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Structures of Neural Correlation and How They
Favor Coding

Supplementary Methods

1 Computation of the coding error and the percent
improvement due to correlation

1.1 Estimation of the empirical covariance matrix

To compute the Cramér-Rao bound [1] in a group of neurons, we estimated the empirical
covariance matrix, Cempirical, raw(θ), for each considered group of cells and for each stimulus,
θ, independently. Even though we had 100 stimulus repetitions, the resulting covariance
estimates could be noisy. We therefore decided to estimate the covariance in a more
robust manner by considering the adjacent 2 stimuli in both directions, thus increasing
the number of repetitions over which the covariance was estimated to 500, but smoothing
the correlation structure over the stimulus. This procedure was implemented by circu-
lar boxcar filtering of Cempirical, raw(θ) with a window of length 5, to obtain Cempirical(θ).
We deliberately decided to keep this procedure simple, since more involved smoothing
techniques, like the Savitzky-Golai filtering, are not guaranteed to yield valid covariance
matrices after smoothing (this can happen when the filter coeffi cients are negative). For
some stimuli close to the null direction of a neuron, the neuron did not elicit a single
spike within the 100 repetitions, yielding a vanishing variance. Since this would introduce
a pathological eigenvalue of 0 into the covariance matrix, we set the variances of each
covariance matrix to be at least equal to 0.1.

1.2 Fisher information and the Cramér-Rao bound

We then went on to compute the stimulus-dependent Fisher information in the Gaussian
approximation (sometimes referred to as linear Fisher information), as

IF (θ) = F ′(θ)TC−1(θ)F ′(θ), (1)

where F ′(θ) = (f ′1(θ), ..., f
′
n(θ))T is the vector whose elements are the empirical derivatives

of the tuning functions, fi(θ), i = 1, . . . , n, of all n neurons in the group considered, the
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superscript T denotes the transpose operation, and where we have neglected the positive
trace term in the Fisher information (see also Secs. 3.1 and 3.2, below). According to the
Cramér-Rao bound, the variance of the decoded stimulus direction is at least as large as
the quantity defined as

δθ2(θ) =
1

IF (θ)
. (2)

1.3 Computation of the coding error and the percent improve-
ment due to correlation

To assess the influence of correlations upon coding, we computed this bound on the
variance of the coding error in three cases:
(i) The empirical, correlated case (δθ2correlated), in which we use the empirical covariance
matrice, Cempirical(θ).
(ii) The case of stimulus-independent correlation (δθ2stim-indep), in which we useCstim-indep(θ),
a covariance matrix constructed from stimulus-independent correlations. To compute
this covariance matrix, we first estimated the stimulus-dependent correlation matrix,
χ(θ), from the data, and then averaged it over θ, to obtain χmean = 〈χ(θ)〉θ. Us-
ing the empirical stimulus-dependent variances, V (θ) = (vi(θ), ..., vn(θ)), we calculated
Cstim-indep(θ) ≡

√
V (θ)T

√
V (θ) � χmean, where the square roots are applied over each

element of the vector and � denotes element-wise matrix product.
(iii) The uncorrelated case (δθ2independent), in which we use Cindependent(θ), a covariance
matrix equal to Cempirical(θ) but with all off-diagonal elements set to 0. Equivalently,
Cindependent(θ) is obtained by shuffl ing trials in the data.
We note that both covariance matrices, Cindependent(θ) and Cstim-indep(θ), are dependent
upon the stimulus (through the variances), while the underlying correlations are stimulus-
independent.
To quantify the effect of the correlation structure upon the coding performance, we

defined the percent improvement due to correlations as

∆R =

(
1−

〈
δθ2(θ)

δθ2independent(θ)

〉
θ

)
× 100 (3)

when the comparison is with the uncorrelated case, and as

∆Rstim-indep =

(
1−

〈
δθ2stim-indep(θ)

δθ2independent(θ)

〉
θ

)
× 100 (4)

when the comparison is with the stimulus-independent case.
In the case of a two-dimensional stimulus space, the above treatment is generalized in a

straightforward manner. We denote the two stimulus variables by θ and d, by analogy with
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the variables used in our functional models (see below). The linear Fisher information,
again ignoring the trace term, is promoted to a 2× 2 matrix with elements

(IF (θ, d))αβ =
F (θ, d)

∂α

T

C−1(θ, d)
F (θ, d)

