Biophysical Journal, Volume 112

Supplemental Information

Rate-Dependent Role of I_{Kur} in Human Atrial Repolarization and Atrial Fibrillation Maintenance

Martin Aguilar, Jianlin Feng, Edward Vigmond, Philippe Comtois, and Stanley Nattel

SUPPORTING MATERIAL: FIGURE LEGENDS

Figure S1. Model inactivation and activation gating variables and time constants. (A) Inactivation gating variable as a function of transmembrane potential ($V_{\rm m}$) for the original model ($u_{i,original}$; blue) and fast ($u_{i,f}$, red solid) and slow ($u_{i,s}$, red dashed) inactivation gating variables for the modified model. (B) Inactivation time constants as a function of transmembrane potential for the original ($\tau_{ui,original}$, blue) and modified ($\tau_{ui,f}$, red sold; $\tau_{ui,s}$, red dashed) model. (C) Activation gating variable as a function of transmembrane potential for the original ($u_{a,original}$, blue) and modified ($u_{a,modified}$, red) model. (D) Activation time constant as a function of transmembrane potential for the original ($\tau_{ua,original}$, blue) and modified ($\tau_{ua,modified}$, red) model.

Figure S2. I_{Kur} inactivation and action potential dynamics. (A) Action potential amplitude (APA), (B) action potential duration at 90% repolarizaton (APD₉₀), (C) maximal phase-0 overshoot potential (OS) and (D) peak Na⁺ current (peak I_{Na}) as a function of stimulation cycle length (CL) for the original (black) and modified (red) Courtemanche models.

Figure S3. Left panels: Kinetic determinants of I_{Kur} at a cycle length of 750 ms. Right panels: Cycle-length dependence of the same kinetic determinants (points corresponding to a cycle length of 750 ms indicated by an X). (A) Determinants of I_{Kur} rate dependence as a function of time for a stimulation cycle length (CL) of 750 ms. The area under the I_{Kur} curve (I_{Kur} AUC; shaded red) is calculated to determine charge carried per cycle. (B) I_{Kur} AUC as a function of stimulation cycle length. (C) Inactivation gate open probability ($u_{i,f} \times u_{i,s}$) as a function of time at CL = 750 ms. The open-probability minimum is marked by a red dot. (D) Inactivation gate open probability minima as a function of cycle length. (E) Activation gate open probability (u_a^3) as a function of time at CL = 750 ms. The area under the u_a^3 curve (u_a^3 AUC) is shaded in red). (F) Activation gate open probability AUC (u_a^3 AUC) as a function of stimulation cycle length.

Figure S4. ACh distributions used for the 2-dimensional AF simulations. Pattern #1 is a flat ACh distribution. Pattern #2 and #3 are sinusoidal ACh distributions. Three peak ACh concentrations (1.875 nM, 3.75 nM and 7.5 nM) for each pattern generated 9 different substrate conditions.

Figure S5. Representative example of simulated cholinergic AF using pattern #1 with peak ACh concentration of 7.5 nM and the non-remodeled cardiomyocyte model. (A) ACh distribution with peak concentration of 7.5 nM and (B) corresponding APD₋₆₀ distribution. (C) Transmembrane potential over time at 50 ms intervals; re-entry is very stable and maintained by a single rotor. (D) Ratio of depolarized cells and (E) transmembrane potential over time for the cardiomyocyte marked with a white circle in panels A and B.

Figure S6. Representative example of simulated cholinergic AF using pattern #3 with peak ACh concentration of 7.5 nM and the non-remodeled cardiomyocyte model. (A) ACh distribution with peak concentration of 7.5 nM and (B) corresponding APD₋₆₀ distribution. (C) Transmembrane potential over time at 50 ms intervals; re-entry is maintained by multiple short-live spiral waves. (D) Ratio of depolarized cells and (E) transmembrane potential over time for the cardiomyocyte marked with a white circle in panels A and B.

Figure S7. Representative example comparing re-entry dynamics in the original and modified models. (A-B) Transmembrane potential over time at 50 ms intervals for the original and modified models. (C-D) APD-60 for the original and modified models. (E-F) Ratio of depolarized cells and transmembrane potential for the original (blue) and modified (red) models. Non-remodeled cardiomyocyte model with ACh pattern #1 with peak concentration of 1.875 nM.

Figure S8. Representative example comparing re-entry dynamics in the original and modified models. (A-B) Transmembrane potential over time at 50 ms intervals for the original and modified models. (C-D) APD-60 for the original and modified models. (E-F) Ratio of depolarized cells and transmembrane potential for the original (blue) and modified (red) models. Non-remodeled cardiomyocyte model with ACh pattern #3 with peak concentration of 3.75 nM.

Figure S9. Representative example of re-entry termination by 100% I_{Kur} block using ACh pattern #2 with peak ACh concentration of 3.75 nM and the non-remodeled cardiomyocyte model. (A) ACh distribution with peak concentration of 3.75 nM and (B) corresponding APD₋₆₀ distribution. (C) Transmembrane potential over time at 50 ms intervals; 50% I_{Kur} block was introduced at $t_{drug} = 1600$ ms. (D) Ratio of depolarized cells and (E) transmembrane potential over time for the cardiomyocyte marked with a white circle in panels A and B for control (blue) and 50% I_{Kur} block (red).

Figure S10. Representative example of simulated cholinergic AF using pattern #1 with peak ACh concentration of 3.75 nM and the remodeled cardiomyocyte model. (A) ACh distribution with peak concentration of 3.75 nM and (B) corresponding APD₋₆₀ distribution. (C) Transmembrane potential over time at 50 ms intervals; re-entry is very stable and maintained by a single rotor. (D) Ratio of depolarized cells and (E) transmembrane potential over time for the cardiomyocyte marked with a white circle in panels A and B.

Figure S11. Representative example of simulated cholinergic AF using pattern #2 with peak ACh concentration of 3.75 nM and the remodeled cardiomyocyte model. (A) ACh distribution with peak concentration of 3.75 nM and (B) corresponding APD₋₆₀ distribution. (C) Transmembrane potential over time at 50 ms intervals; re-entry is very stable and maintained by a single rotor. (D) Ratio of depolarized cells and (E) transmembrane potential over time for the cardiomyocyte marked with a white circle in panels A and B.

Figure S12. Representative example of simulated cholinergic AF using pattern #3 with peak ACh concentration of 3.75 nM and the remodeled cardiomyocyte model. (A) ACh distribution with peak concentration of 3.75 nM and (B) corresponding APD₋₆₀ distribution. (C) Transmembrane potential over time at 50 ms intervals; re-entry is stable and maintained by a few rotors. (D) Ratio of depolarized cells and (E) transmembrane potential over time for the cardiomyocyte marked with a white circle in panels A and B.

Figure S13. Representative example of re-entry non-termination by 100% I_{Kur} block using ACh pattern #2 with peak ACh concentration of 3.75 nM and the remodeled cardiomyocyte model. (A) ACh distribution with peak concentration of 3.75 nM and (B) corresponding APD₋₆₀ distribution. (C) Transmembrane potential over time at 50 ms intervals; 100% I_{Kur} block was introduced at $t_{drug} = 1000$ ms. (D) Ratio of depolarized cells and (E) transmembrane potential

over time for the cardiomyocyte marked with a white circle in panels A and B for control (blue) and 50% I_{Kur} block (red).

