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ABSTRACT

The mechanism for leaf position determination by the diffusion of an
inhibitor has been studied in relation to the geometry of leaf positions. A
computer model has been constructed for the inhibitor-diffusion process
on a ceilular cylindrical surface. The behavior of the model has been
analyzed mathematicaHy. The main results are: (a) that our model
generates most of the phygotactic patterns observed in nature; and (b)
that restraints have been found for permissible values of diffusion rates
and decay rates of the hypothetical inhibitor.

Many other plants, however, have flattened apices, and for the
phyllotaxis of these cases a planar model has been constructed,
the publication of which is in preparation (cf. 22).
Our paper presents two main results. First, our model gener-

ates all packed circles patterns. Among workers in this field
there is a general agreement that this class of patterns (defined in
the next section) covers most phyllotactic arrangements found in
nature. Second, restraints have been found which lead to inter-
vals of permissible values for diffusion rates and decay rates of
the hypothetical inhibitor. A formal relationship has been found
between geometric and physiological parameters of the model,
and insight has been gained concerning the frequent connection
of Fibonacci numbers and phyllotactic patterns.

Phyllotaxis, the study of leaf arrangements on growing shoot
apices, is a field of longstanding interest and with a very exten-
sive literature. Unfortunately, its literature falls into two rather
distinct areas: the geometric description of phyllotactic patterns
found in nature, or constructed theoretically, and the attempts to
find physiological and cytological mechanisms responsible for
initiation of leaf primordia. It seems to have been entirely
possible to investigate one of these areas without paying any
attention to the other. As far as the physiological mechanisms
go, over many years many hypotheses have been put forward,
such as Schwendener's mechanical pressure hypothesis (1, 18),
the inhibitor-diffusion hypothesis of Schoute (16) and Richards
(15), the first available space theory of Snow and Snow (19), the
foliar helix hypothesis of Plantefol (14) and a nutrient depletion
hypothesis. In our opinion, two of the above mechanisms (the
inhibitor-diffusion and the first available space hypotheses) are
indistinguishable as far as their consequences are concerned.
Recently Williams (23) has expressed a preference for a "me-
chanical-chemical field theory," meaning a combination of me-
chanical forces (like pressure) and physico-chemical processes
(like diffusion) bringing about the correct placing of the leaf
primordia.
Our purpose is to show how one can formulate one of the

above hypotheses in such a precise way that one can bridge the
gap between the physiological mechanisms and the geometric
descriptions. We have constructed a computer model for phyllo-
taxis based on the inhibitor-diffusion hypothesis which is on the
one hand physico-chemically realistic and on the other hand
produces results that are comparable to anatomical-morphologi-
cal observations.
From the mathematical point of view, the problem is to obtain

concentration values on a growing apical surface with varying
numbers of point sources of inhibitor. This problem is unsolva-
ble by mathematical analysis. A reasonable approximation can
be achieved by dividing the surface into subunits and computing
the concentrations in each subunit iteratively. For the sake of
computer implementation a growing cylindrical surface was cho-
sen. For many plants the portion of the apex on which primordia
are generated can be reasonably approximated by a cylinder.

GEOMETRY OF PHYLLOTAXIS

For the purpose of this discussion, we adopt the hypothesis
that by good enough approximation, the area in the plant where
leaf initiation takes place is a cylinder and that the leaf centers on
this surface form a regular point system. These geometrical
constructs were studied in elaborate detail by Van Iterson (21)
while shorter versions can be found in Erickson (ref. 3; and
"Mathematics of phyllotaxis: a reappraisal" [manuscript]) and
Veen (22). Here we will give only a summary of the mathemati-
cal definitions and results as far as needed for the discussion of
our model. They are characterized by the parameters a, the
divergence angle and h, the horizontal displacement such that
between every two consecutive leaves the horizontal and vertical
separation is constant and equal to a and h. This means that the
shortest line connecting all consecutive leaves forms a helix
which is called the generative helix. If we choose an arbitrary leaf
as leaf 0, we thus have a natural numbering of the leaves. In
Figure la a regular point system is displayed while in lb we see
the unrolled surface of the same cylinder. Here the generative
helix is not shown but three other helices are drawn. On one of
these, going through leaves 0 and 3, the numbers of two consec-
utive leaves differ by 3. This is called a 3-parastichy. Also one of
the 5- and one of the 8-parastichies are drawn. In general there
are m parallel m-parastichies covering all leaves. Again the
spacing along an m-parastichy is uniform and is called di. For
each system there is an m such that dm is minimal: leaf 0 and m
are nearest neighbors. A special class of regular point systems
are those for which there are two different integers m and n such
that dm = d. So leaf 0 has as nearest neighbors -m, -n, m, and n
and equal distance d to all of them. If we drew around all leaves
circles with diameter d as in Figure 2, then all circles would touch
four others and none would overlap, for which reasons these are
called packed circles systems, or if d = dm = d4n and m < n (m, n)-
systems. Figure 2b shows a (2,3)-system. We shall call the
integers m,n-contact numbers. These packed circles systems and
the parameter d are of special interest for our model as we will
clarify later. There is an (m,n)-system for every m and n without
common divisor. The following relation holds between a, d, m,
and n.
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DESCRIPTION OF THE MODEL

Our model is based on the inhibitor-diffusion hypothesis of the
generation of leaf primordia as expressed in the following bio-
logical assumptions.

1. In many plants the part of the apex where leaf initiation
takes place can be approximated by a cylinder. Its cells are of
approximately the same size and are arranged in a regular
fashion.

2. The phyllotaxis is regulated by a compound, called the
inhibitor, which is diluted or broken down at a constant rate and
which diffuses isotropically over the surface in such a manner

that the concentration within a cell is uniform and concentration
gradients are established mainly across the cell walls.

3. The center of each leaf produces this inhibitor.
4. The center of the apex represented by the upper circle of

the cylinder also produces this inhibitor.

iO

a b
FIG. 1. a: Regular point system on a cylinder surface; b: on the

unrolled surface the 3-, 5-, and 8-parastichies through point 0 are shown.
Reproduced from reference 3.

(n2-m2)d2+47r2 Am
a=s,Jj -+ 2r

4mnir m
(1)

Here s. = ±I and A,m is an integer, which are directly related to
m and n by formulas which we will not give here.
We see that for every pair (m, n)a is a quadratic function of d,

so that if we plot a versus d for all valid combinations ofm and n

we get a collection of parabolas (Fig. 3). However, there will not
be an (m,n)-system for every a. In Figure 2b a is 138.50 and d is
1.74. If we decrease d gradually and keep adjusting a according
to formula 1 we get to the point in Figure 2c where we have d2 =

d3 = d5. This is called a (2,3,5)-system, a triple point, or a

hexagonally packed system. If we continue to decrease d and stay
within formula 1 the circles along the 5-parastichy will overlap so

d2= d3 > d5. So the (2,3,5)-point is a limiting point of the (2,3)-
system as is the (1,2,3)-system on the other side (Fig. 2a). In
general, the validity of formula 1 for every (m,n)-system is
limited by the two triple points (n-m, m, n) and (m, n, m + n).
The relation between these numbers n-m, m, n, m + n is

identical to that between any four consecutive members of a well
known mathematical series called the summation series in which
every member is the sum of the previous two. The series starting
with 0 and 1 is the famous Fibonacci series.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,.

These numbers are frequently found in connection with phyllo-
taxis, a fact which has been puzzling to many workers and
mystifying to others. We return to this problem later. We can

already see in Figure 3 that starting at (0, 1, 1) descending down
the branches and taking the steepest branch at every triple point,
we obtain pairs or triples of consecutive Fibonacci numbers for
the nearest neighbor numbers we encounter.
The patterns discussed so far are all simple helical systems, i.e.

there is only one generative helix. Many plants, however, have
two leaves at the same level on the stem. Here we can find two
generative equidistant helices and when we cut the surface into
two equal parts we obtain two identical helical systems. The
double pattern is called bijugate and if it is a packed circles
system the notation is 2(m, n). Similarly we have trijugate and in
general J-jugate patterns with the notation J(m, n). J is called the
jugacity.