∂β
, (5)

where α, β = θ, d. Here, F (θ, d) is the vector whose elements are the average responses of
the cells in response to a stimulus direction θ and a stimulus position d, and C(θ, d) is the
stimulus-dependent covariance matrix of the population. The variances and covariances
of the output of an arbitrary, unbiased decoder are bounded below by the inverse of the
Fisher information matrix. In particular, the variance of the decoded direction and the
variance of the decoded position are bounded below by the Cramér-Rao bounds,

δθ2(θ, d) =
(
IF (θ, d)−1

)
θθ

and δd2(θ, d) =
(
IF (θ, d)−1

)
dd
, (6)

respectively. We define the coding errors for direction and for position as the square roots
of these two quantities, respectively.
In Fig. 5B, the coding improvement due to correlation was defined analogously to the

case of a one-dimensional stimulus (direction coding only). In order to derive results for
independent populations, the off-diagonal elements of the correlation matrix were set to
zero; in order to derive results for populations with stimulus-independent correlation, the
correlation matrix was replaced by its average over all stimulus directions. In Fig. 6C
and D, we defined the coding extent for direction as the width of the range of positions in
which the coding error for direction is inferior to 15◦ and the coding extent for position
as the width of the range of positions for which the coding error for position is inferior to
0.04 mm.

2 Phenomenological encoding models of direction-
selective neurons

2.1 Models of direction coding

We consider that the output of a neuron, labeled by index µ, can be described by a rate,
λµ, and we assume that the mean firing is then λµ and that the variance about this mean
is λ1−βµ . Poisson variability corresponds to the special case with β = 0; retina direction-
selective neurons display sub-Poisson variability, so that in our data we expect β > 0.
We refer to this source of noise as ‘intrinsic’, as it can be interpreted to mimic the noise
inherent to single-cell processing, and so we assume that it is uncorrelated among different
neurons.
We then have to specify how the rate, λµ, is constructed for each neuron. Here,

we assume a doubly stochastic process, i.e., we assume that this rate itself is a random
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variable. In the spirit of phenomenological models, we consider the three simplest ways
in which λµ can fluctuate; specifically, we assume that λµ can be obtained as

λµ =
(
1 + σ3η

(3)
µ

)
g
((

1 + σ2η
(2)
µ

)
ϕµ (θ) + σ1η

(1)
µ

)
. (7)

Here, g (·) is the non-linear transfer function of the neuron and ϕµ (θ) is its stimulus-
dependent input; the three positive constants, σ1, σ2, σ3, define the magnitude of each
source of noise; finally, the random variables, η(1)µ , η

(2)
µ , η

(3)
µ , have vanishing means,〈

η(i)µ
〉

= 0, (8)

are uncorrelated among each other,〈
η(i)µ η

(j)
ν

〉
= 0 if i 6= j, (9)

but are individually correlated among neurons,〈
η(i)µ η

(i)
ν

〉
= δµν + ρ(i)µν (1− δµν) . (10)

Thus, η(i)µ has unit variance and is correlated among neurons with a coeffi cient ρ(i)µν . The
first random term in Eq. (7), σ1η

(1)
µ , can be interpreted as additive input noise. The

second random term in Eq. (7), σ2η
(2)
µ , can be interpreted as input gain modulation.

The third random term in Eq. (7), σ3η
(3)
µ , can be interpreted as output gain modulation.

We refer to these three types of noise collectively as ‘modulation noise’. In the case of
retinal direction-selective neurons, the second term can be thought of affecting amacrine
cell inputs to the ganglion cells, while the third term can be thought of as arising from
common bipolar input to different ganglion cells.
With these elements in hand, we can compute the first- and second-order moment of

the neural activity. Hereafter, we denote by double brackets, 〈〈·〉〉, the double average
over the intrinsic noise and over the modulation noise, i.e., over the random variables η(1)µ ,
η
(2)
µ , η

(3)
µ . Assuming small amplitudes of the modulation noise and expanding to second

order in σ1, σ2, σ3, we obtain the mean response as

〈〈rµ〉〉 = 〈g (ϕµ (θ) + η)〉
η
(1)
µ ,η

(2)
µ ,η

(3)
µ

≈ g (ϕµ (θ)) +
1

2
g′′ (ϕµ (θ))

(
σ22ϕµ (θ)2 + σ21

)
; (11)

by construction, this mean corresponds to the tuning curve of neuron µ, i.e., fµ (θ) =
〈〈rµ〉〉. The second-order moments are obtained similarly; the variance reads〈〈

r2µ
〉〉
− 〈〈rµ〉〉2 ≈ g′ (ϕµ (θ))2

(
σ22ϕµ (θ)2 + σ21

)
+ σ21

{
g (ϕµ (θ))2

+
[
g′ (ϕµ (θ))2 + g (ϕµ (θ)) g′′ (ϕµ (θ))

