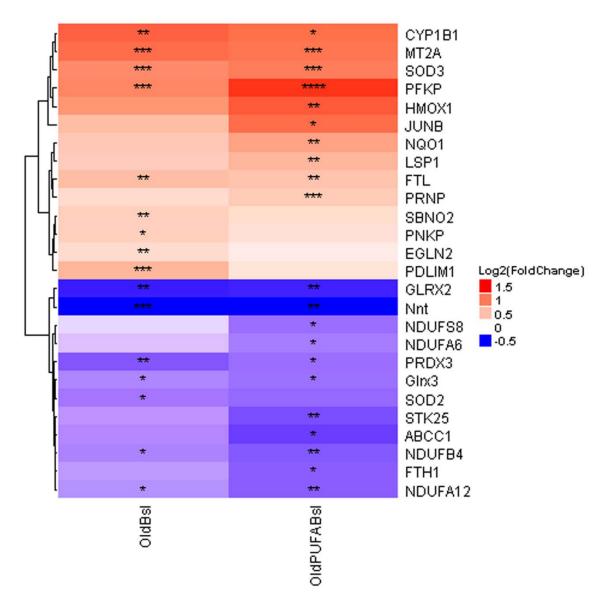
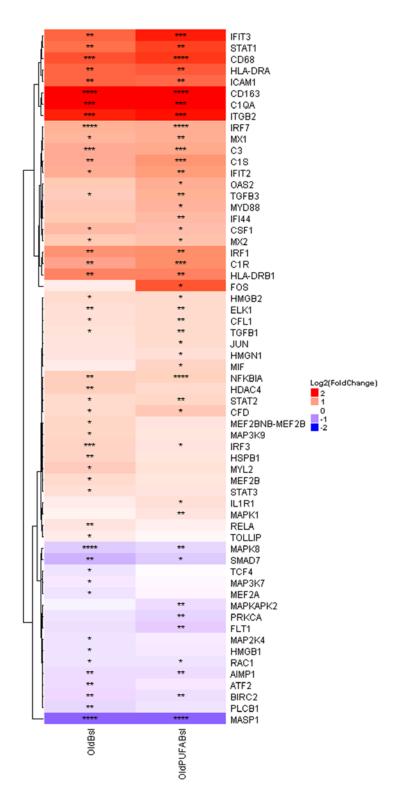
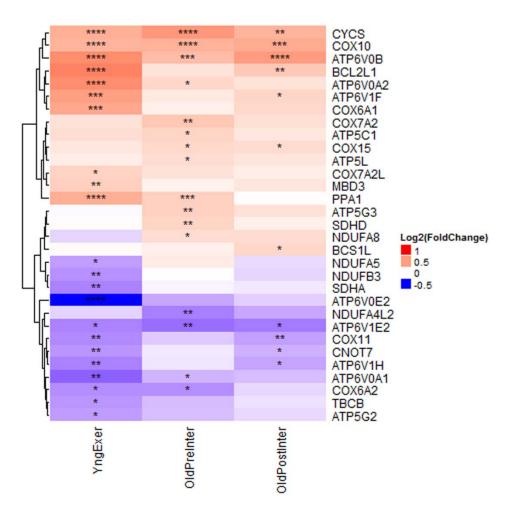

SUPPLEMENTARY MATERIALS

Supplemental Figures

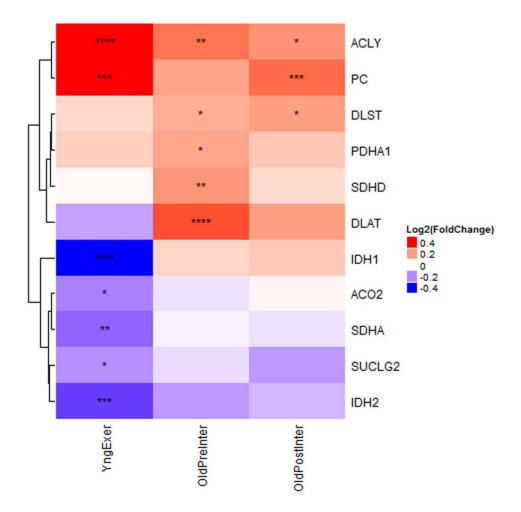

Supplemental Figure 1. The heatmap shows fold changes for genes related to oxidative phosphorylation in old baseline preintervention and old baseline postintervention relative to young baseline. A positive fold change (red) indicates upregulated in old compared to young, and a negative fold change (blue) indicated downregulated in old compared to young. * denotes where the fold change was statistically significant ($p \le 0.05$).