(1,2,3) a 128.560O
d = 2.374

a ho 0.777

(2,3) a = 138.460
d 1.743

b h= 0.43

(2,3,5) a = 142.105I
d z 1.441

C h 0.286

FIG. 2. Packed circles pattern on an unrolled cylinder surface. a is
divergence angle, d is diameter of the circles, h is vertical displacement.
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FIG. 3. Relation between diameter and divergence angle for packed
circles patterns on cylinder surfaces. Nearest neighbor numbers are
shown for the most important branches and triple points.

5. Each cell in which the concentration of the inhibitor drops
below a certain threshold becomes a leaf center.

6. Cell division and growth take place mainly at the top of the
cylinder, that is, above the initiation area.
These assumptions about the processes in plants find their

equivalents in the following features of the model.
1. The geometric basis of the model is an array of cells

arranged on a square grid with the left and right sides of the
network connected to obtain the topological equivalent of a
cylinder surface.

2. Diffusion is simulated in time steps. Each cell is assigned
an initial concentration of inhibitor. At every step the next
concentration of each cell is derived from its old concentration
and that of its eight nearest neighbors according to the decay-
diffusion formula.

3. Certain cells are in a special state, called "leaf center" or
"leaf," in which the cell maintains a constant concentration L of
the inhibitor.

4. The top ring of cells maintains a constant concentration A
of the inhibitor.

5. Each cell in which the concentration of the inhibitor drops
below a certain threshold T turns into a leaf center.

6. Every G time steps a new row of cells with concentration A
is added to the top of the cylinder freeing the previous top row to
take part in the decay-diffusion process.
Only under very special conditions can an accurate prediction

of the behavior of this model be made. For all nontrivial cases an
actual simulation of the model has to be performed. We incorpo-
rated this model in a computer program to carry out these
simulations.
The assumptions concerning the production and diffusion of

an inhibitor are formally related to another set of assumptions
concerning the consumption and diffusion of an inducer or a
nutrient. It is our feeling that the results of these latter assump-
tions would closely parallel those of the inhibitor-diffusion hy-
pothesis, but we have not pursued this line of thought.
We assume the inhibitor to diffuse isotropically (that is with no

preferred direction) according to Fick's law in two dimensions
and to decay proportionally to the concentration. The rate of

concentration change dt at point (x, y) is

dc A 2(+ ac)D* (2)

in which X* is the diffusion constant and D* is the decay con-
stant. This represents diffusion in a continuous medium. In our
cellular model we deal in fact with two transport processes: the
transport within the cell which is extremely fast due to stream-
ing, and the diffusion through the cell wall or membrane. We
assume that the time needed by the internal diffusion is insignifi-
cant compared to that of the intercellular diffusion and that the
significant diffusion gradients are established across the cell
walls. If we substitute the concentration gradients along the two
dimensions

ac
glax

and

ac
gm =avy

in formula 2 we get

Agx + ag_ D* c

Since we assume concentration throughout a cell to be equal,
this is equivalent to the finite difference formula

dt = -1([gX r,- ] + [g,9 -g2,]) - D* cat= w7[~ (3)

where g., and gr, are the gradients at the left and the right sides
of the cell, and gy, and gV, at the bottom and top, while Al
denotes the diameter of the cell. If we have a cell with concentra-
tion c0 surrounded by eight neighboring cells with concentrations
ci as in Figure 4, we have to express the gradients as a function of

FIG. 4. Patterns of neighboring cells determining the diffusion for-
mula, where each cell interacts directly with eight neighbors as used in
our model.
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the concentrations. Let the corner cells take part q in the estab-
lishment of the gradient. We get a formula

9z, = ([1 - 2q1C3 - cO] + q[C6 - cO] + q[c7 - CO])/Al

and similar ones for g9r2 gy,, and gv,. These substituted in for-
mula 3 lead to

ac0 X* 4 8

t () ([12q]2 Ci + 2qX c-4co) -D* co (4)

For efficiency and other programming reasons we chose q = 1/4,
leading to

dt 2(AJ)2 (8 ci-8 co)-D* co (5)
Digitalizing the time scale with time unit At, (5) becomes

Aco = X* 1)2 ( ci-.o) - D co At (6)

Substituting the diffusion constant in terms of our time and
distance units

At
2(Al)2

and the decay constant

D = D* At (8)

we arrive at the formula actually used in the program
8

cO = cO + AcO= X Xcj + (1-9X-D)co (9)
i=O

We can see from this formula that if X is greater than '/9 or D
greater than 1 the new value of c0 will be inversely dependent on
its old value. This might very well lead to unrealistic oscillations.
For this reason we set upper limits on X and D, which are merely
reflections of an upper limit on At. This indicates that the
digitalization of the process cannot be arbitrarily coarse.

AUTOMATA-THEORETICAL MODELS FOR
MULTICELLULAR DEVELOPMENT

Computer-oriented models have been proposed by one of us
(7-9) to describe the development of multicellular organisms. In
these models, cells are considered to be finite automata, with
finitely many states, inputs, and outputs. The cells of a filamen-
tous organism are represented by a linear array of automata, in
which each cell can receive inputs from its two neighbors and
contribute outputs to them. The next state of a given cell is
computed in discrete time steps on the basis of its previous state
and the inputs it receives. New cells may be added to the array
anywhere (corresponding to cell divisions) and cells may disap-
pear from them (by cell death). An extensive biological and
mathematical literature is now available on these models (6, 10).
They have been called OL-, 1L- or 2L-systems depending on
whether the automata receive no input, input from one direc-
tion, or from two directions in the one-dimensional array. An
extension of these models to multidimensional arrays has re-
cently been accomplished on the basis of graphs.
Concerning the present problem, two-dimensional cellular ar-

rays have already been described above (Fig. 4); these can be
considered as examples of graph L-systems in which each cell is
placed on a cylindrical grid and has always either four or eight
neighbors. The inputs to the cells are the concentrations of the
morphogen in the neighboring cells. The new morphogen con-
centration for a given cell is computed on the basis of these
inputs and the state of the cell itself (its own concentration) with
the help of formula 9. The same formula is used for all of the

cells. The only exceptions are those cells in which the morpho-
gen concentration has fallen below the threshold; these cells
have become primordia and are assigned constant concentration
values. Addition of new cells can only take place by adding new
rows of cells at the top of the array. To the cells in the top and
bottom rows environmental inputs have to be provided, which is
achieved by adding two rows of cells at the top and bottom which
are kept at constant values. The computations are performed
simultaneously on all of the cells of the array, thus satisfying all
of the conditions of a deterministic, eight-neighbor graph L-
system.

COMPUTER PROGRAM

The cylindrical model has been incorporated in the program
BLOCKO written in ALGOL 60. It can be controlled interac-
tively from a terminal so that its computation can be interrupted
at any time step to change parameters or define new leaves. For
the starting configuration we choose: the circumference of the
cylinder in number of columns of cells w; the initial height in
number of rows of cells R; the top row or apex concentration A;
the initial concentration B of all other cells.
At this point as well as later we can define certain cells as

leaves, that is assign them a constant concentration. In this way
an initial distribution of leaves can be defined and the first
question we studied was if it was possible to choose the parame-
ters such that this initial distribution will be reproduced by the
model.

After we have set the other parameters and started the com-
putation, the program applies the decay-diffusion formula 9
independently to all cells, and it chooses for the ci values enter-
ing this formula always the concentrations before the current
time step. At the end of every time step all cells that have
dropped under the threshold T are assigned the constant leaf
value L or alternatively under the "erase" option, of a connected
group of those cells only the one with minimum concentration is
made into a leaf.
Growth is incorporated by adding a new row of cells every G

time steps. This corresponds to a real growth rate of

Al
O* =

A
9 GAt

from which we see that G is the reciprocal growth rate.
In summary, the crucial parameters of the model are: decay

constant (D), diffusion constant (X), leaf cell concentration (L),
threshold concentration (T), reciprocal growth rate (G), apex or
top row concentration (A), width of the array or number of cells
on the circumference of the cylinder (w), initial concentration
(B), initial number of rows (R), positions and time steps of
insertion of initial leaves. The parameters D, X, L, T, G, and A
can be changed dynamically.

COMPUTER-GENERATED PHYLLOTACTIC
PATTERNS

Detailed Demonstration. To illustrate the performance of the
model we discuss a demonstration in detail. At the start we set
the parameters as in Figure 5 and insert a leaf in column 1 row 3.
The first printout after one complete computation can be seen in
Figure 5a. This is the symbolic representation of the state of the
model. The concentration of a cell is rounded to its nearest
integer and converted to a symbol according to Table I.
For higher values the integer modulo 80 is taken and an

additional bar is printed through the symbol. Leaf cells are
marked by solid squares. The numbers on the left are the row
numbers.