] (
σ22ϕµ (θ)2 + σ21

)}
+

[
1− β

2
(1− β)σ23

]{
g (ϕµ (θ))1−β +

1

2
(1− β) g (ϕµ (θ))−β

×
[
g′′ (ϕµ (θ))− βg (ϕµ (θ))−1 g′ (ϕµ (θ))2

] (
σ22ϕµ (θ)2 + σ21

)}
, (12)
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and the covariance reads

〈〈rµrν〉〉 − 〈〈rµ〉〉 〈〈rν〉〉 ≈ g′ (ϕµ (θ)) g′ (ϕν (θ))
(
σ22ϕµ (θ)ϕν (θ) ρ(2)µν + σ21ρ

(1)
µν

)
+ σ23 [fµ (θ) fν (θ) + g′ (ϕµ (θ)) g′ (ϕν (θ))

×
(
σ22ϕµ (θ)ϕν (θ) ρ(2)µν + σ21ρ

(1)
µν

)]
ρ(3)µν . (13)

The correlation between neurons µ and ν, cµν , is obtained by normalizing the covariance
appropriately, as

cµν =
〈〈rµrν〉〉 − 〈〈rµ〉〉 〈〈rν〉〉√〈〈

r2µ
〉〉
− 〈〈rµ〉〉2

√
〈〈r2ν〉〉 − 〈〈rν〉〉

2
. (14)

The noteworthy point, here, is that the modulation noise, although independent of stimu-
lus (η(1)µ , η

(2)
µ and η(3)µ come with vanishing mean and constant variances and covariances),

invests the correlations in neural activity with stimulus-dependence.
In our study, we investigated the role of each of the three types of modulation noise

separately, i.e., we considered each of the three cases with σ2 = σ3 = 0, σ1 = σ3 = 0, and
σ1 = σ2 = 0. In the presence of additive input noise only (σ1 6= 0, σ2 = σ3 = 0), the
tuning curve, variance, and covariance reduce to the forms

fµ (θ) ≈ g (ϕµ (θ)) +
1

2
g′′ (ϕµ (θ))σ21, (15)

〈〈
r2µ
〉〉
− 〈〈rµ〉〉2 ≈ g (ϕµ (θ))1−β +

{
g′ (ϕµ (θ))2 +

1

2
(1− β) g (ϕµ (θ))−β

×
[
g′′ (ϕµ (θ))− βg (ϕµ (θ))−1 g′ (ϕµ (θ))2

]}
σ21, (16)

〈〈rµrν〉〉 − 〈〈rµ〉〉 〈〈rν〉〉 ≈ g′ (ϕµ (θ)) g′ (ϕν (θ))σ21ρ
(1)
µν . (17)

In the presence of input gain modulation only (σ2 6= 0, σ1 = σ3 = 0), the tuning curve,
variance, and covariance reduce to the forms

fµ (θ) ≈ g (ϕµ (θ)) +
1

2
g′′ (ϕµ (θ))ϕµ (θ)2 σ22, (18)

〈〈
r2µ
〉〉
− 〈〈rµ〉〉2 ≈ g (ϕµ (θ))1−β +

{
g′ (ϕµ (θ))2 +

1

2
(1− β) g (ϕµ (θ))−β

×
[
g′′ (ϕµ (θ))− βg (ϕµ (θ))−1 g′ (ϕµ (θ))2

]}
ϕµ (θ)2 σ22, (19)

〈〈rµrν〉〉 − 〈〈rµ〉〉 〈〈rν〉〉 ≈ g′ (ϕµ (θ)) g′ (ϕν (θ))ϕµ (θ)ϕν (θ)σ22ρ
(2)
µν . (20)

In the presence of output gain modulation only (σ3 6= 0, σ1 = σ2 = 0), the tuning curve,
variance, and covariance reduce to the forms

fµ (θ) ≈ g (ϕµ (θ)) , (21)
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〈〈
r2µ
〉〉
− 〈〈rµ〉〉2 ≈ g (ϕµ (θ))1−β +

[
g (ϕµ (θ))2 − β

2
(1− β) g (ϕµ (θ))1−β

]
σ23, (22)

〈〈rµrν〉〉 − 〈〈rµ〉〉 〈〈rν〉〉 ≈ g (ϕµ (θ)) g (ϕν (θ))σ23ρ
(3)
µν . (23)

In the main text, we consider two incarnations of each of the three models. In Models
I, II, III, we consider that all neurons share the same source of secondary noise, i.e., we
set all ρ(i)µν to unity. More precisely, these models are defined by the following sets of
parameters.

