* = 1.6 Hz, 6H), 1.79 (s, 6H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 169.7, 153.1, 62.2, 51.7, 30.5, 27.1.

#### 14c: 8-ethyl-5,5,8-trimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one



The product was obtained using procedure A, 62 % as white solid, M.P. = 181- $\begin{array}{c} & 183 \ ^{o}C; \ SFC-MS \ (ESI) \ m/z \ calcd \ for \ C_{9}H_{15}N_{5}O \ [M]^{+}: \ 209.13; \ found \ [M+H]^{+}: \\ & 210.21; \ ^{1}H \ NMR \ (500 \ MHz, \ CDCl_{3}) \ \delta \ 7.69 \ (s, \ 1H) \\ 2.33 - 2.19 \ (m, \ 1H), \ 2.02 \ (m, \ 1H), \ 2.02 - 2.19 \ (m, \ 1H), \ 2.02 \ (m, \ 1H), \ 2$ 1.94 (m, 1H), 1.92 (s, 3H), 1.90 (s, 3H), 1.78 (s, 3H), 0.80 (d, J = 7.3 Hz, 3H);

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 170.1, 151.9, 62.0, 55.6, 35.8, 29.5, 27.6, 27.2, 8.3.

#### 15c: 8-isobutyl-5,5,8-trimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one



The product was obtained using procedure A, 67 % as white solid, M.P. = 169- $\begin{array}{c} \searrow \\ \searrow \\ \searrow \\ \searrow \\ \frown \\ \bigcirc \\ \end{array} \qquad 171 \ ^{o}C; \ SFC-MS \ (ESI) \ m/z \ calcd \ for \ C_{11}H_{19}N_5O \ [M]^+: \ 237.16; \ found \ [M+H]^+: \\ \swarrow \\ \searrow \\ \bigcirc \\ \end{array} \qquad 238.16; \ ^{1}H \ NMR \ (500 \ MHz, \ CDCl_3) \ \delta \ 7.91 \ (s, \ 1H), \ 2.26 - 2.17 \ (m, \ 1H), \ 1.91 \end{array}$ (s, 3H), 1.87 (s, 3H), 1.75 (s, 3H), 1.51 - 1.39 (m, 1H), 0.89 (d, J = 6.7 Hz, 3H),

0.57 (d, J = 6.7 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  169.9, 152.3, 62.0, 55.0, 50.4, 31.4, 27.9, 26.8, 24.6, 24.0, 23.0.

#### 16c: 8,8-diethyl-5,5-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one



The product was obtained using procedure A, 62 % as white solid, M.P. = 1.91 (m, 2H), 1.90 (s, 6H), 0.75 (t, J = 7.4 Hz, 6H); <sup>13</sup>C NMR (126 MHz,

CDCl<sub>3</sub>)  $\delta$  170.9, 150.7, 61.8, 60.1, 34.9, 34.9, 27.7, 8.1.

#### 23c: 5',5'-dimethyl-5'H-spiro[cyclopentane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



The product was obtained using procedure **A**, 68 % as white solid, M.P. = 152-154 °C; SFC-MS (ESI) m/z calcd for  $C_{10}H_{15}N_5O$  [M]<sup>+</sup>: 221.13; found [M+H]<sup>+</sup>: 222.20; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (s, 1H), 2.49 – 2.25 (m,

2H), 2.21 – 1.96 (m, 6H), 1.80 (s, 6H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 169.8, 153.3, 62.1, 60.7, 42.2, 26.9, 23.7.

#### 24c: 2,2,5',5'-tetramethyl-5'H-spiro[cyclopentane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)one. The product was obtained using procedure A, 8 % as white solid, M.P. = 212-214 °C; SFC-MS



(ESI) m/z calcd for  $C_{12}H_{19}N_5O$  [M]<sup>+</sup>: 249.16; found [M-H]<sup>+</sup>: 248.18; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (s, 1H), 2.52 – 2.37 (m, 1H), 2.31 – 2.06 (m, 3H), 2.06 – 1.94 (m, 1H), 1.88 (s, 6H), 1.80 – 1.69 (m, 1H), 1.07 (s, 3H), 0.74 (s, 3H), <sup>13</sup>C

NMR (126 MHz, CDCl<sub>3</sub>) δ 170.4, 151.4, 66.3, 61.7, 47.9, 38.4, 37.3, 27.9, 27.7, 23.7, 23.5, 18.7.

### 25c: methyl 5',5'-dimethyl-6'-oxo-6',7'-dihydro-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5a]pyrazine]-2-carboxylate

The product was obtained using procedure A, 14 % as white solid, M.P. = 90-92 °C; SFC-MS



(ESI) m/z calcd for  $C_{13}H_{19}N_5O_3$  [M]<sup>+</sup>: 293.15; found [M-H]<sup>+</sup>: 292.39; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (major)  $\delta$  7.90 (s, 1H), 3.50 (s, 3H), 2.75 (dd, *J* = 13.0, 3.9 Hz, 1H), 2.52 (qd, *J* = 13.3, 3.9 Hz, 1H), 2.24 (qt, *J* = 13.6, 4.2 Hz, 1H), 2.16 - 2.08 (m, 1H), 2.05 - 1.98 (m, 1H), 1.94 (s, 3H), 1.93 -

1.87 (m, 1H), 1.85 (s, 3H), 1.82 – 1.79 (m, 1H), 1.74 – 1.66 (m, 1H), 1.49 – 1.39 (m, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) (major) δ 171.8, 170.5, 149.9, 61.6, 55.1, 52.7, 51.9, 40.6, 28.4, 26.0, 25.7, 24.6, 21.1.