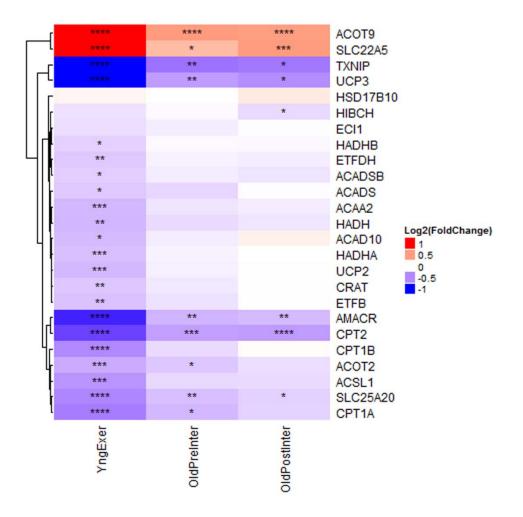
Supplemental Figure 2. The heatmap shows fold changes for genes related to tricarboxylic acid cycle in old baseline preintervention and old baseline postintervention relative to young baseline. A positive fold change (red) indicates upregulated in old compared to young, and a negative fold change (blue) indicated downregulated in old compared to young. * denotes where the fold change was statistically significant ($p \le 0.05$).

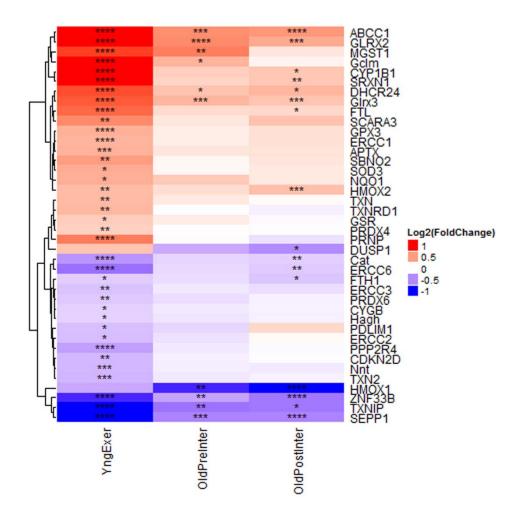

Supplemental Figure 3. The heatmap shows fold changes for genes related to lipid metabolism in old baseline preintervention and old baseline postintervention relative to young baseline. A positive fold change (red) indicates upregulated in old compared to young, and a negative fold change (blue) indicated downregulated in old compared to young. * denotes where the fold change was statistically significant ($p \le 0.05$).

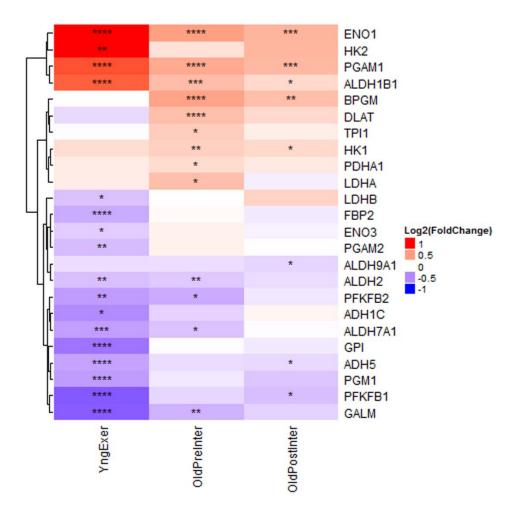

Supplemental Figure 4. The heatmap shows fold changes for genes related to oxidative stress in old baseline preintervention and old baseline postintervention relative to young baseline. A positive fold change (red) indicates upregulated in old compared to young, and a negative fold change (blue) indicated downregulated in old compared to young. * denotes where the fold change was statistically significant ($p \le 0.05$).