It can be seen that the top and bottom rows stay at concentra-
tion 5. Across most cell walls there is no concentration gradient
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8 5555555555555555555555555
7 4444444444444444444444444
6 4444444444444444444444444

0 5 4444444444444444444444444
34 4444444444444444444444444
3 AA4444444444444444444444A
2 3A4444444444444444444444A

369 5555555555555555555555555

36 9 5555555555555555555555555
8 4444444444444444444444444
7 3333333333333333333333333

b 6 3333222222272222222222333
b 5 4432222222222222222222234

4 7643222222222222222222346
3 D85332222222222222222335B
2 3864333333333333333333468
1 5555555555555555555555555

100 10 5555555555555555555555555
9 3333333333333333333333333
8 22222222222?2222222222222
7 2?22111111111111111111222

{'6 2222111111111111111111222
c 5 3332111111111111111111233

4 65432111111111 111112J45
3 0853222222222222222222358
2 3864333333333333333333468
1 5555555555555555555555555

252 15 55595555555555555555555
14 333. 333333333333333333333
13 2222222222"'22222222222222

111111114-111111t1 11 1111111
*.0 111111111111'11'e1111111111
8 11111122333221110n000.11
7 11111234666421 11100001111
6 22212236CDC63?111l111112
5 33222247D0D74?1111111123
4 65432346CEC64>2111112245
3 DB53334577754322222222358
2 3B64444455544333333333468
1 5555555555555555555555555

1800 59 5555555555555555555555555
58 3333333333333333333333333
57 222222222222222222222222
56 tlllllllllll
55 1111111111111111111111111
54 1111111111111111122222111
53 11(10001111111111223332211
52 1100011111!111112246664211
51 111111111222212236CDC6321
50 111111122333222237DID7321
49 111111224666432236CDC6322
48 222211236CDC6322346764322
47 333322237DID7422233433323
46 676432236CDC6322223322234
45 CDC6322346764322233222236
44 DID7422233433333343322247
43 CDC6322223322234676432236
42 6764322233222246CDC632234
41 3433333343322247DID742223
40 3322234676432236CDC642222
39 3222246CDC632234676432223
38 3322247DID7422233A3333334
37 6432236CDC642222332223467
36 C632234676432223322224oC0D
35 D7422233433333343322247D0
34 c6422223322234676A32236CD
33 64322233222246CDC63223467
32 33333343322247D0D74222334

f 31 22234676432?36CDC64222233
f 30 22246CDC63223467643222332

29 22247D0D74222334333333433
28 32236CDc64?22233222346764
27 322346764322233222246CDC6
26 422233433333343322247DID7
25 422223322234676432236CDC6
24 322233222246CDC6322346/64
23 333343322247D0D7422233433
22 234676432236CDC6422223322
21 246CDC6322346764322233222
20 247D0D7422233433333343322
19 236CDC6422223322234676432
18 2346764322233222246CDC632
17 2233433337343322247DID742
16 2223322234676432236CDC642
15 2233222246CDC632234676432
14 3343322247D0D742223343333
13 4676432236C0C642222332223
12 6CDC632234676432223322224
11 7D0D743223444333344332224
1n 6CDC642222332223461643223
9 46764322233222246CDC63223
8 33443333444322347DID74222
7 23322234676432236CDC64222
6 22222346CDC64323467643222
5 43322347EIE74322344433333
4 66433346CEC64322233333346
3 0854334578754332233333458
2 3864444455544433333334468
1 5555555555555555555555555

254 15 5555555555555555555555555
14 3333333333333333333333333
13 222^222222222222222222222
12 111111111111111111111111
11 1 111111.1 111 IIIiII11' I I I I
10 11111111111111111111111
9 ;11111122222111116"600111

e 8 1111112233322lIo6M6001117 1111123466642111166601111
6 22212236CDC63211111111112
5 33222247DID74211111111223
4 65432346CEC64221111112245
3 D853334577754322222222358
2 3864444455544333333333468
1 5555555555555555555555555

LEAVES AROSE !N
BLOCK

0
105
253
341
446
551
656
761
866
971

1076
1181
1286
1391
1496
1601
1706

R'OW COLUMN

2 I NPUT
5 1 n NPUt
8 9

11 3
14 12
17 21.
20 5
23 14
26 23
20 7
32 16
35 25
38 9
41 18
44 2

47 11
50 2n

FIG. 5. Detailed demonstration of the simulation of a (2,3)-pattern with a = 129.60 and d = 2.318. The parameters were set at: D = 0.1, A =
0.1111, L = 50, T = 0.4, G = 35, B = 5,A = 5, R = 8, w = 25. The first two leaves were put in at predetermined locations (row 2 column 1; row 5
column 10) at time steps 0 and 105. The third leaf arose at step 253. The last array, at step 1,800, shows 17 leaves.
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Table I

Symbolic representation of concentrations in the computer printouts

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ: ABC
O 10 2830

EFGHIKLMNQPQRSTUVWXYZ :+ -*/; s <(> A1)JVA
46 58 68 70 80

so these cells get a concentration (1 - D) B = 4.5. Only the
neighbors of the leaf cell experience the influence of its high
concentration. The leaf cell stays at concentration 50.

After 35 computations the first growth step takes place. Row
9 is added and row 8 can now freely engage in the diffusion-
decay process (Fig. 5b). After 100 time steps it is clear that the
lowest concentrations can be found on the middle rows as far
away as possible from the leaf in column 1 because the concen-
tration distribution at this point is completely mirror symmetrical
around it.

Since we want to demonstrate a nonsymmetrical pattern, we
have to insert at least one more leaf. We place this second leaf
three rows above and nine columns to the right of the first one.
The printout after time step 252 reveals that by this time the

distance between the youngest leaf and the apex is large enough
to allow some cells to drop to a very low concentration. All Os
indicate concentration values below 0.5. In Snow's terminology,
there is enough space available; that is, there are cells far enough
removed from both the apex and the other leaves to drop to
threshold value. In time step 253 the first generated leaf appears
at row 8 column 19. The next leaf comes in at row 11 column 3.
We let the program run through 1,800 time steps and the final
state can be seen in Figure Sf.
The list of the birth dates and positions of all of the leaves

reveals that the displacement between the two inserted leaves
has been reproduced so that between two successive leaves there
is always a horizontal distance of nine cells (u = 9) and a vertical
distance of three rows (v = 3). Here we have a cylinder with a
circumference of 25. To compare this pattern to those on the
cylinders in the geometry section, which have a circumference of
2ir we need to normalize our distances, that is multiply by 2ijr/
25. Then we see that we actually have generated a simple helical
pattern with a divergence angle a = 2ir (u/w) = 27r (9/25) =

2.26 = 129.60 and a normalized vertical displacement with h =

2ir (vlw) = 2ir (3/25) = 0.755. The normalized distance be-
tween the first and second leaves is

27T 27r
d = V/V2 + U2- = V32 + 92 = 2.378

w 25

Similarly, we get d2 = d, = 2.318. So we have a packed circles
pattern with a = 129.60 and d = 2.318 very close to the (1,2,3)-
triple point in Figure 2a.
The special significance of packed circles patterns can now be

clarified. Each leaf cell produces an inhibitor-filled field cen-
tered around itself. Because of the isotropic diffusion this field is
basically circular in form; that is, the collection of cells with a
particular concentration forms a circle around the leaf cell. Even
where the fields of different inhibitor producers join, the result-
ing field will be basically the addition of the two circles. If we
now have a collection of leaf cells positioned on the cylinder as in
a packed circles pattern and the parameters of the diffusion
process are such that the radius of the inhibited area (that is the
collection of cells whose concentration values are kept above
threshold by this leaf cell) is equal to the d value of this pattern
we will have a situation as illustrated in Figure 6a, where the
leaves are positioned as in the computer simulation just de-
scribed. If we now imagine that because of the growth process
the inhibiting influence of the apex moves upward, we see that
the first uncovered cell, that is the first cell that will be able to
drop under threshold value, will be exactly at the right position

to continue the packed circles pattern. It is as if the next leaf
appears in the notch left by the three intersecting circles along
the1-, 2-, and 3-parastichies. The notch is the intersecting point
of the three circles so it is at equal distances from the three older
leaves. This is the same condition that holds for all packed circles
patterns. If we consider the same construction with a helical
pattern that is not a packed circles pattern as in Figure 6b, we
will find the intersecting point M of the two circles along the 2-
and 3-parastichies at a different place than that of the next leaf
designated L.