#### 26c: 5',5'-dimethyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



The product was obtained using procedure **A**, 87 % as white solid, M.P. = 169-171 °C; SFC-MS (ESI) m/z calcd for C<sub>11</sub>H<sub>17</sub>N<sub>5</sub>O [M]<sup>+</sup>: 235.14; found [M+H]<sup>+</sup>: 236.18; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (s, 1H), 2.25 – 2.13 (m, 2H), 2.01 – 1.92 (m, 2H), 1.88 (s, 6H), 1.85 – 1.78 (m, 2H), 1.74 – 1.65 (m, 3H), 1.63 –

1.54 (m, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 169.6, 152.8, 62.0, 53.8, 38.6, 27.3, 24.3, 20.8.

### 27c: 5',5'-dimethyl-4-phenyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-

6'(7'H)-one



The product was obtained using procedure **A**, 81 % as oil; SFC-MS (ESI) m/z calcd for  $C_{17}H_{21}N_5O[M]^+$ : 311.18; found  $[M+H]^+$ : 312.18; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (major)  $\delta$  7.94 (s, 1H), 7.43 – 7.39 (m, 2H), 7.35 (d, *J* = 7.5 Hz, 2H), 7.27 – 7.22 (m, 1H), 2.75 – 2.65 (m, 1H), 2.63 – 2.48 (m, 2H), 2.19 – 2.10 (m,

2H), 2.03 – 1.88 (m, 10H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 170.1, 151.4, 145.6, 128.5, 127.1, 126.4, 61.9, 54.0, 42.8, 39.7, 29.4, 27.3.

### 28c: benzyl 5',5'-dimethyl-6'-oxo-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5a]pyrazine]-1-carboxylate



The product was obtained using procedure **A**, 87 % as white solid, M.P. = 185-187 °C; SFC-MS (ESI) m/z calcd for  $C_{18}H_{22}N_6O_3$  [M]<sup>+</sup>: 370.18; found [M+Na]<sup>+</sup>: 393.32; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.70 (s, 1H), 7.41 – 7.29 (m, 5H), 5.17 (s, 2H), 4.02 – 3.80 (m, 4H), 2.23 – 2.04 (m, 2H), 2.03 – 1.90 (m, 2H), 1.86 (s,

6H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 170.2, 155.1, 151.2, 136.3, 128.5, 128.1, 127.8, 67.4, 61.9, 52.4, 39.3, 37.8, 27.2.

### 29c: ethyl 5',5'-dimethyl-6'-oxo-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5a]pyrazine]-1-carboxylate

The product was obtained using procedure **A**, 88 % as white solid, M.P. = 165-167 °C; SFC-MS (ESI) m/z calcd for  $C_{13}H_{20}N_6O_3$  [M]<sup>+</sup>: 308.16; found [M+Na]<sup>+</sup>: 331.30; <sup>1</sup>H NMR (500 MHz,



<sup>Et</sup> CDCl<sub>3</sub>)  $\delta$  8.37 (s, 1H), 4.28 – 4.12 (m, 2H), 4.01 – 3.76 (m, 4H), 2.20 – 2.07 (m, 2H), 1.98 – 1.79 (m, 8H), 1.28 (d, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  170.1, 155.4, 151.3, 62.1, 61.8, 52.6, 39.2, 38.0, 27.3, 14.7.

### 36c: 5-isobutyl-8,8-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one

The product was obtained using procedure A, 75 % as white solid, M.P. = 163-165 °C; SFC-



MS (ESI) m/z calcd for C<sub>10</sub>H<sub>17</sub>N<sub>5</sub>O [M]<sup>+</sup>: 223.14; found [M-H]<sup>+</sup>: 222.00; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (s, 1H), 5.12 (dd, *J* = 7.6, 4.9 Hz, 1H), 2.20 – 2.12 (m, 1H), 2.03 – 1.89 (m, 2H), 1.82 (s, 3H), 1.77 (s, 3H), 0.98 (d, *J* = 1.2 Hz, 3H), 0.97 (d, *J* = 1.3 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  166.5, 154.0,

57.8, 51.5, 42.3, 31.0, 29.3, 24.2, 22.7, 21.4.

#### 37c: 5-isobutyl-8-isopropyl-8-methyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one

The product was obtained using procedure **A**, 46 % as white solid, M.P. = 185-187 °C; SFC-MS (ESI) m/z calcd for  $C_{12}H_{21}N_5O[M]^+$ : 251.17; found [M-H]<sup>+</sup>: 250.04; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (major)  $\delta$  7.18 (s, 1H), 5.07 (dd, *J* = 8.2, 4.8 Hz, 1H), 2.26 - 2.10 (m, 3H), 1.93 (ddd, *J* = 13.5, 8.1, 5.2 Hz, 1H),

1.72 (s, 3H), 1.07 (d, J = 6.5 Hz, 3H), 1.03 (d, J = 3.5 Hz, 3H), 1.01 (d, J = 3.5 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) (major)  $\delta$  167.1, 153.0, 58.1, 57.4, 43.5, 38.9, 26.1, 24.8, 22.7, 21.5, 17.4, 16.6.

### **38c:** 8-(hydroxymethyl)-5-isobutyl-8-methyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)one



The product was obtained using procedure **A**, 65 % as oil; SFC-MS (ESI) m/z calcd for C<sub>10</sub>H<sub>17</sub>N<sub>5</sub>O<sub>2</sub> [M]<sup>+</sup>: 239.14; found [M-H]<sup>+</sup>: 238.06; <sup>1</sup>H NMR (500 MHz, MeOD) (Major)  $\delta$  5.21 (s, 1H), 3.86 (d, *J* = 11.1 Hz, 1H), 3.72 (d, *J* = 11.1 Hz, 1H), 3.61 – 3.52 (m, 1H), 2.33 – 2.27 (m, 1H), 2.22 – 2.16 (m, 1H),

1.92 - 1.83 (m, 1H), 1.67 (s, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.83 (d, J = 6.6 Hz, 3H); <sup>13</sup>C NMR (126 MHz, MeOD) (major)  $\delta$  169.2, 154.0, 78.2, 70.0, 59.1, 44.8, 25.7, 23.3, 22.8, 21.8.

