**OMTM**, Volume 5

## **Supplemental Information**

### Improved MECP2 Gene Therapy Extends

#### the Survival of MeCP2-Null Mice without

#### **Apparent Toxicity after Intracisternal Delivery**

Sarah E. Sinnett, Ralph D. Hector, Kamal K.E. Gadalla, Clifford Heindel, Daphne Chen, Violeta Zaric, Mark E.S. Bailey, Stuart R. Cobb, and Steven J. Gray

# Improved *MECP2* gene therapy extends the survival of MeCP2-null mice without apparent toxicity after intracisternal delivery

Sarah E. Sinnett<sup>1,2</sup>, Ralph D. Hector<sup>3</sup>, Kamal K.E. Gadalla<sup>3,4</sup>, Clifford Heindel<sup>1</sup>, Daphne Chen<sup>1</sup>, Violeta Zaric<sup>1</sup>, Mark E. S. Bailey<sup>5</sup>, Stuart R. Cobb<sup>3</sup>, Steven J. Gray<sup>1,2,6</sup>

<sup>1</sup>University of North Carolina (UNC) Gene Therapy Center, Chapel Hill, NC, USA; <sup>2</sup>Carolina Institute for Developmental Disabilities, Chapel Hill, NC, USA; <sup>3</sup>Institute of Neuroscience and Psychology, University of Glasgow; <sup>4</sup>Pharmacology Dept, Faculty of Medicine, Tanta University, Egypt; <sup>5</sup>School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow; <sup>6</sup>UNC Dept of Ophthalmology, Chapel Hill, NC, USA.



Fig. S1, related to Figs. 1 and 3: Percutaneous IT delivery of AAV9/hMECP2(v1) induces significant and persistent increases in phenotype severity scores for treated WT mice. Compare to Figs. 1 and 3, which present a parallel data set for ICM delivery of AAV9/hMECP2(v1). (A) Survival curves for saline- and virus-treated  $Mecp2^{-\sqrt{y}}$  and WT mice. We did not observe a significant extension in survival for virus-treated  $Mecp2^{-\sqrt{y}}$  mice injected intrathecally (p = 0.06). However, the lack of significance may be due to low power, as the median survivals of  $Mecp2^{-\sqrt{y}}$  mice injected IT or ICM with 1 x 10<sup>12</sup> vg AAV9/hMECP2(v1) are similar (80 and 84 days, respectively). (B) The shaded area indicates ages at which virus-treated WT mice had a significantly lower mean body weight compared to that of saline-treated WT mice ( $p \le 0.05$ ). (C) The shaded area indicates ages at which virus-treated WT mice ( $p \le 0.05$ ). (D) A significant increase in severity scores for hindlimb clasping contributed to the overall increase in aggregate severity score. For limb clasping, \*p = 0.003 (4 vs. 12 weeks of age for virus-treated mice, pair-wise t-test); ##p = 0.0002 at 12 weeks of age; #p = 0.01 at 10 weeks of age, saline- vs. virus-treated mice. (B-D) Data points are mean  $\pm$  SEM.



**Fig. S2. Supplemental endpoint data for comparison to Figs. 5-6.** (A) Blood serum levels of liver toxicity indicators after treatment with  $1 \ge 10^{12} \ge AAV9/hMECP2(v1)$  (ICM). p = 0.7 for albumin; p = 0.1 for ALT; p = 0.4 for AST; p = 0.1 for ALKP. The y-axis is plotted on the same scale as that shown in **Figs. 5A**. Data for  $1 \ge 10^{12} \ge AAV9/hMECP2(v1)$  can be compared to that of  $1 \ge 10^{12} = AAV9/hMECP2(v2)$ , which is shown in **Fig. 5A**. (B-C) Biodistribution and gene expression data used to calculate normalized gene expression in mice treated with  $1 \ge 10^{11} \le AAV9/hMECP2(v2)$  (see **Fig. 6**). Tissue samples for **Figs. 2** and **S2B-C** were processed in parallel. Therefore, the same saline control data appears in **Figs. 2** and **S2B-C**. (B) As expected, viral genome copies are about 10-fold less than those of observed for mice treated with  $1 \ge 10^{12} \le AAV9/hMECP2(v2)$  (see **Fig. 5B**). (A-C) n = 3 saline-treated mice and 5 virus-treated  $Mecp2^{-/y}$  mice. Data are mean  $\pm SEM$ . CC, cervical spinal cord; g/dL, grams/deciliter; LC, lumbar spinal cord; TC, thoracic spinal cord; u/L, units/liter.