So we conclude that if we start out with a pattern of leaf cells
arranged as in a packed circles pattern and we set the parameters
of the model at appropriate values the mechanism will copy the
original configuration. This is what we did in this demonstration
case. We started out with two leaves in the positions of a (1,2,3)-
pattern and we set the parameters to values which we had found
to produce the intended results after many trials and failures. In
a later section we will describe an analytical formula to deter-
mine the right values without having to go through all of the trial
runs we made.

Packed Circles Patterns with Integer Positions. The cellularity
of the model limits us to certain regular patterns which can be
represented on the rectangular grid of the cylinder surface. This
is because a = 27T (u/w), h = 27r (vlw), and u v, and w are
integers (the horizontal and vertical displacements between con-
secutive leaves and the circumference of the cylinder in numbers
of cells). This would present no problems if we would allow
arbitrarily large values for w, but both the limited size and speed
of computers and the desirability that the number of cells in the
apex of the model stays within a reasonable estimate for cell
numbers in real apices limit the circumference w to a maximum
of about 50. Table II gives all 20 packed circles patterns that can
be represented on a cellular cylindrical model with a circumfer-
ence of 50 cells or less. They are marked on the graph of Figure
7.
Changing the Cell Size. Of course multiples of the values for

u, v and w listed in Table II lead to the same pattern. As an
example, we simulated the pattern of the previous section on
twice as large a scale. This amounts to halving the length unit Al
which has its influence on X and G according to formulas 7 and
10. Because of the fine scale, the simulation has to be much
more accurate and to get meaningful results we had to decrease
At considerably as we will explain later. Finally, L had to be
adjusted to produce the exact pattern.

mu 2 a 150.000°
n = 3 L d = I1.836

a O a 129.600- b h =0b754
d = 2.317
h = 0.754

FIG. 6. Construction of intersecting circles on a cylinder surface. a:
In a (2,3)-pattern the lowest open space coincides with the next point of
the pattern. b: In an arbitrary regular point system the lowest open space
(M) does not coincide with the next point of the pattern (L8).
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Table II

Packed circles patterns on a cylinder representable in integer coordinates

The symbols are as follows: w is the number of c cells around the
circumference of the cylinder, u and v are horizontal and vertical displace-
ments between consecutive leaves in numbers of cells, m and n are nearest
neighbour numbers, a is the divergence angle in degrees, and d is the
nearest distances between leaves in cell numbers multiplied by 2w

w u v (m,n) d -

5 2 1 (1,2) 144.000 2.8099
10 3 1 (1,3' 108.000 1.9869
13 5 1 (2,3), 138.461 1.7426
15 4 1 (1,4) 96.000 1.7271
15 7 4 (1,2) 168.000 3.3771
17 4 1 (1,4) 84.706 1.5239
24 5 1 (1,5) 75.000 1.3349
25 7 1 (3,4) 100.800 1.2566
25 9 3 (2,3) 129.600 2.3171
26 5 1 (1,5 ~ 69.231 1.2322
29 12 1 (2,5) 148.965 1.1668
34 13 1 (3, 5' 137.647 1.0776
35 6 1 (1,6) 61.714 1.0920
37 6 1 (1,6) 58.378 1.0329
39 14 5 (1,2) 129.231 2.3950
40 11 3 (1,3' 99.000 1.7910
41 9 1 (4,5) 79.024 0.9813
48 7 1 (1,7) .52.500 0.9256
50 7 1 (1,7) S0.400 0.8886
80 j176 (1,3) 122.400 2.2654

t
d

o to 40 so SO MO So ISO

ol ---0

FIG. 7. Relation between d and a for packed circles patterns in which
the nearest neighbor parastichies run in opposite directions around the
cylinder. The gaps correspond to those patterns in which these parasti-
chies run in the same direction. The patterns of Table II are marked with
*0.

The state after 1,200 computations is represented in Figure 8
omitting some symbols so as to emphasize lines of equal concen-

tration. Near the leaves these lines are nearly circles, although
here they are distorted into ellipses because of unequal horizon-
tal and vertical spacing between the printer's symbols.

Changing the Time Unit. As our next example let us take the
(2,3)-pattern in Table II. Here we have: w 26, u = 10, v = 2,
a = 138.46°, d = 1.74. This is the system represented in Figure
2b. With three initial leaves at row 2 column 1, row 4 column 11,
and row 6 column 21, we get the results of Figure 9a. The first
two leaves generated by the system appear at the right positions
in rows 8 and 10 but at row 12 an extra leaf appears next to the
desired one. The growth of the apex that is responsible for
providing enough space for the next leaf takes place in our model
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in discrete steps. This sudden change has apparently introduced
too great a disturbance. The change in concentration in one time
step Aco expressed in formula 6 is so large that it overrides any

differences in concentrations that might exist between the two
cells and it lets them both drop below threshold in one and the
same time step. If we can refine the computation process to
make &co in one time step smaller, we might be able to make use

of the difference in concentration between the two cells such that
in one time step only one of the cells drops under the threshold,
turns into a leaf, and effectively inhibits its neighbor in the next
time step to turn also into a leaf. We can do this by merely
decreasing the size of the time step, At. If we want a decrease by
a factor of 2, it follows from formulas 7, 8, and 10 that also a

and D have to be decreased by a factor of 2 and G increased by
the same factor. This corresponds to taking more computer time
to obtain a better approximation of the same simulation. This
new set of parameters leads to the right helical (2,3)-pattern as

can be seen in Figure 9b.
Influence of Growth Rate. We studied the influence of the

growth rate on this pattern and found that changes occur only if
growth is speeded up to a value such that the reciprocal growth
rate G is less than 45. At these high growth rates, double leaves
occur again. We concluded that when the growth is sufficiently

53 5;555595=4̀35'- r;235i555g-` 55?535555''5 5,7

52 444444444dA44444A4. 444444u44444.j444t4444444444444 44
dt4444444 .4,.t4e44.44 ;444444444444444444,44444444444d44

4Q 222???2c2?--2,?-2?229222?22 222292)2.2<'22?2222?222
2?? ^2v22.?2?)-2:)2??222272?n?^22?2?e?"??222?

47

43 ~ ~ ~ ~ 12ll~~111' :"111 1121111 1

42 ..61i 111

4 . 11 22222 111
4r 11 2 2 11
39 4_1 2 44 44 2 11
36 22^11111 1 i 2 4 t7776 4 2 '
37 1'.' ::11111 4 7FAFA87 2
36 222 11121 2 406CFHFC864 21:1
35 11 22 1 2 /AFPSJFA7 2
34 1 2 44444 2 2 78"sEs4o7 2
33 l^ ' 1.2 2 4 4 2 7AF2SPFA7 21

32 :):1:2.:1:2.:l'". 2 4'677677644 2? 22 469Cr,1FC964 2
31 1l1112 2 46,79B0iB9764 2222 4 /9ABA97 4 2
3n11 )222 4 79DG0 GD97 4 .222 4 67776 4 2
2Q 22 222 2? 4 BdGQ.Q6 4 22 22 44 44 2222
28 44444 2222 466C ESSC864 2 22 44 222?
27 44 44 ??2 46odGz 4OGi6 4 2 222 22222
26 6788876 4 4 79CG4rD07 4 22 222222222222 4

25 o7OC9 Q7644 4 6895B998o 4 22222222222. 22 4
24 79[DGIGD97 4 4 67ct8876 4 2222 ?2222 22 4

23 89G650(;Bn64 2 I' 6u6 4 22?22 4

22- %.C'SUS C864 2'2 4444444 444444 2222 46
2' 14GoCQSO.GR8664 2222 44 6 44 222 46
2' 79L;G G'GA7 4 ?222),2 4 6786676 4 22 4
'.9 6893c9A8b 4 72222 22222 4 689RCB07644 4

18 67S8876 A 2222 22 4 79DGiGD97 4 4

17 4 606 4 22722 469,Cr8Q(,B864
^ b 4444444 44z444 222? 468C SES'C864 22
15 h,; 44 222 4688GnSQcG,864 2222
;4 4 67F 8876 4 22 4 7°Dr, DA47 4 222?
;' : 68QP C986C 4 4 680998A86 4 22?
1? 22.2 4 7ADG Gr97 4 4 678d876 4