#### 41c: 5'-isobutyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



The product was obtained using procedure **A**, 80 % as white solid, M.P. = 226-228 °C; SFC-MS (ESI) m/z calcd for  $C_{13}H_{21}N_5O [M]^+$ : 263.17; found [M-H]<sup>+</sup>: 262.13; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (s, 1H), 5.11 (dd, *J* = 7.2, 5.1 Hz, 1H), 2.35 – 2.21 (m, 1H), 2.18 – 2.01 (m, 3H), 2.01 – 1.92 (m, 2H), 1.91 – 1.77 (m, 3H), 1.75 – 1.57 (m, 4H), 0.99 (d, *J* = 1.4 Hz, 3H), 0.97 (d, *J* = 1.4

Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 166.7, 153.7, 57.7, 53.9, 42.9, 39.5, 37.4, 24.5, 24.3, 22.7, 21.6, 20.8, 20.6.

#### 42c: 1-benzyl-5'-isobutyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



The product was obtained using procedure **A**, 76 % as white solid, M.P. = 203-205 °C; SFC-MS (ESI) m/z calcd for  $C_{19}H_{26}N_6O$  [M]<sup>+</sup>: 354.22; found [M+H]<sup>+</sup>: 355.20; <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.98 (s, 1H), 7.36 – 7.30 (m, 4H), 7.29 – 7.21 (m, 1H), 5.22 (dd, J = 7.3, 4.8 Hz, 1H), 3.58 (s, 2H), 2.87 – 2.78 (m, 1H), 2.76 – 2.64 (m, 3H), 2.07 – 1.89 (m, 6H), 1.88 – 1.77

(m, 1H), 0.90 (d, J = 6.6 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ 

165.5, 153.1, 138.6, 128.8, 128.2, 126.9, 61.8, 57.1, 51.6, 48.0, 41.4, 38.1, 36.8, 24.2, 22.7, 21.6.

#### 44c: 8,8-dimethyl-5-phenyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one



The product was obtained using procedure **A**, 70 % as white solid, M.P. = 180-182 °C; SFC-MS (ESI) m/z calcd for  $C_{12}H_{13}N_5O$  [M]<sup>+</sup>: 243.11; found [M-H]<sup>+</sup>: 242.33; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (s, 1H), 7.41 (p, *J* = 3.6, 3.1 Hz, 3H), 7.24 – 7.12 (m, 2H), 6.26 (s, 1H), 1.86 (s, 4H), 1.75 (s, 4H), <sup>13</sup>C NMR

(126 MHz, CDCl<sub>3</sub>)  $\delta$  164.6, 154.6, 133.6, 129.6, 129.2, 126.8, 62.5, 52.1, 31.4, 29.6.

#### 45c: 8,8-diethyl-5-phenyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one

The product was obtained using procedure A, 63 % as white solid, M.P. = 209-216 °C; SFC-



MS (ESI) m/z calcd for C<sub>14</sub>H<sub>17</sub>N<sub>5</sub>O [M]<sup>+</sup>: 271.14; found [M-H]<sup>+</sup>: 270.14; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 – 7.36 (m, 3H), 7.34 (s, 1H), 7.22 – 7.13 (m, 2H), 6.15 (s, 1H), 2.32 – 2.17 (m, 2H), 2.00 – 1.83 (m, 2H), 0.87 (t, *J* = 7.4 Hz, 3H), 0.73 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.7,

152.4, 133.9, 129.6, 129.1, 128.4, 127.3, 124.9, 62.3, 60.1, 34.7, 34.5, 8.5, 7.9.

#### 46c: 5'-phenyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one

The product was obtained using procedure A, 75 % as white solid, M.P. = 218-220 °C; SFC-



MS (ESI) m/z calcd for C<sub>15</sub>H<sub>17</sub>N<sub>5</sub>O [M]<sup>+</sup>: 283.14; found [M-H]<sup>+</sup>: 282.04; <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  9.13 (s, 1H), 7.49 – 7.33 (m, 3H), 7.28 – 7.10 (m, 2H), 6.41 (s, 1H), 2.09 – 1.58 (m, 9H), 1.38 (d, *J* = 12.4 Hz, 1H); <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  163.7, 153.8, 135.5, 128.9, 127.6, 61.7, 53.4, 37.5, 24.2,

20.9, 20.7.

### 47c: ethyl 6'-oxo-5'-phenyl-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5a]pyrazine]-1-carboxylate



The product was obtained using procedure **A**, 65 % as white solid, M.P. = 190-192°C; SFC-MS (ESI) m/z calcd for  $C_{17}H_{20}N_6O_3$  [M]<sup>+</sup>: 356.16; found [M+Na]<sup>+</sup>: 379.14; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.64 (s, 1H), 7.46 – 7.30 (m, 3H), 7.18 – 7.01 (m, 2H), 6.25 (s, 1H), 4.30 – 4.11 (m, 2H), 4.10 – 3.97 (m, 1H), 3.91 – 3.51 (m, 3H), 2.37 – 2.22 (m, 1H), 2.11 – 1.72 (m, 3H), 1.28 (t, *J* 

= 7.2 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 165.2, 155.2, 152.9, 133.4, 129.5, 129.1, 126.5, 62.0, 61.6, 52.7, 39.0, 38.6, 36.5, 14.5.

#### 48c: 1-benzyl-5'-phenyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



The product was obtained using procedure A, 68 % as white solid, M.P. = 138-140 °C; SFC-MS (ESI) m/z calcd for C<sub>21</sub>H<sub>22</sub>N<sub>6</sub>O [M]<sup>+</sup>: 374.19; found [M+H]<sup>+</sup>: 375.23; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.50 – 7.45 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 – 7.28 (m, 5H), 7.28 – 7.23 (m, 1H), 7.01 (s, 1H), 4.69 (s, 1H), 3.52 (s, 2H), 2.64 – 2.41 (m, 4H), 1.93 – 1.78 (m, 4H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)

δ 175.6, 138.5, 138.2, 129.0, 128.6, 128.2, 127.9, 127.5, 127.0, 72.5, 62.6, 62.1, 50.3, 50.1, 39.4, 38.4.