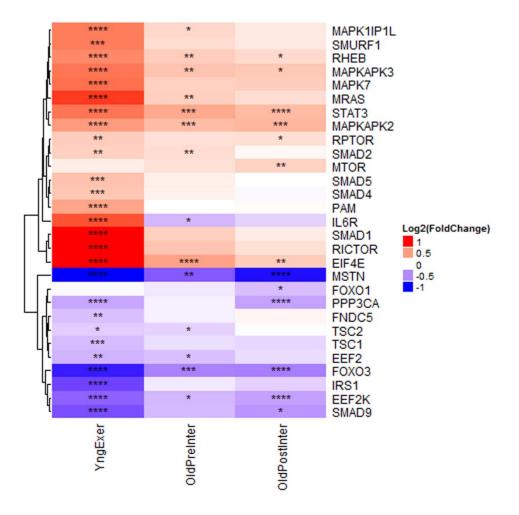
ł	**	**	ALDH1A3	
d I	**	****	ADH1B	
님	***		PFKFB2	
	***	****	PFKP	
Пл	*		ACSS1	
ļЦ	*	**	AKR1A1	
L	*		ACSS2	
	***	***	LDHA	
1 1		*	HK1	
ЦЦ	*		PDHB	
1	**	**	PFKFB1	
Yr	**	**	DLD	Log2(FoldChange)
l	**	*	PGK1	2
ų	***	***	TPI1	0
ľ	***	****	BPGM	
	****	****	DLAT	
	*	**	PGAM2	
	*	**	ENO3	
	**	**	GAPDH	
}	**	*	FBP2	
l	**	**	PGM1	
	OldBsl	B		
	PIO	IFA		
	-	OldPUFABsI		
		ŏ		

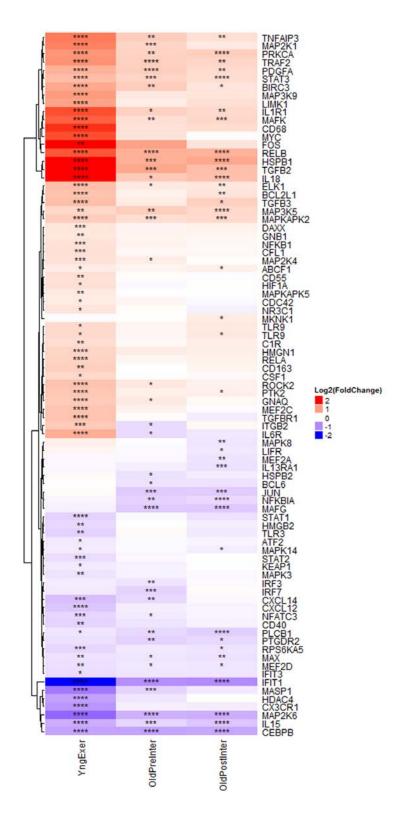

Supplemental Figure 5. The heatmap shows fold changes for genes related to glycolysis in old baseline preintervention and old baseline postintervention relative to young baseline. A positive fold change (red) indicates upregulated in old compared to young, and a negative fold change (blue) indicated downregulated in old compared to young. * denotes where the fold change was statistically significant ($p \le 0.05$).


Supplemental Figure 6. The heatmap shows fold changes for genes related to inflammation in old baseline preintervention and old baseline postintervention relative to young baseline. A positive fold change (red) indicates upregulated in old compared to young, and a negative fold change (blue) indicated downregulated in old compared to young. * denotes where the fold change was statistically significant ($p \le 0.05$).


Supplemental Figure 7. The heatmap shows post exercise fold changes for genes related to oxidative phosphorylation in young, old, and old post-supplementation relative to their respective baseline transcript levels. A positive fold change (red) indicates upregulated after exercise, and a negative fold change (blue) indicated downregulated after exercise. * denotes where the fold change was statistically significant from pre-exercise ($p \le 0.05$).