11 22 46&GC Ga664 2 4 666 44
aP 4444 O(C'CUT C64 22 4444444 444
9 66 4 4.68Bt,(;-:)(19o64 ?222 4 6

3876 4 4467ADh DA -`4 222?22 4 67A
7 -38'7' 4A tFAC:CA8b 4 222222222 4 679R

"GD97 44 7881'.886 44 222222222222 4 79oG
S spn38644 44 b666h 4', 222222?2 4467aGP
4 *RF-sR6 4 4444444 4 68B H
:x OFA676 444e44444 44444 444 6/AFr
2 LDs86 444..4444 4444444444444444444444 68A0
1
FIG. 8. (2,3)-Pattern of Figure 5 produced on twice as large a cylin-

der. Parameters were set at D = 0.0125, = 0.0555, L = 75, T = 0.4,
G = 140, B = 5,A = 5, w = 50. Concentrations falling in specific ranges
are represented by blanks to aid visualizing lines of equal concentrations.
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34 55555555555555555555555555
33 34444443333344444333333333
32 33444333333334443332222223
31 34555443223345554322222223
30 56888754323468986432222233
29 7BEGES7533358FHF8532222235
26 AJRXRJA643459H4H9543333346
27 SM111M86444586G68655554446
26 SLXUXLB7545579987678986556
25 9ELOLE97666666665686MG8556
24 7ACDCA7779A975545691 01 9655
23 789987679CIG8644458GIG8655
22 89998666A 2196444579987556
21 BEEC97669G G96555666655568
20 JORKC76578987667787654456A
19 MENRE86556665688DDB8544578
18 LX1QE865555556A IQQ A64457B
17 ELMJB866665556BKUUKB654569
16 ACCB9789A87556A A655678
15 8877679G IG86568BDDB8667888
14 976556AUIlA65668887668BDEB
13 A7555696 CI96667776557A QQJ
12 87555679A97679A976557BL11L
11 A766666666669G IG96557AJQ
10 8779A9765456A IA655690DD8
9 679GIG9644469GIG9666788887
8 56A M1A6545579A97679AA8765
7 569G61G9656666666569G G9654
6 55799876799975444691 £A654
5 6666665696; G8543458G I9655
4 986544469'1' 95433468987678
3 GF7544458G G8543344565557f
2 *E75444568986544444455557E
1 55555555555555555555555555

LEAVES AROSE IN
BLOCK ROW

0

70

140
233
317
391
391
462
540
540
606
606
606
720
783
8a5
885

a 885
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30 5555555555555555555555555
29 33334444433333333333333333
28 22333444333222222222222222
27 2223455543,22222222222222
26 22346898643?22111122233322
25 22358FHG853222211223345443
24 33359H! 954333222223579864
23 33458G GB655543322348FHF85
22 444579987678986433359HMH95
21 55666666568GHF8533458GI686
20 78997554569i gi 954445799876
19 9G,G9644469Glra86556666b656
18 A 'El A6545579Q8767899755456
17 9GIG9656666666569G1G964446
16 79A97679A9755456A11IA65455
15 6666569GIG9644469GIG965666
14 755456A IA6545579A97679A9
13 9644469GiGQ656666666569GIG
12 A6545570A97679A9755456A
11 9656666666569GiG9644469GIG
10 7679A9755456A iNA6545579A9
9 569GIG9644469GIG9656666666
8 56A Iu A6545579987679A97554
7 468GiG9656666666569G1G9644
6 55799876799975444691 5, 9654
5 666666569Gi G8543458G' G8655
4 986544469I3195433468987668
3 GF7544458GtG8543344565557F
2 *F75444568986544444455557E
1 55555555555555555555555555

COLUMN

2 1
4 11
6 21
8 5

10 15
12 24
12 25
14 9
17 171
17 184
19 2]
19 3
18 3J
22 11
24 21
27 3
27 4
27 5

NPUT
NPUT
NPUT

LEAVES AROSE 'N
BLOCK ROW

0

140
280
468
635
781
921

1062
1202
1342
1482b 1622

COL U N

2 I

4 11
6 2i
8 5

10 15
112 25
14 9
16 19
18 3
20 13
22 23
24 7

N%UT

:NPi}T

FJptjT

885 26 4
952 28 15

FIG. 9. Production of a (2,3)-pattern with a = 138.50 andd = 1.74. a: Parameters set at D = 0.1, X = 0.1111, L = 64, T = 1.2, G = 35, B = 5,
A = 5, w = 26. Double leaves occur, an unsuccessful simulation. b: New parameters obtained by halving At: D = 0.05, A = 0.0555, L = 64, T = 1.2,
G = 70, A = 5, B = 5. Simulation successful.

slow the model comes to a steady-state in between growth steps
where the decay and production of inhibitor are in balance and
only the growth steps introduce the changes that either lead to
another steady-state or to the birth of a new leaf. Consistent with
this is that a new leaf usually appears shortly after the influence
of a growth step reaches the site of the appearance.

So it is the growth rate that controls the rate of appearance of
new leaves while the other parameters control the positions. The
analogous situation in a real plant with continuous growth would
be that the concentration distribution is in a quasi-steady-state
controlled by the X*, D*, L*, and T* values while its rate of
change is completely dependent on the growth rate. This is
consistent with the observation that the phyllotaxis of plants is
uneffected by fluctuations in growth rate.

Influence of a Local Disturbance. Figure 10 shows a simula-

tion of the (3,5)-pattern for which w = 34, u = 13, v = 1, a =

137.650, d = 1.078. Because in a (3,5)-pattern a leaf is deter-
mined by its third and fifth previous leaves, a minimum of five
initial leaves is needed to start the pattern. In this simulation the
"erase" option has been used (see under "Computer Program").
One could obtain the same pattern without erasing by changing
At.

In this pattern we also studied how a local disturbance would
propagate through the system. We gave the leaf in row 17 three
times as high a leaf value as the other leaves. We can see in
Figure 10 that this disturbance does not affect the next, the
second, and the fourth next leaf positions, but disturbs the
position of the third, the fifth, and higher leaves. This is what we
would expect from a packed circles (3,5)-pattern where disturb-
ances are only propagated along the contact parastichies.
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29 555%55555555'565555555555555555555
28 313333333333333333333333333333333
27 2?22?22c 2??222?2??2222222222222222

24 "1 '14'21^11 11iL'1V n'' ii11 Viii 111111
23 i'.11142:212 11'i.":211w11u:'1112'1'1
226

22 'il 11111-2122'1 '111' ' 3,331' 111' 1133311
21 11111' s11'111'11:23132:11111231321
20 111333111i????21'?3332111?21233321
19 1i23132112114332112221.23332222221
18 22233321 2247ii74211".111.23U32111222
17 32222222224P8R422 _"22222333?111233
16 3211122223478742212333222222111235
15 32'112333334443~222n303211122222233
14 2711123032223332222333211123332222
13 2222223332??2233322222211123132111
12 233322?'7222223132' 112222223332111
11 2313211?222223332'112333222222111
10 23331' 42333?2?222-2 112313211.122222
9 2222211123U3?1.11222222333211123332
8 1112222223332111233322222211123132
7 1'112333292?221112313211'122?2223332
6 2122313?2l.22722233321112333222222
5 22223332212?'33 2222221'12313222222
4 3322222222223342222'221222343222223
3 14322222?2234443222222222333222234
2 5443333333334443333333333333333344
1 5559555955655955555555555555555

LEAVES AROSE IN
BLOCK ROW COLUMN LEAF VALUE

0 3 1 10 INPUT
140 4 14 10 INPUT
280 5 27 10 INPUT
420 6 6 10 INPUT
560 7 19 10 INPUT
869 8 32 10
925 9 11 10
1049 10 24 10
1192 11 3 10
1329 12 16 10
1468 13 29 10
1607 14 8 10
1747 15 21 10
1887 16 34 10
2026 17 13 30 HIGH LEAF
2167 18 26 10 VALUE
2370 19 5 10
2574 21 20 10
2586 21 31 10
2881 23 9 10

FIG. 10. Production of (3,5)-pattern with a = 137.7°, d = 1.078.
Parameters set at: D = 0.025, A = 0.0278, L = 10, T = 0.5, G = 70,A
= 5, B = 5, w = 34. Value of the leaf on row 17 column 13 was tripled.
Locations of the two nearest leaves after this one have been disturbed.