#### 50c: 5-benzyl-8,8-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one



The product was obtained using procedure A, 79 % as white solid, M.P. = 176-178 °C; SFC-MS (ESI) m/z calcd for C<sub>13</sub>H<sub>15</sub>N<sub>5</sub>O [M]<sup>+</sup>: 257.13; found [M-H]<sup>+</sup>: 256.27; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.23 – 7.03 (m, 3H), 6.82 – 6.63 (m, 2H), 5.55 - 5.34 (m, 1H), 3.81 - 3.55 (m, 2H), 1.67 (s, 3H), 0.72 (s, 3H);  ${}^{13}C$ NMR (126 MHz, CDCl<sub>3</sub>) δ 164.6, 154.5, 133.0, 129.7, 128.9, 127.9, 60.0, 51.9, 38.3, 30.2.

#### 51c: 5-benzyl-8-ethyl-8-methyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one

The product was obtained using procedure A, 65 % as white solid, M.P. = 233-235 °C; SFC-



MS (ESI) m/z calcd for  $C_{14}H_{17}N_5O [M]^+$ : 271.14; found [M-H]<sup>+</sup>: 270.14; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (major) δ 7.66 (s, 1H), 7.14 – 7.10 (m, 3H), 6.76 – 6.66 (m, 2H), 5.44 (dd, J = 4.7, 3.0 Hz, 1H), 3.71 – 3.62 (m, 2H), 2.17 – 2.09 (m, 1H), 1.86 - 1.77 (m, 1H), 0.76 (s, 3H), 0.67 (t, J = 7.3 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) (major) & 165.4, 153.5, 132.9, 129.6, 128.8, 127.8, 59.7,

55.6, 38.3, 35.5, 28.7, 8.0.

#### 52c: 5'-benzyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



The product was obtained using procedure A, 86 % as white solid, M.P. = 145-146 °C; SFC-MS (ESI) m/z calcd for C<sub>16</sub>H<sub>19</sub>N<sub>5</sub>O [M]<sup>+</sup>: 297.16; found [M+H]<sup>+</sup>: 298.24; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.59 (s, 1H), 7.23 – 7.09 (m, 3H), 6.91 - 6.66 (m, 2H), 5.53 - 5.42 (m, 1H), 3.78 - 3.61 (m, 2H), 2.19 - 2.07 (m, 1H), 2.03 – 1.91 (m, 1H), 1.77 – 1.68 (m, 1H), 1.67 – 1.39 (m, 4H), 1.38 – 1.20 (m,

1H), 1.04 - 0.89 (m, 1H), 0.31 - 0.19 (m, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.6, 154.2, 133.0, 129.7, 128.7, 127.8, 59.8, 53.8, 38.3, 37.8, 24.1, 20.6, 20.5.

#### 53c: 5'-benzyl-4-phenyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one

The product was obtained using procedure **A**, 87 % as white solid, M.P. = 213-216 °C; SFC-MS (ESI) m/z calcd for C<sub>22</sub>H<sub>23</sub>N<sub>5</sub>O [M]<sup>+</sup>: 337.19; found [M-H]<sup>+</sup>: 372.21; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (s, 1H), 7.38 – 7.28 (m, 4H), 7.23 – 7.18 (m, 1H), 7.17 – 7.10 (m, 3H), 6.84 – 6.66 (m, 2H), 5.50 (dd, 4.9, 3.0 Hz, 1H), 3.89 – 3.54 (m, 2H), 2.66 (qd, *J* = 13.1, 3.7 Hz, 1H), 2.51 (tt, *J* = 12.6, 3.8 Hz, 2H), 2.12 – 2.03 (m, 1H), 2.03 – 1.91 (m, 2H), 1.90 – 1.58 (m, 3H), 1.53 – 1.43 (m, 1H), 1.29 (td, *J* = 13.5, 3.9 Hz, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 152.8, 145.7, 133.1, 129.7, 128.8, 128.5, 128.4, 127.8, 127.0, 126.8, 126.4, 59.7, 54.1, 42.7, 39.4, 39.1, 38.4, 29.2, 29.1.

#### 54c: 5'-benzyl-1-methyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one

The product was obtained using procedure A, 43 % as white solid, M.P. = 111-113 °C; SFC-



MS (ESI) m/z calcd for C<sub>16</sub>H<sub>20</sub>N<sub>6</sub>O [M]<sup>+</sup>: 312.17; found [M+H]<sup>+</sup>: 313.17; <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.96 (s, 1H), 7.20 – 7.10 (m, 3H), 6.72 – 6.62 (m, 2H), 5.61 (dd, *J* = 4.8, 3.2 Hz, 1H), 3.57 (dd, *J* = 14.0, 3.3 Hz, 1H), 3.48 (dd, *J* = 14.0, 4.8 Hz, 1H), 2.94 – 2.80 (m, 1H), 2.80 – 2.69 (m, 1H), 2.47 – 2.38 (m, 2H), 2.28 (s, 3H), 2.04 – 1.84 (m, 2H), 1.08 – 0.71 (m, 1H), 0.68 – 0.18

(m, 1H); <sup>13</sup>C NMR (126 MHz, DMSO) δ 164.0, 153.2, 134.0, 129.4, 128.4, 127.4, 59.2, 50.5, 49.3, 49.0, 44.6, 37.7, 36.8, 35.7.