Supplemental Figure 8. The heatmap shows post exercise fold changes for genes related to tricarboxylic acid cycle in young, old, and old post-supplementation relative to their respective baseline transcript levels. A positive fold change (red) indicates upregulated after exercise, and a negative fold change (blue) indicated downregulated after exercise. * denotes where the fold change was statistically significant from pre-exercise ($p\leq0.05$).


Supplemental Figure 9. The heatmap shows post exercise fold changes for genes related to lipid metabolism in young, old, and old post-supplementation relative to their respective baseline transcript levels. A positive fold change (red) indicates upregulated after exercise, and a negative fold change (blue) indicated downregulated after exercise. * denotes where the fold change was statistically


Supplemental Figure 10. The heatmap shows post exercise fold changes for genes related to oxidative stress in young, old, and old post-supplementation relative to their respective baseline transcript levels. A positive fold change (red) indicates upregulated after exercise, and a negative fold change (blue) indicated downregulated after exercise. * denotes where the fold change was statistically significant from pre-exercise ($p \le 0.05$).

Supplemental Figure 11. The heatmap shows post exercise fold changes for genes related to glycolysis in young, old, and old postsupplementation relative to their respective baseline transcript levels. A positive fold change (red) indicates upregulated after exercise, and a negative fold change (blue) indicated downregulated after exercise. * denotes where the fold change was statistically significant from pre-exercise ($p \le 0.05$).

Supplemental Figure 12. The heatmap shows post exercise fold changes for genes related to protein turnover in young, old, and old post-supplementation relative to their respective baseline transcript levels. A positive fold change (red) indicates upregulated after exercise, and a negative fold change (blue) indicated downregulated after exercise. * denotes where the fold change was statistically significant from pre-exercise ($p \le 0.05$).

Supplemental Figure 13. The heatmap shows post exercise fold changes for genes related to inflammation in young, old, and old post-supplementation relative to their respective baseline transcript levels. A positive fold change (red) indicates upregulated after exercise, and a negative fold change (blue) indicated downregulated after exercise. * denotes where the fold change was statistically significant from pre-exercise ($p \le 0.05$).

Supplemental Tables

Supplemental Table 1. Gene expression assays.

Gene Gene Name		Assay ID	Context Sequence	Probe Dye
Symbol				
• Ge	ne targets with HPRT	l reference gene (432	6321E, VIC probe)	
SLN	sarcolipin	Hs01888464_s1	ACACGGTCTGCAACC AAACTCTAAT	FAM
FST	follistatin	Hs00246256_m1	TGCCCAGGCTGGGAA CTGCTGGCTC	FAM
CAPN1	calpain 1, (mu/I) large subunit	Hs00559804_m1	AACTACCCAGCCACC TTCTGGGTGA	FAM
TRIM63	tripartite motif containing 63, E3 ubiquitin protein ligase	Hs00822397_m1	GTCGAGTGACCAAGG AGAACAGTCA	FAM
MYOD1	myogenic differentiation 1	Hs02330075_g1	CGACGGCATGATGGA CTACAGCGGC	FAM
• Ge	ne targets with B2M re	eference gene (43263	19E, VIC probe)	
B2M	Beta 2 microglobulin			
MSTN	myostatin	Hs00976237_m1	ATGCCTACAGAGTCT GATTTTCTAA	FAM
CAPN2	calpain 2, (m/II) large subunit	Hs00965097_m1	CGGAGCCGAGGAGGT TGAAAGTAAC	FAM
FBXO32	F-box protein 32	Hs01041408_m1	TCCGAGCGGCAGATC CGCAAACGAT	FAM
FOXO3B, FOXO3	forkhead box O3B pseudogene, forkhead box O3	Hs00921424_m1	GGGCAAAGCAGACCC TCAAACTGAC	FAM

Supplemental Table 2. Gene identities of elements in each section of the Venn Diagram in Figure 5. See Supplemental File 2.