Tnrjugate Pattern. Multiple helical systems can be simulated
just as easily. Figure 11 shows the simulation of a trijugate
helical system that is not exactly a packed circles pattern (since
d2 is less than the other distances) but which is close to the
3(1,1,2)-pattern nevertheless. We have w = 36, u = 6, v = 3,
a = 600, d = 1.044. The 3(1,1,2)-pattern has a = 600 and d =
1.21. In borderline cases like this the model can produce helical
patterns which are different from what a packed circles construc-
tion would predict. This is especially true for symmetrical cases
as here where the initial arrangement of leaves has a perfect
symmetry with respect to a rotation of the cylinder over 1200.
This symmetry will be retained by the mechanics of the model so
that a transition to a real 3(1,2)-pattern that the low value of d
calls for is impossible without outside asymmetrical help. It is
expected that in plants an asymmetrical configuration would be
facilitated by random fluctuations in the concentration distribu-
tion. This random influence would induce an equal distribution
over left and right handed spirals as is indeed observed in most
species.

Unclassified Pattern. A pattern outside the geometric classifi-
cation of regular point systems but still with a helical periodicity
can be seen in Figure 12. From row 10 upward the position of
each leaf will be repeated nine rows higher and eight columns to
the right. There are six of these separate series of leaves each
with a generative helix corresponding to w = 25, u = 8, and v =
9. These helices are indicated in the figure. They run in pairs and
if one allows fluctuations in position of one cell unit one could
speak of only three generative helices with u = 4 + 1 and v = 4.5
± 5.

Transitional Phyllotaxis. An interesting case of changing phyl-
lotaxis can be found in Bryophyllum tubiflorum. At least five

32 R555555555"S55555555555555555555555
31 443333333334.'43333333334443333333334
30 443322222334443322222334443322222334
29 65432222234'5654322222345654322222345
28 DB53222223580B532222235BD85322222358
27 *D643333346nND643333346D1D643333346D
26 DC645666546CDC645666546CDC645666546C
25 76556CDC65567655eCDC655676556CDC6556
24 $5557DND7S''55557DID755555557DUD7555
23 76556CDC655676556CDC655676556CDC6556
22 DC655676556CDCo55676556CDC655676556C
21 6D755565557D6D755565557D5D755565557D
20 DC655777556cr'C655777556CDC655777556C
19 77556CDC655777556CDC655777556CDC6557
18 65557DID755565557DUD755565557DED7555
17 77556CDC655777556CDC655777556CDC6557
16 DC655777556CDC655777556CDC655777556C
15 *D7555655570nD755565557D0D755565557D
14 DC655777556cnC655777556CDC655777556C
13 77556CDC655777556CDC655777556CDC6557
12 65557DED75s565557D0D755505557DED7555
11 77556CDC65'i777556CDC655777556CDC6557
10 DC655777556CDC655777556CDC655777556C
9 *D755565557D§0755565557D0D755565557D
8 DC655676556cnC655676556CDC655676556C
7 76556CDC6556'76556CDC655676556CDC6556
6 55557DED7555'5557DED755555s57DUD7555
5 76556CDC655676556CDC655676556CDC6556
4 DC655676556CDC655676556CDC655676556C
3 *D744444447D1D744444447D0D744444447D
2 DB644444446FDF644444446BDB6444444468
1 55555555555'5555555555555555555555555

LEAVES AROSE IN
BLOCK ROW COLUMN

0 3 1 i NPUT

0 3 13 NPUT
0 3 25 INPUT
0 6 7 NPUT
0 6 19 INPUT
0 6 3t NPUT

15 9 1
15 9 13
15 9 25

113 12 7
113 12 19
113 12 31.
218 15 1
218 15 i .3
218 15 25
323 18 7

323 18 19
323 18 31
428 21 4.
428 21 13
428 21 25
533 24 7
533 24 19
533 24 3.
638 27 1
638 27 13
638 27 25

FIG. 11. Production of a trijugate pattern with a = 600 and d =
1.044. Parameters: D = 0.135, A = 0.1111, L = 52, T =1.2, G = 35,A
= 5, B = 5, w = 36.
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;i7 5;9; 5'599q9 i 2;'55- 5
56 113 3373 -<7i3l Q333-.533
"i 2'922233444.?3.2,3744443 '-22

54 71'1i2468642 11946864K'?22
53 2?11 26 L 63 11301, 6- .33
52 64?1 37- i_73 '22' 'LIb" 67

639?36 4-A 34'3 74
<K7-? 46786'55' 7.' 7?5."LI

49 i64468764347 L 744-i,)4''/11L
48 6446 L' 7338-A.L.P4`7b7,'-67
47 334Q *,'7377, "74 33
46 .334' L 74346786r'4b.JL1433
4 77 7567'-5787 4 '"'; J' "446
44 L '433347 Jr4. 3-.e 'scX.46
47 4
4I L'74.334/II '47 ._3 2.s 7'

4 I 7 9t76 7Q7;4, -,33jh67
40 434" L 7445544'-. 5t44i7
30 371'L-457R'S5, 7 A446 7

3 8 373 7.JL 747 L 7 4- .' 34Sd-L8
37 4346786548.U.'3..P 'S;.47 7
36 5787b543347JL 643-5, :'7517/65
i 7 '4374678'446L i4 434
34 p45^876433LBL4 ) 2.5
33X 71! 747 J'I 3?' '7 /'4~ 5 %4
32 5"5F7'548 Ei.83 A3.4. ifo7'75765
3 445S447 ! 64 *657^ 47 . 7

3fl 457F75567644t,- '3333.8.L8
20Z 47 7 4<1334 LE4.La 33;3 7

2 8 48 .1L84'73334 ' 74 446 /'o65
27 47.Ji 6446765'6;'6-,7 76733
26 46 7P6446 7- 3- 347 LJ 3433
?) 8i764333'L EL8(? E,Lo-56
24 ..1732237 743z34/7 L 7
23 *L83-43447875567 576778748L
2? L hz4687'434'4 _ 744554'. 7

2 7644" iL'7333'LLl.4D787/"756
20 3334-iL§l.3373'J7 '47 -43
.-9 3337l-" L 7434t7"6"'-53'E43
'.8 6765:,5676F5578"64734/JL 7.44
7 ,_ 7433347 L ,7L346'78b446

16h .ELP 5??38LUA..8, '64 i''38
IL 7433347 L 7L7 L 37

14 7875i6766978 '5' 8. I.E.5.546
13 64347ILi74455447 A74I)87

73331'4LILP457'"7'' '754 / LJ
' 83337JL 747_,7 44c5'n'46, EL

1n 743467A6'54P8La4497oe/6 LI

'97.7;764 347j -' '7 7.7'7-r 76
a 47 .J74.43467-6c44ML d,,3.53

37' a-846r-; /6-373n o.s22
6 36 64 7 . 6 2467642131-2

4S7a6444L.1,L7'1.'1 )222.. _2?3
4 77943336 462*1' 1111'12 46
3 632226864o1-l- 1 l1?,1 ;H

5-'63.i: 3. 444 33;2??-27 .'6H

FIG. 12. Production of an unclassified pattern. Parameters: D 0.3,
X = 0.1111, L = 122, T = 0.4, G = 25,A = 5, B = 5, w = 25.

different phyllotactic patterns can be observed in any full grown
plant (4). The change in phyllotaxis from juvenile to adult plants
was found to be correlated with a 40% increase in the radius of
the free apex (5).
A computer simulation showing this transitional development

has been carried out in which the value of L has been gradually
decreased from 122 to 12. Decreasing L by a ratio of about 10
corresponds to a decrease in the inhibitory radius r, of a leaf by a

ratio of about 1:3 according to formula 14 (see next section).
Since it is the ratio r,/w that determines the pattern, we can see
that a 10-fold decrease in L is equivalent to a 40% increase in
the radius of the apex, leaving all other parameters constant.
Detailed printouts of this simulation have been published (5).

Phyllotaxis may also change under the influence of chemical
agents (11, 13, 17), or as a consequence of juvenile to adult
transition. Our proposed mechanism appears to be applicable to
these cases.