• Model I: σ1 6= 0, σ2 = σ3 = 0, ρ(1)µν = 1.

• Model II: σ2 6= 0, σ1 = σ3 = 0, ρ(2)µν = 1.

• Model III: σ3 6= 0, σ1 = σ2 = 0, ρ(3)µν = 1.

In the models denoted by primed numbers, Models Í, IÍ, and IIÍ, we assume that the
secondary source of noise is shared only partially by different neurons, so that the value
of ρµν can differ from unity. More precisely, these models are defined by the following sets
of parameters.

• Model Í: σ1 6= 0, σ2 = σ3 = 0, −1 ≤ ρ
(1)
µν ≤ 1.

• Model IÍ: σ2 6= 0, σ1 = σ3 = 0, −1 ≤ ρ
(2)
µν ≤ 1.

• Model IIÍ: σ3 6= 0, σ1 = σ2 = 0, −1 ≤ ρ
(3)
µν ≤ 1.

2.2 Fitting the models of direction coding to data

Each of the six phenomenological models (Models I, II, III and Models Í, IÍ, IIÍ) were fit
in a two-step procedure. In the first step of the fitting procedure, for each neuron, the
neuron’s tuning curve was fit by a flat-topped von Mises function [2],

fµ (θ) = A exp

(
cos (θ − θµ + Z sin (θ − θµ)− 1)

W

)
+B, (24)

where fµ (θ) denotes the mean response of neuron µ to the presentation of stimulus θ and
A, B, W , and Z are positive constants. All parameters were fit simultaneously with the
Nelder-Mead Simplex Method using Matlab’s fminsearch function, which minimizes the
squared error between the fit and the empirical tuning function.
In the second step of the fitting procedure, we assigned ϕµ (θ) the same form as

fµ (θ); we kept all parameters fixed, but allowed the scale of A and B to change (i.e.,
allowed a free multiplicative factor). Then, for each pair of neurons, labeled by µ and ν,
within each experiment, the six phenomenological models were fit, again all parameters
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simultaneously, including the two multiplicative scale parameters in ϕµ (θ) and ϕν (θ),
using Matlab’s fminsearch. Since all six models yield the tuning functions, fµ(θ), variances
of each neuron, Vµ(θ), and the correlation between two neurons, χµν(θ), we optimized the
average variance explained for all three of these quantities. That is, we computed each
contribution,

Etuning curve ≡
∑

µ [fµ,fit(θ)− fµ,empirical(θ)]2∑
µ

[
fµ,empirical(θ)− 〈fµ,empirical(θ)〉θ

]2 , (25)

Evariance ≡
∑

µ [Vµ,fit(θ)− Vµ,empirical(θ)]2∑
µ

[
Vµ,empirical(θ)− 〈Vµ,empirical(θ)〉θ

]2 , (26)

Ecorrelation ≡
[χµν,fit(θ)− χµν,empirical(θ)]2[

χµν,empirical(θ)− 〈χµν,empirical(θ)〉θ
]2 , (27)

and we minimized the appropriately weighted summed error,

Etotal =
1

2
Etuning curve +

1

2
Evariance + Ecorrelation. (28)

Here, 〈·〉θ denotes an average over stimuli, and the subscripts “µ,fit”and “µ,empirical”
refer to the fitted and empirical quantities relative to neuron µ, respectively. From
the residual error of the fitting procedure, we computed the percent variance explained,
(1− Etotal/3)× 100. For the nonlinearity that enters the models, we found that a form as
simple as a pure power law, g(x) = xp yielded good fits. Thus, in this step of the fitting
procedure, the number of fitting parameters was 5 (for Models I, II, and III) or 6 (for
Models Í, IÍ, and IIÍ).
The variance explained by the fits was larger than 50% (Models II and III) and larger

than 47% (Model I) for over 75% of the fits; the means ± standard deviations of the
variance explained were 56% ± 16% (Model I), 60% ± 17% (Model II), and 60% ± 17%
(Model III) (Fig. S1). Overall, Models II and III appeared to explain a larger fraction
of the data. While allowing for partial correlation of the secondary noise terms among
neurons (i.e., −1 < ρ