#### 55c: 1,5'-dibenzyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



The product was obtained using procedure **A**, 86 % as white solid, M.P. = 140-142 °C; SFC-MS (ESI) m/z calcd for  $C_{22}H_{24}N_6O$  [M]<sup>+</sup>: 388.20; found [M+H]<sup>+</sup>: 389.22; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (s, 1H), 7.32 – 7.27 (m, 4H), 7.25 – 7.21 (m, 1H), 7.14 – 7.06 (m, 3H), 6.76 – 6.70 (m, 2H), 5.48 (dd, *J* = 4.8, 3.0 Hz, 1H), 3.76 – 3.63 (m, 2H), 3.57 (s, 2H), 3.00 – 2.93 (m, 1H), 2.65 – 2.56 (m, 1H), 2.53 – 2.45 (m, 1H), 2.32 – 2.18 (m, 2H), 1.09 – 0.77 (m, 1H), 0.68 – 0.38

(m, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 164.8, 153.5, 137.9, 132.9, 129.6, 128.8, 128.7, 128.2, 127.8, 127.1, 62.5, 59.7, 52.3, 47.8, 47.4, 38.3, 38.0, 37.4.

### 56c: ethyl 5'-benzyl-6'-oxo-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-<sub>COOEt</sub> a]pyrazine]-1-carboxylate



The product was obtained using procedure **A**, 88 % as white solid, M.P. = 115-117 °C; SFC-MS (ESI) m/z calcd for  $C_{18}H_{22}N_6O_3$  [M]<sup>+</sup>: 370.18; found [M-H]<sup>+</sup>: 369.12; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.36 (s, 1H), 7.24 – 7.06 (m, 3H), 6.68 (dt, *J* = 7.6, 2.3 Hz, 2H), 5.47 (dt, *J* = 4.8, 2.4 Hz, 1H), 4.22 – 4.01 (m, 2H), 3.99

-3.85 (m, 1H), 3.79 (d, J = 14.5 Hz, 1H), 3.73 -3.58 (m, 2H), 3.40 (dt, J = 16.4, 9.7 Hz, 2H), 2.15 -1.96 (m, 1H), 1.89 -1.68 (m, 1H), 1.24 (d, J = 7.2 Hz, 3H), 0.66 (ddd, J = 13.3, 8.1, 4.9 Hz, 1H), 0.51 -0.34 (m, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.2, 155.1, 152.6, 132.8, 129.5, 128.7, 127.9, 61.5, 59.6, 52.3, 38.7, 38.2, 37.5, 36.9, 14.5.

### 61c: 5-((1H-indol-3-yl)methyl)-8,8-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)one



The product was obtained using procedure **A**, 62 % as white solid, M.P. = 247-249 °C; SFC-MS (ESI) m/z calcd for  $C_{15}H_{16}N_6O [M]^+$ : 296.14; found [M+Na]<sup>+</sup>: 319.20; <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  10.88 (s, 1H), 8.69 (s, 1H), 7.24 (d, *J* = 8.1 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.01 – 6.96 (m, 1H), 6.89 – 6.83 (m, 1H), 6.49 (d, *J* = 2.4 Hz, 1H), 5.54 – 5.50 (m, 1H), 3.75 (dd,

J = 14.8, 3.0 Hz, 1H), 3.56 (dd, J = 14.8, 4.7 Hz, 1H), 1.41 (s, 3H), 0.38 (s, 3H); <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  164.1, 154.8, 135.6, 127.0, 124.2, 124.1, 121.1, 118.7, 118.1, 111.3, 106.3, 59.5, 50.4, 29.5, 29.2, 28.3.

#### 62c: 5-((1H-indol-3-yl)methyl)-8, 8-diethyl-7, 8-dihydrotetrazolo [1,5-a] pyrazin-6(5H)-one (1,5-a) pyrazin-6(5H)-0, 8-diethyl-7, 8-dihydrotetrazolo [1,5-a] pyrazin-6(5H)-0, 8-diethyl-7, 8-diet



The product was obtained using procedure **A**, 62 % as white solid, M.P. = 234-236 °C; SFC-MS (ESI) m/z calcd for  $C_{17}H_{20}N_6O$  [M]<sup>+</sup>: 324.17; found [M+Na]<sup>+</sup>: 347.36; <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  10.82 (s, 1H), 8.52 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 1H), 7.03 – 6.93 (m, 1H), 6.85 (t, *J* = 7.4 Hz, 1H), 6.58 (d, *J* = 2.5 Hz, 1H), 5.65 (dd, *J* = 4.6, 2.9 Hz,

1H), 3.81 (dd, J = 14.8, 3.0 Hz, 1H), 3.67 (dd, J = 14.9, 4.7 Hz, 1H), 1.78 (dq, J = 14.4, 7.3 Hz, 1H), 1.64 (dq, J = 14.5, 7.3 Hz, 1H), 1.24 (dq, J = 14.7, 7.4 Hz, 1H), 1.05 (dq, J = 14.6, 7.4 Hz, 1H), 0.48 (t, J = 7.3 Hz, 3H), -0.41 (t, J = 7.4 Hz, 3H), <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  165.4, 152.5, 135.8, 127.2, 124.5, 121.0, 118.5, 118.3, 111.1, 106.3, 59.1, 58.1, 33.9, 32.7, 27.5, 7.6, 6.0.

### 66c: 5'-((1H-indol-3-yl)methyl)-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-

#### 6'(7'H)-one

The product was obtained using procedure A, 88 % as white solid, M.P. = 190-192 °C; SFC-



Hz, 1H), 1.88 (dt, J = 13.6, 5.0 Hz, 1H), 1.40 (tdd, J = 13.9, 6.6, 2.9 Hz, 2H), 1.36 – 1.19 (m, 2H), 0.88 (t, J = 8.2 Hz, 2H), -0.08 (d, J = 10.7 Hz, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.1, 154.3, 135.6, 127.0, 123.8, 122.5, 120.3, 118.8, 110.9, 107.3, 59.8, 53.7, 38.1, 37.8, 29.2, 23.9, 20.7, 20.2.