DISCUSSION

Inhibitory Radius as Function of the Simulation Parameters.
To gain more insight into the precise relation between the
parameters, D, X, L, and T, and the inhibiting radius they lead

to, a series of 27 simulations was run systematically varying D,
L, and T over a wide range and leaving all other parameters and
other influences constant. In the 12 most interesting patterns we
calculated the smallest distance between leaves rl. The results
are shown in Table III. The patterns are ordered in this table
according to the number of leaves produced in 1,600 time steps.
This order turns out to be equivalent to the order of increasing
contact numbers and decreasing r, values.

It is to be expected that the smallest distance between leaves,
i.e. the inhibitory radius r,, is dependent on the leaf value, the
rate of decay, the rate of diffusion, and the threshold value. To
find this dependency we shall consider a one-dimensional diffu-
sion mechanism.

Consider an infinitely long one-dimensional tube of which half
(x - 0) is kept at constant concentration L*. The substance
diffuses freely through the tube according to Fick's law with
diffusion constant X* and decays with decay constant D*. If we
let this process go on for a long time we will get to a steady-state
in which

dc
-= 0

at

Then the general solution for c as a function of x is given by

c = Kexp(-x VD*/X*)

where K is a constant (cf. ref. 2). Atx = 0, the concentration has
to be equal to L* so that

c = L*,5p(-x /D*/X*) (11)

If we think of the source of the constant concentration as situ-
ated at a distance s inside of the constant concentration area we
get x, for the distance from the point source to the point at which
the concentration is equal to the threshold T*, and

XA L*
XI =S + D* In T*

Using the fact that

L* L
T* T

and using formulas 11 and 12 we get a formula for the inhibitory
distance expressed in cell units Al:

X L
x, =s + 2-In -

D T

For the two-dimensional case where an area around the origin
with radius s is kept at constant concentration L* the solutions
for this steady-state are Bessel functions which do not have easy
inverses as in formula 11. Nevertheless we can see that the
resulting r, will be dependent on the ratios X/D and LIT as in

Table III

Series of phyllotactic patterns produced by systematic
variations in D, T, and L values

D T L rI | (m,n'

0.03 0.13 12 22.0 (1,1)
0.03 0.1H 45 19.5 (1
0.03 0.40 122 18.8 (1,1A
0.03 0.13 15 15.7 (1,1)
0.03 0.40 45 15.4 (1,1)
0.03 1.20 45 12.0 (1,1)
0.03 0.40 15 11.0 (1,2)
0.10 0.13 45 9.9 (1,2)
0.03 1.20 1 1.5 (2,3)
0.10 0.40 45 8.3 (2,3)
0.30 O.40 4;) 6.0 2(1,1)
0.30 0.40 i 15 .0 3(1,1)
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formula 12. We can use the solution for the one-dimensional
case (formula 12) to approximate the two-dimensional solution.
During a simulation the concentration at the minimum point is
the sum of the influences of the two or, in case of a triple contact
pattern, three nearest leaves plus some influence of the more
remote leaves. This results in the following formula for the
inhibitory radius r,

r,=s+ 2-lnkLD T

where k is the number of leaves determining the position of the
minimum cell having a value between 2 and 3. Making an
estimate of 0.6 for the "radius" of a square cell and assuming
that k = e we arrive at

r,=O.6+ 2 (1+ Tn) (13)

The values of Table III were plotted and it was found that r,
conforms amazingly well to this formula. A slight adjustment
consisting of the substitution of the factor 1.35 for /2 = 1.414
gives a very good fit to the points in Figure 13 representing some
60 patterns we generated in the course of our research. Because
of the cellularity of the model there is always a range in which
the patterns are insensitive to small changes in any of the param-
eters, and this range is approximately the size of a cell.
Most of the patterns of the figure fall within the indicated

range, the final formula being

r, = (0.6 -t 0.6) + 1.35 +/ I + InL (14)

Proof of the Completeness of the Model. In the previous
section we showed simulations of (1,2,3)-, (2,3)-, and (3,5)-
patterns as well as of a multijugate pattern. The question arises
whether all packed circles patterns can be generated by this
model. Assume that Figure 14 represents a crude picture of the
concentration distribution during a simulation. The circles can
be thought of as equal concentration lines of the inhibitor diffus-
ing from a single leaf if no other leaves are present. The real
concentration distribution of course is the result of a complex
interaction of these circular patterns. The growth rate of the
system is set so low that every leaf has enough time to reach its
full inhibiting potential before the system adds another row; in
other words, the system is near steady-state. At every time step
there will be one cell at a minimum concentration in the whole
array. Because the apex is moving upward the location of this
minimum cell will shift upward too. Let us take a look at the time
step in which this minimum cell is found at the same row as
where the next leaf is to be generated. Let Lo be the cell where
the next leaf is to be generated and Lm and Ln the leaves closest
to Lo such that Lm is closer to the apex than L.. If at this time Lo
is the minimum cell we can choose the threshold T just a little
above its concentration so that this and only this cell is under the
threshold and will turn into a leaf. If we can find the conditions
under which we can be sure that this is the case, we have found
the conditions under which we can be sure that every pattern can
be simulated. It can be shown (cf. 22) that this amounts to the
condition of

(15)e-ak + e-bk > 2

for left and right neighbors of cell Lo. Here

kDk=\2

and we denote with a the difference between the distances Lm -
Lo and Lm - M, and with b the difference between the distances
L, - Lo and L, - M for both neighbors of M. If the m- and n-
parastichies run in the same direction around the cylinder, a and
b will have the sign, positive for one and negative for the other
neighbor. It is clear that formula 15 cannot be met for both
neighbors in this case and in fact a pattern like this cannot be

5-

r, A, * - !z * *I* * I I *r- I I
-(U+InT) -_-- 5 10 IS

FIG. 13. Inhibitory radius (r,) as a function of D, L, and T. Points
were obtained from 60 different simulations, in some of which the
inhibitory radius varied (represented by vertical lines). Fitted lines indi-
cate the range given in formula 14.

FIG. 14. Construction of intersecting circles. L is the next point of
the intersecting pattern, while M is its left neighbor.
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generated. The last (1,3)-pattern of Table II shows this prop-
erty.

If the m- and n-parastichies run in opposite directions, it can
further be shown that formula 15 certainly holds if

In 2
b

or (16)

DI,>2 1n2 2/b2

Since we can always find a D andA that fulfilled this relation as
well as formula 14 it has been proved that every packed circles
pattern in which the m- and n-parastichies run in opposite direc-
tions can be stimulated on this model. Formulas 14 and 15 or 16
constitute a relationship between the geometric properties of a

pattern and the internal parameters of the model.
The m- and n-parastichies can only run in the same direction if

n > 2m . In fact for every (m,n ,m +n)-triple point in Figure 3, the
m- and (m +n)-parastichies run in one direction while the n-

parastichy runs in the opposite direction around the cylinder. So
of the two branches sprouting from this triple point, the
(n, m +n)-branch always has parastichies in opposite directions
while the (m,m +n)-branch has initially parastichies in the same

direction. In Figure 7 we only drew the part of the relation for
which the m- and n-parastichies run in opposite directions. So all
of the patterns in this figure are in principle simulatable by the
cylindrical model. It can be seen that six patterns of Table II are
not part of this relationship. Although other patterns can be
produced it seems that there is no other class of helical patterns
that can be consistently and predictably simulated. This gives a
special status to the packed circles patterns on a cylindrical
surface.
We have shown that our model can generate any packed

circles pattern on a cylinder if the following conditions are met.
(a) At least J.n initial leaves are placed forming a J(m,n)-pattern
with m- and n-parastichies running in opposite directions, on an

integer grid on a cylinder with a circumference of w cells with a

minimum distance of d.w cell units between leaves. (b) The
values of D and X are below and of G is above certain limits to
assure a small t and an accurate computation. (c) The values of D
and X are such that they fulfill formula 15. (d) The values of D,
X, L, and Tare such that substituted in formula 14 the range ofr,
includes the value of d.w.