#### MeP426 promoter

ATAGGCGCCAAGAGCCTAGACTTCCTTAAGCGCCAGAGTCCACAAGGGCCCAGTT AATCCTCAACATTCAAATGCTGCCCACAAAACCAGCCCCTCTGTGCCCTAGCCGC CTCTTTTTCCAAGTGACAGTAGAACTCCACCAATCCGCAGCTGAATGGGGGTCCG CCTCTTTTCCCTGCCTAAACAGACAGGAACTCCTGCCAATTGAGGGCGTCACCGC TAAGGCTCCGCCCCAGCCTGGGCTCCACAACCAATGAAGGGTAATCTCGACAAAG AGCAAGGGGTGGGGCGCGGGGCGCGCGCGCGGGGCGCAGGTGCAGCACACAGGCTGGGCGCGGG GAGGGCGGGGGCGCGACGTCTGCCGTGCGGGGTCCCGGCATCGGTTGCGCGCG CGCTCCCTCCTCTCGGAGAGAGAGGGCTGTGGTAAAACCCGTCCGGAAA

#### RDH1pA

Fig. S3. Sequences of MeP426 and RDH1pA, related to Methods



Fig. S4, related to Fig. 4. 1 x 10<sup>12</sup> vg AAV9/*hMECP2*(v2) significantly increases clasping and abnormal gait scores in *Mecp2*<sup>-/y</sup> (left) and WT mice (right) after ICM injection at 4-5 weeks old. Compare to Fig. 4D for aggregate phenotype severity scores. Pair-wise analyses (pre- vs. post-ICM): \* $p \le 0.03$ ; \*\* $p \le 0.004$ . Unpaired analyses (saline vs. virus treatment): # $p \le 0.02$ ; ## $p \le 0.002$ . For clarity, unpaired p values are listed only for comparisons between saline and 1 x 10<sup>12</sup> vg AAV9/*hMECP2*(v2)-treated mice; paired p values are listed for only saline and 1 x 10<sup>12</sup> vg AAV9/*hMECP2*(v2)-treated mice. Data for saline-treated *Mecp2*<sup>-/y</sup> mice also appears in Fig. 1F-G. Data for saline-treated WT mice also appears in Fig. 3D-E. (A-B) Data points are mean  $\pm$  SEM.



**Fig. S5. Paired littermate analyses, related to Fig. 4.** Note: Mean data for cohorts is presented in **Fig. 4**. For paired littermate analyses, vehicle and virus treatments were randomly assigned without any prior knowledge regarding each sibling's body weight or general physical condition. (A) AAV9/*hMECP2*(v2)-treated *Mecp2*<sup>-/y</sup> mice obtain greater peak body weights during their lifetime than their saline-treated littermates. (**A-D**) Each line connects a pair of littermates. (**B**) Compared to saline-treated littermates, AAV9/*hMECP2*(v2)-treated *Mecp2*<sup>-/y</sup> mice grow at a faster rate immediately after treatment (data shown for 5-7 weeks of age). (**C**) AAV9/*hMECP2*(v2) delays the deterioration in overall health shortly after treatment. Aggregate severity scores are shown for mice at 6 weeks of age. (**B-C**) One littermate pair was excluded from data analyses because the saline-treated littermate died prior to data collection at approximately 6 weeks of age. (**D**) Most *Mecp2*<sup>-/y</sup> mice treated with 1 x 10<sup>10</sup> – 1 x 10<sup>11</sup> vg AAV9/*hMECP2*(v2) live longer than their saline-treated *Mecp2*<sup>-/y</sup> littermates. In 8 of 9 pairs, the virus-treated mice outsurvived their vehicle-treated littermates.

Video S1 for Fig. 3. Representative WT mice treated with saline, 1E12 vg AAV9/*hMECP2*(v1), or 1 x  $10^{12}$  vg AAV9/*EGFP*. WT mice were injected ICM between 4-5 weeks of age. At 6 months age, the saline-treated mouse in this video appears alert and has good mobility and gait. At 6 months age, the AAV9/*hMECP2*(v1)-treated mouse in this video appears alert but has difficulty using his hind legs correctly. At 6 months age the AAV9/*EGFP*-treated mouse has normal mobility and gait. The absence of hindlimb clasping in the AAV9/*EGFP*-treated mouse was photographed at this age and is featured at the end of the video.

Video S2 for Fig. 4.  $Mecp2^{-/y}$  littermates treated with saline or 1 x 10<sup>11</sup> vg AAV9/*hMECP2*(v2). Both littermates were injected on PND30 and were video-recorded on PND52. The saline-treated mouse has poor mobility and shows little spontaneous movement during the duration of the video. The virus-treated sibling exhibits more spontaneous movement than his saline-treated  $Mecp2^{-/y}$  littermate. Note that the virus-treated littermate approaches the camera. This behavior could be an indicator of improved sociability.

Video S3 for Fig. 4. Second pair of video-recorded  $Mecp2^{-/y}$  littermates treated with saline or 1 x 10<sup>11</sup> vg AAV9/hMECP2(v2). These siblings were injected on PND31 and video-recorded on PND51. The saline-treated mouse walks slowly and explores in response to prompting. Note that he does not explore the camera. His virus-treated  $Mecp2^{-/y}$  littermate walks, climbs, explores, and approaches camera without prompting.

Video S4 for Fig. 4. Third pair of video-recorded  $Mecp2^{-ly}$  littermates treated with saline or 1 x 10<sup>10</sup> vg AAV9/hMECP2(v2). These siblings were injected on PND28 and video-recorded on PND40. The saline-treated mouse immediately walks to his hut. The reason for this behavior (*i.e.*, aversion to light or aversion to open spaces) is unclear. His virus-treated  $Mecp2^{-ly}$  littermate is more active.