### 67c: 5'-((1H-indol-3-yl)methyl)-1-methyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5a]pyrazin]-6'(7'H)-one

The product was obtained using procedure A, 41 % as oil; SFC-MS (ESI) m/z calcd for



1.63 (m, 2H), 0.86 – 0.49 (m, 1H), 0.24 – -0.15 (m, 1H); <sup>13</sup>C NMR (126 MHz, DMSO) δ 164.8, 153.4, 135.6, 127.0, 124.2, 121.1, 118.7, 118.0, 111.2, 106.4, 59.4, 50.8, 49.6, 49.3, 37.4, 36.5, 28.4.

### 68c: 5'-((1H-indol-3-yl)methyl)-1-benzyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5a]pyrazin]-6'(7'H)-one

The product was obtained using procedure **A**, 85 % as oil; SFC-MS (ESI) m/z calcd for  $C_{24}H_{25}N_7O [M]^+: 427.21;$  found  $[M+H]^+: 428.25;$  <sup>1</sup>H NMR (500 MHz, MeOD)  $\delta$  7.42 – 7.16 (m, 7H), 7.10 (dd, J = 8.0, 2.7 Hz, 1H), 6.99 (td, J = 7.6, 2.5 Hz, 1H), 6.86 (td, J = 7.5, 2.7 Hz, 1H), 6.59 (s, 1H), 5.54 (dt, J = 4.5, 2.9 Hz, 1H), 3.89 – 3.78 (m, 1H), 3.71 (dt, J = 14.9, 3.8 Hz, 1H), 3.46 (s, 2H), 2.94 – 2.84 (m, 1H), 2.63 – 2.50 (m, 1H), 2.22 – 2.07 (m,

1H), 2.07 - 1.88 (m, 2H), 1.79 (tt, J = 9.6, 3.8 Hz, 1H), 0.69 - 0.41 (m, 1H), 0.32 - 0.05 (m,

1H); <sup>13</sup>C NMR (126 MHz, MeOD) δ 167.3, 138.5, 137.3, 130.3, 129.2, 128.3, 125.2, 122.5, 120.2, 119.0, 112.1, 107.5, 104.2, 63.2, 61.3, 53.0, 38.3, 37.5, 29.9.



1c: 5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one.





#### 2c: 2c: 8,8-diethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one.



S17



#### 3c: 1-benzyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one.





4c: benzyl 6'-oxo-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazine]-1-





### 12c: 12c: 8-(4-chlorophenyl)-5,5-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one.











14c: 8-ethyl-5,5,8-trimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one



S27



### 15c: 8-isobutyl-5,5,8-trimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one





#### 16c: 8,8-diethyl-5,5-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one





### 23c: 5',5'-dimethyl-5'H-spiro[cyclopentane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one



S33



24c: 2,2,5',5'-tetramethyl-5'H-spiro[cyclopentane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one.



# 25c: methyl 5',5'-dimethyl-6'-oxo-6',7'-dihydro-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazine]-2-carboxylate




S37



## 26c: 5',5'-dimethyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one





27c: 27c: 5',5'-dimethyl-4-phenyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one





# 28c: benzyl 5',5'-dimethyl-6'-oxo-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazine]-1-carboxylate



S43



# 29c: ethyl 5',5'-dimethyl-6'-oxo-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazine]-1-carboxylate





## 36c: 5-isobutyl-8,8-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one





## 37c: 37c: 5-isobutyl-8-isopropyl-8-methyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one





## **38c: 38c: 8**-(hydroxymethyl)-5-isobutyl-8-methyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one









1-benzyl-5'-isobutyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one





## 44c: 8,8-dimethyl-5-phenyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one





S58





46c: 5'-phenyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one





# 47c: ethyl 6'-oxo-5'-phenyl-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-



S63



48c: 1-benzyl-5'-phenyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one





## 50c: 5-benzyl-8,8-dimethyl-7,8-dihydrotetrazolo[1,5-a]pyrazin-6(5H)-one









52c: 5'-benzyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one





## 53c: 5'-benzyl-4-phenyl-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one




# 54c: 5'-benzyl-1-methyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one





## 55c: 1,5'-dibenzyl-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one





#### 5'-benzyl-6'-oxo-6',7'-dihydro-5'H-spiro[piperidine-4,8'-tetrazolo[1,5-56c: ethyl















66c: 5'-((1H-indol-3-yl)methyl)-5'H-spiro[cyclohexane-1,8'-tetrazolo[1,5-a]pyrazin]-6'(7'H)-one













### **Crystal structure determination**

X-ray diffraction data for single crystals of compounds **14c**, **16c**, **28c**, **29c**, **46c**, **61c** and **62c** were collected using SuperNova (Rigaku - Oxford Diffraction) four circle diffractometer with a mirror monochromator and a microfocus MoK $\alpha$  radiation source ( $\lambda = 0.7107$  Å) for **14c**, **29c**, **46c** and **62c** and CuK $\alpha$  radiation source ( $\lambda = 1.5418$  Å) for **16c**, **28c** and **61c**. Additionally, the diffractometer was equipped with a CryoJet HT cryostat system (Oxford Instruments) allowing low temperature experiments. Single crystals were mounted on MicroMounts<sup>TM</sup> and measured at temperature range 114-293 K. The obtained data sets were processed with CrysAlisPro software [S1]. The phase problem was solved by direct methods using SHELXS [S2], SIR2002 [S3] or SUPERFLIP [S4]. Parameters of obtained models were refined by full-matrix least-squares on F<sup>2</sup> using SHELXL-2014/6 [S2]. Calculations were performed using WinGX integrated system (ver. 2013.2) [S5]. Figures were prepared with Mercury 3.5 software [S6].