Relation between Physical and Simulation Parameters. The
question arises whether a connection can be found between the
numerical values of parameters used in the simulations and
variables measured in plants. Besides the plastochron (measured
in days) and the geometric properties of a phyllotactic pattern as
the position of leaves and the size of a cell (in micrometers),
there are biochemical factors which are in principle observable
such as the diffusion constant X* (inm2/sec) or permeability
factorp* (in m/sec), the decay factor D* (per sec), the reaction
time of a cell At (in sec) and the ratio between the highest and
lowest concentration occurring within the apical region L*/T*.
These parameters, which are superscripted with a star, are in
meter-kg-sec units as opposed to our simulation parameters
(written without stars) which are expressed in our own length
and time units Al and At. Let us look at the simulation of the (2,
3)-pattern in Figure 9b to try and draw some connections be-
tween the two sets of parameters.
The size of the cell or the length unit Al should be about the

dimension of a meristematic plant cell, that is between 10 and 50
,um. Measurements by Erickson (personal communication) on

the apex of Xanthium show that the youngest primordium is a

minimum of 50,um away from the tip of the apex. If we take this
as the radius of the cylinder we get a value of 12,um for Al since
w = 26. This would correspond to about 50 cells in the apical

region which is free of primordia, which seems to be a plausible
number. Circumferences exceeding 50 cells would lead to im-
probable values.
Although the time unit At originally determines how accurate

the diffusion calculations are, it serves also as another important
factor. When the concentration of a cell drops under the thresh-
old in a particular time step it will turn into a leaf, start produc-
ing inhibitor, and diffusing it into its surroundings within the
next time step. So At represents the reaction time, the time it
takes a cell to detect that the crucial point has been reached, to
start the production mechanism -such as turning on a gene and
producing the needed enzymes-and produce enough of the
inhibitor to diffuse a significant amount to neighboring cells.
While bacterial cells might accomplish this in 10 to 15 min, a
plant cell would need at least 1 hr. The (2,3)-simulation worked
well as long as G was less than 45. If the growth was faster,
multiple leaves occurred which could conceivably happen in a
real plant if the reaction time was not fast enough to keep up
with the development of the system. A value of 45 for G means
that a new leaf is produced every 90 time steps. Taking At as 1
hr, this would correspond to a minimum plastochron of about 4
days, a reasonable value for many plants.
The above argument holds for the chosen value of A of 0.055.

If we decreaseA (and D to keep D/X constant) the growth has to
slow down and the plastochron has to increase to allow for the
leaves to get fully settled before the next leaf is initiated. There is
a maximum plastochron that would still be acceptable as reason-
able and it is safe to assume that values forA under 0.01 are not
realistic. The simulation has also shown that a diffusion constant
higher than 0.1 gives multiple leaves. SoA should be of the order
of 0.05. Thus we have for At and Al estimates well within an
order of magnitude. Using these and formula 7 we arrive at

A* = 2 x 0.05 (12 Itm)2/3,600 sec - 0.4 x 10-14m2/sec

within an order of magnitude. For water this would be an
exceedingly small value for a diffusion constant and even the
largest proteins have higher diffusion constants than this. ButA*
is the over-all diffusion constant, the average of the diffusion
velocity within the cell and through the cell membrane.
There is also a maximum for the decay constant D independ-

ently ofA or G, for it is clear that D should always be less than 1.
The actual maximum is probably as low as 50% decay per time
step. Using formula 8 a conservative estimate is

D* <2 x 10-4/sec
Formula 15 gives for this pattern

D,ai > X,,l orD*in > 2/m*in
Using the above established limits forA we get D > 2% or D*>
5 x 10-6/sec. As said before simulation is possible if D is lower
than this limit but complications might arise.

CondusioLs. We have given an example of how simulation
parameters in our model can be translated into physical parame-
ters. We gave order of magnitude estimates for the permeability
constant and the decay rate. Although these values do not give a
direct indication of what chemicals might be involved they might
provide some clue as to which chemical processes might be
possible. We also obtained values for the plastochron interval,
the dimension of cells, and the number of cells in the apical
region. For the analyzed pattern these turned out to be realistic
values while for other simulations this might not be the case
which would be good reason to discard them.
The strict cellularity of this model brings with it a built-in

stabilization property. Deviations from the helical pattern have
to be at least one cell off before they can have any effect. Smaller
deviations are automatically compensated for by the fact that
leaves always have integer coordinates. Every biological control
system seems to need some form of feedback or self-regulation
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to absorb the random fluctuations and limited precision occur-
ring in nature, but in future refinements of the model stability
should be achieved in a more realistic manner.
Another important limitation of our model is that it is based

on diffusion processes taking place on cylinder surfaces. Many
apices are not even approximately cylindrical, in which case
other types of projections (planar or conical) may be more
appropriate. One such attempt is described in reference 22.
Diffusion may also take place through the core of the apex rather
than on its surface only (as evoked e.g. by Schwabe [17]).
Clearly, extended computer work should be undertaken in these
directions.
Maybe the most significant aspect of this model is the fact that

a rather great number of variables can be easily reduced to one
parameter, the inhibiting radius r,. This is because, generally
speaking, all of the variables have either no influence on the
configuration of the final pattern or only through its influence on
r,. In this way the whole variety of packed circles patterns can be
simulated (or produced by a plant) by merely changing one of
the variables D, X, L, or T (or the size of the apex).

This result can also serve to take away the mystery surround-
ing the prominent place which Fibonacci numbers and angles
play in phyllotaxis. So far our simulations have mainly been
concerned with the question as to how plants maintain their
phyllotactic patterns. We have shown that our mechanism can
reproduce the helical pattern of inserted leaves. Just as impor-
tant is the question as to how the helical patterns get established
in the young plant. Imagine a very young plant having only two
leaves or cotyledons in a so-called alternate or (1,1)-pattern.
Imagine that the apex of the seedling increases in size but that all
of the other internal factors determining its phyllotaxis remain
constant. The value of d will decrease to a point where the plant
has to go into a (1,2)-spiral. Depending on natural fluctuations
the spiral will have equal chances to be left or right handed. Van
Iterson has already shown that if on the circles on the cylinder a
"constant force" should be applied directed toward the bottom
of the cylinder and the cylinder was increased in size, an (m, n)-
pattern would transform into an (m, n, m + n)-triple point and
subsequently into an (n, m + n)-pattern rather than the (m, m +
n)-pattern. This constant force is provided in our model by the
inhibition from the tip of the apex. So by further increase in apex
size a (1,2)-spiral will develop into (2,3)-, (3,5)-, or higher order
Fibonacci patterns rather than into any of the other packed
circles patterns. In Figure 7, this corresponds to starting at the
(1,1)-line and gradually descending into any of the other line
sections by decreasing d without going over "impossible" pat-
terns indicated by gaps in the lines. If the apex increases fast
enough in size the intermediate spirals would be hard to detect
and only the original cotyledons and the final pattern would be
observed. (A recent paper by G. M. Mitchison [13] agrees with
these conclusions.)
The fact that structures as complex and as varied as plant

phyllotactic patterns can be generated by a rather simple model
gives us hope that the actual mechanism which controls leaf
positions may also turn out to be a simple one.

,ADDED NOTE

After the completion of this paper a recent article of Thornley
(20) came to our attention, which seems closely related to our
subject. Both his and our models are based on the diffusion of a
morphogen that is produced in the primordia, decays propor-
tionally with its concentration, and inhibits the development of a
primordium as long as its concentration is above a certain thresh-
old. Thornley avoids the problem of making assumptions about

the apical shape and the influence of the tip of the apex by
assuming that initiation can take place at only one circular
"zone" of the apex. He studies the concentration distribution in
this ring by, in effect, simulating the influence of older primordia
with point sources situated at their projections on the ring. The
differences in effect that the primordia have due to differences in
age, size, vertical, and radial distances from the apex are all
expressed in his single parameter X which is the ratio of the
strength of successive point sources. Since he further assumes
that the system reaches an equilibrium in between the initiations
of successive primordia he can use the analytical solutions to the
one-dimensional steady-state problem (our formula 15). Rather
than assuming a fixed threshold, he positions the next primor-
dium at the lowest minimum. To facilitate the comparison be-
tween these two models we can say that Thornley's parameters
a, k, D, M, /3, and xm are more or less equivalent to our /D/A,
D, X, c, a, and w. His parameter X does not correspond to any of
our parameters and it is not interpretable morphologically or
physiologically. It is our feeling that leaf determination is basi-
cally a two- or three-dimensional process and that one-dimen-
sional projections of the morphogenetic field will not be suffi-
cient to illuminate the details of its operation. We do not share
Thornley's opinion concerning the prevalence of observed diver-
gence angles close to the Fibonacci angle.
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