(i)
µν < 1, Models Í, IÍ, IIÍ) improved the fits, the improvement was

modest. Furthermore, for more than 50% of the cell pairs, the fits yielded ρ(i)µν > 0.95 in
Models Í and IÍ, compared to 19% in Model IIÍ. The means ± standard deviations of
the variance explained were 63% ± 12% (Model Í), 63% ± 15% (Model IÍ), and 63% ±
15% (Model IIÍ) (Fig. S1). That is, the improvement in variance explained from partial
correlation did not exceed 3% for Models IÍ and IIÍ and 7% for Model Í. For the sake
of simplicity and because its impact was modest, we neglected the possibility of partial
correlation in the main text: for neighboring direction-selective cells, which share inputs
from the same bipolar cells, high correlation is expected.
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2.3 Models of direction and position coding, and fits to the data

For finer temporal coding, in which case the response depends not only on the direction
of the stimulus but also on its position, we extended our phenomenological models to
include the dependence upon position. We again develop six extended models (I, II, III,
Í, IÍ, and IIÍ), in analogy with the simpler models described above. As before, all models
use a same tuning function (now two-dimensional) for individual neurons, defined as

fµ (θ, d) = ln (1 + exp (fµ (θ)ϕµ (d)−D)) + D̃, (29)

for neuron µ, where d is the distance between the leading edge of the stimulus bar and the
stimulus location that elicits the strongest response when the bar moves in the preferred
direction of the cell, and fµ (θ) is defined in Eq. (24). Here, the ‘tuning function’ϕµ (d)
provides the position dependence; we chose for it a simple Gaussian form,

ϕµ (d) = Ã exp

(
−1

2

d2

W̃

)
+ B̃, (30)

where the constants Ã, B̃, and W̃ are named by analogy to those in Eq. (24). We
introduced the exponential and the logarithm in Eq. (29) to have a soft rectifier, because,
in the case of fine temporal coding, a given cell will be silent or nearly silent over a
range of positions; the constant, D, controls the crossover from a regime with fµ (θ, d) ≈
fµ (θ)ϕµ (d) to a regime with fµ (θ, d) ≈ 0, and the constant, D̃, corresponds to the
spontaneous activity of the cell. Equation (30) allows only a single maximum because we
model the ON response, i.e., the response of direction-selective cells to the leading edge
of the stimulus.
We followed the same procedure as before when fitting the data; specifically, the

ON responses of the cells. All parameters where fit simultaneously. The experimental
two-dimensional tuning function, the two-dimensional variances, and the two-dimensional
covariance were estimated by binning spike trains in non-overlapping, 50 ms bins; this
time window, corresponds, given the speed of the stimulus bar (1.6 mm/s), to an 80 µm
displacement of the leading edge of the bar. Since the cells are mostly silent until they
are stimulated by the stimulus bar, it was not uncommon for a neuron to fire no spike
at all in all 100 trials, for given position-direction bins, especially close to the onset of
bar movement. For those bins, the correlation between two neurons is not defined; we
excluded them from the fitting procedure. Specifically, we applied a ‘mask’by thresholding
the mean responses of two neurons in a pair: if either of the neurons had a mean response
of below 5% of its maximal response, we excluded the corresponding bin in the calculation
of the error function for the correlation (Eq. (27)). While some pairs exhibited negative
correlations for some of the position-direction bins, we did not attempt to fit negative
correlation values.
For all six extended models, the mean variance explained was close to 50% (all models).

More than 60% of the fits had a variance explained larger than 50% (all models). The
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means ± standard deviations of the variance explained were 51% ± 9% (Model I), 50% ±
8% (Model II), and 50% ± 9% (Model III) (Fig. S2). For Models II and III, the best 25%
fits had a variance explained ranging from 56% to 70%. As in the simpler models, allowing
for partial correlation of the secondary noise terms among neurons (i.e., −1 < ρ

(i)
µν < 1,

Models Í, IÍ, IIÍ) did not yield any sensitive improvement of the fits. The corresponding
means ± standard deviations of the variance explained were 51% ± 8% (Model Í), 50%
± 9% (Model IÍ), and 50% ± 8% (Model IIÍ) (Fig. S2).