All non-hydrogen atoms in the crystal structures of **14c**, **16c**, **28c**, **29c**, **46c**, **61c** and **62c** were refined anisotropically to ensure the convergence of the refinement process. All hydrogen atoms attached to carbon atoms were positioned with the idealised geometry and refined using the riding model with the isotropic displacement parameter  $U_{iso}[H] = 1.2$  (or 1.5)  $U_{eq}[C]$ . The position of hydrogen atoms linked to the N atoms were found on the difference Fourier map and refined with no restrains on the isotropic displacement parameter. Crystal data and structure refinement results for compounds **14c**, **16c**, **28c**, **29c**, **46c**, **61c** and **62c** are shown in Table S1.

In the crystal structure of compound **14c**, only one of the two molecules of the asymmetric unit is partially disordered, with site occupancy 62% and 38% (Figure S1). All tested crystals of compound **62c** gave datasets, suggesting racemic twinning of the structure. The twinned crystal consists of two components. For better handling of the twin data, the HKLF5 program was applied for data separation [S7]. From the total number of 11288 reflections, only 9734 were written to the final hkl file. Thus, separation of data for both components resulted in omission of 1554 reflections. This influenced final results and drastically decreased completeness of the data (86,8%).

Crystallographic data for structures presented in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 1485229 (**14c**), CCDC 1485014 (**16c**), CCDC 1485015 (**28c**), CCDC 1485018 (**29c**), CCDC 1485230 (**46c**), CCDC 1484776 (**61c**), CCDC1485230 (**62c**). Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).





14c





28c



46c









**Figure S1.** Molecular geometry observed in the crystal structures of compounds **14c**, **16c**, **28c**, **29c**, **46c**, **61c** and **62c**, showing the atom labelling scheme. For structures **14c**, **16c** and **29c** only one of the four (**16c**,**29c**) or two (**14c**) molecules of the asymmetric unit is presented for clarity of the figure. For structure of **14c** only the non-disordered molecule is presented in the figure. Displacement ellipsoids of non-hydrogen atoms are drawn at the 30% probability level. H atoms are presented as small spheres with an arbitrary radius.

| compounds                              | 14c                                             | 16c                                              | 28c               | 29c             | 46c                 | 61c                            | 62c (TWIN)                                       |
|----------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------|-----------------|---------------------|--------------------------------|--------------------------------------------------|
| Empirical moiety formula               | C <sub>9</sub> H <sub>15</sub> N <sub>5</sub> O | C <sub>10</sub> H <sub>17</sub> N <sub>5</sub> O | C18 H22 N6 O3     | C13 H20 N6 O3   | C15 H17 N5 O        | C15 H16 N6 O                   | C <sub>17</sub> H <sub>20</sub> N <sub>6</sub> O |
| Formula weight [g/mol]                 | 209.26                                          | 223.29                                           | 370.42            | 308.35          | 283.33              | 296.34                         | 324.39                                           |
| Temperature [K]                        | 130(2)                                          | 130.0 (10)                                       | 122.1 (3)         | 114.0 (2)       | 298(2)              | 130(2)                         | 130(2)                                           |
| Wavelength [Å]                         | 0.7107                                          | 1.5418                                           | 1.5418            | 0.7107          | 0.7107              | 1.5418                         | 0.7107                                           |
| Crystal system                         | Monoclinic                                      | Triclinic                                        | Monoclinic        | Triclinic       | Monoclinic          | Orthorhombic                   | Monoclinic                                       |
| Space group                            | P21/a                                           | P-1                                              | P21/C             | P-1             | P21/a               | Pbca                           | P21/c                                            |
| Unite cell dimensions                  | a = 12.0138(3) Å                                | a = 11.5385(4) Å                                 | a = 9.5857(2) Å   | a=14.5469(5) Å  | a = 6.9311(4) Å     | a=14.6004(4) Å                 | a = 9.3572(14) Å                                 |
|                                        | b = 11.5538(2) Å                                | b = 13.1560(4) Å                                 | b = 14.8105(2) Å  | b=15.1175(4) Å  | b = 19.6495(9) Å    | b=12.6936(3) Å                 | b = 14.6849(12) Å                                |
|                                        | c = 16.1111(4) Å                                | c = 17.7901(4) Å                                 | c = 13.4801(2) Å  | c=15.4719(4) Å  | c = 10.2901(5) Å    | c=15.8003(5) Å                 | c = 12.2349(17) Å                                |
|                                        | α=90°                                           | α= 77.400(2)°                                    | α=90°             | α=85.090 (2)°   | α=90°               | α=90°                          | α=90°                                            |
|                                        | β=103.490(3)°                                   | β <b>=89.452(2)</b> °                            | β=110.159(2)°     | β=61.986(3)°    | β=104.068(5)°       | β <b>=90°</b>                  | β=110.771(17)°                                   |
|                                        | γ=90°                                           | γ=64.277(3)°                                     | γ=90°             | γ=89.869(2)°    | γ=90°               | γ=90°                          | γ=90°                                            |
| Volume [Å <sup>3</sup> ]               | 2174.60(9)                                      | 2363.19(12)                                      | 1796.52(5)        | 2990.01(15)     | 1359.40(12)         | 2928.30(14)                    | 1571.9(4)                                        |
| Z                                      | 8                                               | 8                                                | 4                 | 8               | 4                   | 8                              | 4                                                |
| D <sub>calc</sub> [Mg/m <sup>3</sup> ] | 1.278                                           | 1.255                                            | 1.370             | 1.294           | 1.384               | 1.344                          | 1.371                                            |
| μ [mm <sup>-1</sup> ]                  | 0.090                                           | 0.704                                            | 0.798             | 0.101           | 0.092               | 0.738                          | 0.091                                            |
| F(000)                                 | 896                                             | 960                                              | 784               | 1312            | 600                 | 1248                           | 688                                              |
| Crystal size [mm <sup>3</sup> ]        | 0.5 x 0.4 x 0.2                                 | 0.4 x 0.2 x 0.2                                  | 0.2 x 0.2 x 0.15  | 0.4 x 0.4 x 0.2 | 0.3 x 0.3 x 0.07    | 0.2 x 0.2 x 0.2                | 0.3 x 0.15 x 0.05                                |
| Θ range                                | 2.98° to 28.61°                                 | 3.84° to 77.15°                                  | 2.98° to 76.33°   | 2.96° to 28.59° | 2.91° to 28.56°     | 5.40° to 71.10°                | 3.54° to 27.63°                                  |
| Index ranges                           | -15 ≤ h ≤ 13,                                   | -14 ≤ h ≤ 14,                                    | -12 ≤ h ≤ 12,     | -19 ≤ h ≤ 19,   | -9 ≤ h ≤ 5,         | -13 ≤ h ≤ 17,                  | -11 ≤ h ≤ 11,                                    |
|                                        | -15 ≤ k ≤ 14,                                   | -16 ≤ k ≤ 16,                                    | -18 ≤ k ≤ 18,     | -20 ≤ k ≤ 20,   | $-26 \le k \le 24,$ | -12 ≤ k ≤ 15,                  | -19 ≤ k ≤ 19,                                    |
|                                        | -17 ≤   ≤ 21                                    | -22 ≤ l ≤ 22                                     | -17 ≤   ≤ 17      | -20 ≤ l ≤ 19    | -13 ≤   ≤ 13        | -19 ≤ l ≤ 17                   | -16 ≤   ≤ 16                                     |
| Refl. collected                        | 16218                                           | 87826                                            | 32027             | 85231           | 11153               | 19784                          | 9504                                             |
| Independent reflections                | 5117                                            | 9895                                             | 3769              | 15294           | 3202                | 2822                           | 2606                                             |
|                                        | [R(int) = 0.0262]                               | [R(int) = 0.0481]                                | [R(int) = 0.0396] | [R(int)=0.0399] | [R(int) = 0.0671]   | [R(int)=0.0451]                | [R(int) = 0.076]                                 |
| Completeness [%] to $\Theta$           | 99.9 (O 25.2°)                                  | 99.9 (O 77.15°)                                  | 99.9 (© 74.30°)   | 99.9(O 26.31°)  | 99.9 (Θ 25.2°)      | 99.9 (O 67.6 <mark>8</mark> °) | 86.8 (O 25.2°)                                   |

