1	Supplemental material for
2	D-Amino Acids Inhibit Initial Bacterial Adhesion: Thermodynamic Evidence
3	
4	Su-Fang Xing ^a , Xue-Fei Sun ^a , Alicia A. Taylor ^b , Sharon L. Walker ^b , Yi-Fu Wang ^a ,
5	Shu-Guang Wang ^a
6	
7	Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of
8	Environmental Science and Engineering, Shandong University, Jinan 250100, China ^a
9	Department of Chemical and Environmental Engineering, University of California,
10	Riverside, Riverside, California 92521, United States ^b
11	
12	Corresponding author: Xue-Fei Sun, Fax: +86 531 88364513; E-mail:
13	xuefeisun@sdu.edu.cn; Shu-Guang Wang, Fax: +86 531 88364513; E-mail:
14	wsg@sdu.edu.cn
15	
16	

17 **Part 1: Methods and Materials**

Bacterial size. The size of bacteria was calculated using a scanning electron
microscope (SEM, HITACHI S-570, Japan). The cells were fixed with 3.0%
glutaraldehyde in 0.1 M phosphate buffer (pH 7.2), dehydrated with ethanol,
silver-coated by a sputter, and observed in the SEM.

Bacterial preparation of Zeta potential. Zeta potential (ζ potential) of the bacteria (ZetaSizer 3000HSA (Malvern, England)) was determined using freshly harvested cells from the LB media with different concentrations of D-tyrosine (0, 10, 25, 50 μ M) and resuspended in 10 mM KCl (the pH of the solution was unadjusted (5.6-5.8) at an optical density of 0.2-0.25 measured at 600 nm with a spectrophotometer.

28 Cells Adhesion and Desorption Tests

29 Cells adhesion tests were conducted as previously reported (Kim et al. 2009). The
30 attachment efficiency (A, %) was calculated as:

$$31 \qquad A(\%) = \frac{C_0 - C_e}{C_0}$$
(S1)

32 where C_o , C_e are the initial and final optical density, respectively.

Next the desorption rate (R, %) (OD₆₀₀ of reversibly adhered bacteria divided by the value of OD₆₀₀ for all the adhered bacteria) was calculated for each test by experimentally determined C_o (OD₆₀₀ before desorption tests in 0.1 mM KCl solution) and C_e (OD₆₀₀ after desorption tests in 0.1 mM KCl solution) as follows (Kuznar and Elimelech 2007):

38
$$R = \frac{C_e' \cdot C_0'}{C_0 - C_e} \times 100\%$$
 (S2)

- 39 If adhesion of the cells was completely irreversible then R = 0%, whereas if R =
- 40 100% adhesion was completely reversible. All the experiments were conducted for at
- 41 least three times.
- 42

43 **Part 2: Equations and parameters of surface thermodynamics**

44 The surface tension component and parameters of bacterial surface were calculated 45 with eq. S3:

46
$$(1+\cos\theta)\gamma_L = 2((\gamma_B^{LW}\gamma_L^{LW})^{1/2} + (\gamma_B^+\gamma_L^-)^{1/2} + (\gamma_B^-\gamma_L^+)^{1/2})$$
 (S3)

47 where θ is the contact angle between the bacteria surface and the drop liquid and *L* 48 represents the liquid used in the experiment. γ^+ and γ^- are the electron-acceptor and 49 electron-donor parameters, respectively. The γ^+ , γ^- and γ^{LW} of bacteria could be 50 determined by eq. S3.

51 The parameters for eq. 4 - 6 (shown in the manuscript) are listed here:

52
$$\Delta G^{LW} = 2(\sqrt{\gamma_L^{LW}} - \sqrt{\gamma_G^{LW}})(\sqrt{\gamma_B^{LW}} - \sqrt{\gamma_L^{LW}})$$
(S4)

53
$$\Delta G^{AB} = 2\sqrt{\gamma_L^+} (\sqrt{\gamma_G^-} + \sqrt{\gamma_B^-} - \sqrt{\gamma_L^-}) + 2\sqrt{\gamma_L^-} (\sqrt{\gamma_G^+} + \sqrt{\gamma_B^+} - \sqrt{\gamma_L^+}) - 2(\sqrt{\gamma_G^+ \gamma_B^-} + \sqrt{\gamma_G^- \gamma_B^+})$$
(S5)

Part 3: Results

TABLE S1 Total interaction energy profiles as a function of separation distance

Parameters	0 μΜ	10 µM	25 μΜ	50 µM
Secondary				
Energy Minima	(-) ^a	-114.5	-54.7	-54.1
Depth (kT)				
Secondary				
Energy Minima	(-) ^a	1.7	2.9	3.1
Distance (nm)				
Closest Approach	(-) ^a	0.6	2.0	2.2
Distance (nm)				
Hamaker	3.3×10 ⁻²¹	3.2×10 ⁻²¹	3.1×10 ⁻²¹	2.9×10 ⁻²¹
Constant (J)				

between E. coli JM109 cells and quartz sand

56 $(-)^a$ indicate the values that do not exist.

58

59 Figure S1. Growth curves of *E. coli* cells from LB media with different D-Tyrosine

60 concentrations (0, 10, 25, 50 μM).

62

Figure S2. Adhesion and desorption efficiencies of E. coli onto and off of a quartz collector surface, determined as a function of D-Tyrosine (a), and L-Tyrosine (b). Experiments were conducted at unadjusted pH (5.6-5.8), and at room temperature (25°C); bacteria were cultivated from the bacterial minimal media. Error bars indicate one standard deviation.

70 **Figure S3.** The relative hydrophobicity and contact angles of *E. coli* cells as a function

71 of D-Tyrosine concentration.

coli JM109 cells and (b) SEM images of *E. coli* JM109 cells.

References

78	Kim HN, Hong Y, Lee I, Bradford SA, Walker SL. 2009. Surface characteristics and
79	adhesion behavior of Escherichia coli O157:H7: Role of extracellular
80	macromolecules. Biomacromolecules 10: 2556-2564.
81	