2.4 Simulation of a mosaic of direction-selective neurons

For the simulation of 12 direction-selective neurons arranged as a retinal mosaic made up
of three quadruplets (Figs. 5 and 6), we placed the points of maximal response of each
cell on a circle with varying radius (‘mosaic spacing’, referred to in Fig. 6). The center
of the circle was defined as the center of the coordinate system. The three quadruplets
were spaced equidistantly. Within each quadruplet, the position preference of the four
cells coincided and their preferred directions pointed along the four cardinal directions.
In order to avoid having a particular symmetry, in which a preferred direction would be
along a side of the triangle of quadruplets, the latter was rotated at an angle of 15◦ away
from a cardinal direction.
For each model neuron, we used the same model parameters except for its preferred

direction and its position on the retina. We used the parameters β = 0, σ = 0.3000,
p = 1.0060, ρ = 1, to characterize the cells. In additon, in Eq. (24), we used A = 12.4664,
B = 0.1917, W = 5.8808, and Z = −0.3000; in Eq. (29), we used D = 197.4445 and
D̃ = 0.0200; in Eq. (30), we used Ã = 15.9331, B̃ = 0, and W̃ = 0.4308.

3 Theoretical analyses of coding with correlated neu-
rons

3.1 Definitions and notation

We consider a continuous, periodic stimulus, θ, which is normalized so as to vary between
0 and 2π, as is natural in the case of direction selectivity. The response of an individual
neuron is characterized by the number of spikes it emits during a given time window. Each
neuron has a stimulus preference: neuron µ responds most strongly to a stimulus θµ– the
‘preferred stimulus’– and gradually less strongly to stimuli that take values away from
θµ. In the case of retinal direction-selective cells, fits to this tuning curve are provided by
a von Mises form,

fµ (θ) = A exp

(
cos (θ − θµ)

W

)
, (31)
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or a flat-topped von Mises form, Eq. (24), where fµ (θ) denotes the mean response of
neuron µ to the presentation of stimulus θ and A and W are positive constants. In
agreement with data, and following earlier theoretical work, we assume throughout that
the width of the tuning curve is an appreciable fraction of the range of stimuli, 2π.
By and large, in earlier studies, the set of preferred stimuli in the population was

arranged uniformly in the interval [0, 2π] or with small perturbations to a uniform arrange-
ment. Here, we relax this constraint and allow neurons to be arranged in pools: a total
of N0 = N ·m neurons are divided into N ‘pools’with m neurons each. In the most basic
incarnation of the model, all neurons in a given pool have identical tuning curves: neuron
i (i = 1, . . . ,m) in pool µ (µ = 1, . . . , N) responds according to Eq. (31) or Eq. (24),
with θµ = 2πµ/N . The limiting case with m = 1 reduces to a uniform arrangement; the
other limiting case with N = 1 amounts to a population of identical neurons. The case of
the four types of retinal direction-selective cells we recorded from corresponds to N = 4,
as the preferred directions align along the four cardinal directions.
From trial to trial, the activity fluctuates about the mean given by Eqs. (31, 24), and

this noise may be correlated among neurons. For the sake of simplicity, in the general the-
ory we assume Gaussian noise with a covariance matrixCµνij ≡ 〈(rµi − 〈rµi〉) (rνj − 〈rνj〉)〉,
where rµi is the response of neuron i in pool µ. Following the literature, we adopt the
simple form of the covariance matrix,

Cµνij = σ2vµ (θ) vν (θ) [δµνδij + c (0) δµν (1− δij) + c (θµ − θν) (1− δµν)] , (32)

where σ2 is a constant which scales the variance (auto-correlation) of the activity of each
individual neuron, c (0) is the correlation between two different neurons in the same pool,
and c (θµ − θν) is the correlation between two neurons in two different pools with stimulus
preferences θµ and θν respectively. Furthermore, vµ (θ) describes the dependence upon the
stimulus, θ, of the standard deviation of the response of a neuron in pool µ; the correlation
coeffi cients, c (0) and c (θµ − θν), are assumed to be stimulus-independent in the present
analysis. Poisson variability corresponds to the choice σvµ (θ) =

√
fµ (θ), sub-Poisson

variability can be fitted with a power law, vµ (θ) ∝ vµ (θ)(1−β)/2, and stimulus-independent
(additive) variability corresponds to the choice vµ (θ) = 1.

3.2 Coding error for a population of correlated neurons: general
expressions

We calculate a lower bound to the variance of a deterministic decoder, 〈δθ2〉, through the
Cramér-Rao bound, 〈

δθ2
〉
≥ 1

IF (θ)
, (33)

where IF (θ) is the Fisher information evaluated at a stimulus value θ. If the response of
neurons, rµi, where the index µ = 1, . . . , N labels the pools and the index i = 1, . . . ,m
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labels the neurons within a given pool, obey a probability density, P ({rµi} | θ), with
Gaussian fluctuation about the turning curves, then it is well known that the Fisher
information, defined as

IF (θ) =
〈
−∂2θ ln (P ({rµi} | θ))