Table S1. Crystal data and structure refinement results for compounds.

| Absorption correction                                                          | Multi-scan                | Multi-scan         | Multi-scan                | Multi-scan                | Multi-scan                | Multi-scan                | Multi-scan                |
|--------------------------------------------------------------------------------|---------------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Max. and min.<br>transmission                                                  | 0.710 to 1.000            | 0.336 and 1.000    | 0.447 and 1.000           | 0.837 and 1.000           | 0.744 to 1.000            | 0.852 and 1.000           | 0.647 to 1.000            |
| Refinement method                                                              | Full-matrix least-        | Full-matrix least- | Full-matrix least-        | Full-matrix least-        | Full-matrix least-        | Full-matrix least-        | Full-matrix least-        |
|                                                                                | squares on F <sup>2</sup> | squares on F2      | squares on F <sup>2</sup> |
| Data/<br>restraints/parameters                                                 | 5117 / 0 / 326            | 9895 / 0 / 610     | 3791/0/251                | 13813 /0/822              | 3202 / 0 / 194            | 2822 / 0 / 209            | 2606 / 5 / 227            |
| GooF on F2                                                                     | 1.052                     | 1.025              | 1.032                     | 1.165                     | 1.067                     | 1.069                     | 1.105                     |
| Final R indices                                                                | R1= 0.0545,               | R1= 0.0390,        | R1= 0.0339,               | R1= 0.0984,               | R1= 0.0540,               | R1= 0.0357,               | R1= 0.1095,               |
| [I>2sigma(I)]                                                                  | wR2= 0.1290               | wR2= 0.1000        | wR2= 0.1019               | wR2= 0.2350               | wR2= 0.0957               | wR2= 0.0866               | wR2= 0.2831               |
| R indices                                                                      | R1= 0.0730,               | R1= 0.0456,        | R1= 0.0386,               | R1= 0.1075,               | R1= 0.1096,               | R1= 0.0415,               | R1= 0.1515,               |
| (all data)                                                                     | wR2= 0. 1412              | wR2= 0.1059        | wR2= 0.1108               | wR2= 0.2388               | wR2= 0. 1213              | wR2= 0.0922               | wR2= 0. 3210              |
| $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} [e \cdot \text{\AA}^{-3}]$ | 0.60 and -0.27            | 0.34 and -0.21     | 0.31 and -0.21            | 0.55 and -0.38            | 0.27 and -0.29            | 0.22 and -0.26            | 0.40 and -0.42            |

## **References:**

- [S1] Oxford Diffraction (2006). CrysAlis<sup>Pro</sup> Oxford Diffraction Ltd, Abingdon, England, Version 1.171.36.20 (release 27-06-2012 CrysAlis171.NET)
- [S2] Sheldrick, G. M. A short history of SHELX *ActaCryst.* 2008, *A64*, 112-122.
- [S3] Burla, M. C.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; Giacovazzo, C.; Polidori, G.; Spagna, R. SIR2002: the program. J. Appl. Cryst., 2003, 36, 1103.
- [S4] Palatinus, L. Chapuis, G., SUPERFLIP a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. *J. Appl. Cryst.* **2007**, *40*, 786-790.
- [S5] Farrugia, L., J. WinGX suite for small- molecule single-crystal crystallography. J. Appl. Cryst. 1999, 32, 837-838.
- [S6] Macrae, C. F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: visualization and analysis of crystal structures. *J. Appl. Cryst.* **2006**, *39*, 453-457.
- [S7] Bolte, M. TWINLAW and HKLF5: two programs for the handling of non-merohedral twins. J. Appl. Cryst. 2004, 37, 162-165.