〉
P ({rµi}|θ)

, (34)

reduces to the expression

IF (θ) = f ′ (θ)T C−1f ′ (θ) +
1

2
Tr
[
(∂θC)C−1 (∂θC)C−1

]
. (35)

Here, C is the covariance matrix defined in Eq. (32) and f ′ (θ) is the vector with elements
f ′µi (θ), the derivatives of the tuning curve,

f ′µi (θ) = ∂θfµi (θ) = ∂θfµ (θ) = ∂θfµ (θ − θµ) , (36)

where θµ is the preferred stimulus in pool µ and fµ (θ − θµ) = f (θ − θµ) depends upon
µ only through its argument. The trace term in the Fisher information (the second term
on the right-hand side) vanishes in the stimulus-independent case. More generally, this
term is always positive, so we do not violate the bound if we ignore it. As, in our data
analysis, we have found that this term is consistently negligible with respect to the first
term on the right-hand side, we ignore the trace term henceforth.
The covariance matrix Eq. (32) can be rewritten as

C = V χV, (37)

where V is the diagonal matrix given by

Vµνij = σvµ (θ) δµνδij (38)

and the matrix χ has elements

χµνij = δµνδij + c (0) δµν (1− δij) + c (θµ − θν) (1− δµν) . (39)

In order to calculate the Fisher information,

IF (θ) = f ′ (θ)T V −1χ−1V −1f ′ (θ) , (40)

we diagonalize χ with the orthonormal matrix, S, whose columns contain the elements
of the eigenvectors of χ, u(κ,k), labeled by the index (κ, k) with κ = 1, . . . , N and k =

1, . . . ,m; i.e., Sµiνj = u
(ν,j)
µi . Since S

−1 = S†, we have

χ−1 = SS†χ−1SS†

= S
(
S†χS

)−1
S†

= SΛ−1S†, (41)
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where Λ is a diagonal matrix with the eigenvalues of χ on its diagonal. Thus, we can
rewrite the Fisher information as

IF (θ) = f ′ (θ)T V −1SΛ−1S†V −1f ′ (θ)

= F (θ) Λ−1F (θ)† , (42)

where
F (θ) = f ′ (θ)T V −1S (43)

or, in components,

Fκk (θ) =
∑
µ,i

f ′µi (θ)

σvµ (θ)
u
(κ,k)
νj . (44)

Since the matrix, χ, defined in Eq. (39) is circulant, the elements of its eigenvectors
are the roots of unity: the (ν, j)th element of the eigenvector labeled by (κ, k) is

u
(κ,k)
νj ≡ 1√

Nm
e2πiκν/Ne2πikj/m. (45)

And its eigenvalues, Λκk, are calculated from the identity∑
ν,j

χµνiju
νj
κk =

{
a [1− c (0)]uµiκk if k 6= 0

a [1− c (0) +Nmc̃κ]u
µi
κk if k = 0

, (46)

where

c̃κ =
1

N

N−1∑
µ=0

c (θµ) e−2πiκµ/N , (47)

as
Λκk = 1− c (0) +Nmc̃κδk0. (48)

Finally, combining the expressions of F (θ) and Λ−1, we obtain the Fisher information as

IF (θ) =
∑

κ,κ′,k,k′

Fκk (θ)

[
δk0

1− c (0) +Nmc̃κ
+

1− δk0
1− c (0)

]
δκκ′δkk′Fκ′k′ (θ)

∗

=
Nm

σ2

N−1∑
κ=0

∥∥∥F̃κ (θ)
∥∥∥2

1− c (0) +Nmc̃κ
, (49)

where

F̃κ (θ) =
1

N

N−1∑
µ=0

f ′µi (θ)

vµ (θ)
e−2πiκµ/N . (50)
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3.3 Coding error for a population of correlated neurons: direction-
selective neurons

In the case of direction-selective neurons with preferred directions aligned along the four
cardinal directions, where we assume that neurons with the same tuning preference are
homogeneous in their properties, the correlations are described completely by three num-
bers, namely, the correlation between two neurons with identical preferred direction, c (0);
with preferred directions that differ by 90◦, c (π/2); with preferred directions that differ
by 180◦, c (π). The denominators in the expression of the Fisher information (Eq. (49))
then reduce to

1− c (0) +Nmc̃κ = 1 + (m− 1) c (0) +


2c (π/2) + c (π) if κ = 0
−c (π) if κ = 1 or 3
c (π)− 2c (π/2) if κ = 2

, (51)

and the numerators are the corresponding Fourier transforms, as defined in Eq. (50), for
κ = 0, 1, 2, 3.

3.4 Coding error for a population of correlated neurons: popu-
lations of N0 neurons

As explained in the main text, we consider a non-monotonic form of the function which
describes the correlations between pairs of neurons which belong to the same pool or to
different pools. For the sake of analytical tractability, we choose the simple exponential
form

c (θ) = 4 (1− β) cmax
(
e−|θ|/ρ − (1− β) e−2|θ|/ρ

)
, (52)

where c (θ) is the correlation between two neurons whose preferred stimuli differ by θ
(modulo 2π) and 0 ≤ β < 1/2. The constant cmax is the maximum value reached by the
correlation, for θ = ρ ln (2 (1− β)); thus, pairs of neurons whose stimulus preference differ
on the order of ρ are the more correlated ones.
Since the Fourier transformation is a linear operation, we can transform each expo-

nential separately. For the sake of clarity of notation, we give names to each Fourier
transform, according to

c̃κ =
4 (1− β) cmax

N
[β + gκ (ρ)− (1− β) gκ (ρ/2)] . (53)

In this notation, the gκ-functions are modified Fourier transforms of the exponentials, in
which the component with µ = 0 is omitted. These Fourier transforms are calculated
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readily, by summing a geometric series. For N even, we have

gκ (ρ) =

N/2−1∑
µ=1

[
e−|θµ|/ρe−2πiκµ/N + e−|θ−µ|/ρe2πiκµ/N

]
+ e−|θN/2|/ρe−πiκ

=

N/2−1∑
µ=1

[
e(2π/N)(ρ

−1−iκ)µ + e(2π/N)(ρ
−1+iκ)µ

]
+ e−π/ρ (−1)κ

= e(2π/N)(ρ
−1−iκ) 1− e(2π/N)(ρ−1−iκ)N/2−1

1− e(2π/N)(ρ−1−iκ)

+ e(2π/N)(ρ
−1+iκ) 1− e(2π/N)(ρ−1+iκ)N/2−1

1− e(2π/N)(ρ−1+iκ) + (−1)κ e−π/ρ

= 2 Re

[
e(2π/N)(ρ

−1+iκ) 1− e(2π/N)(ρ−1+iκ)N/2−1

1− e(2π/N)(ρ−1+iκ)

]
+ (−1)κ e−π/ρ

= 2λ
cos (2πκ/N)− λ+ (−1)κ λN/2γevenκ (ρ)

λ2 − 2λ cos (2πκ/N) + 1
+ ζevenκ (ρ) , (54)

where

γevenκ (ρ) = cos (2πκ/N)− λ−1, (55)

ζevenκ (ρ) = (−1)κ e−π/ρ, (56)

and where we have defined λ = e2π/(Nρ). For N odd, the calculation runs along a similar
line, and we find the same form for gκ (ρ), but with γevenκ (ρ) and ζevenκ (ρ) replaced by

γoddκ (ρ) =
(
λ1/2 − λ−1/2

)
cos (2πκ/N) , (57)

ζoddκ (ρ) = 0. (58)

Putting all this together, we obtain an expression for the Fisher information, as

IF (θ) =
Nm

σ2

N−1∑
κ=0

∥∥∥F̃κ (θ)
∥∥∥2

1 + 4 (1− β) cmax {(m− 1) β +m [gκ (ρ)− (1− β) gκ (ρ/2)]} , (59)

where

g (ρ) = 2λ
cos (2πκ/N)− λ+ (−1)κ λN/2γκ (ρ)

λ2 − 2λ cos (2πκ/N) + 1
+ ζκ (ρ) , (60)

γκ (ρ) =

{ (
λ1/2 − λ−1/2

)
cos (2πκ/N) if N is odd

cos (2πκ/N)− λ−1 if N is even
, (61)

ζκ (ρ) =

{
0 if N is odd
(−1)κ λN/2 if N is even

, (62)

and λ = e−2π/(Nρ).
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Figure Captions

Fig. S1. Percent variance explained by the fits of the models coding for direction, for
models with perfect correlation in the secondary sources of noise (labeled as Models I, II,
III) and for models with partial correlation in the secondary sources of noise (labeled as
Models Í, IÍ, IIÍ).

Fig. S2. Percent variance explained by the fits of the models coding for direction and
position, for models with perfect correlation in the secondary sources of noise (labeled as
Models I, II, III) and for models with partial correlation in the secondary sources of noise
(labeled as Models Í, IÍ, IIÍ).

17



- Submission 3/SupplementV arExplained.eps

18


