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Methods

Genome weighting

The currently available collection of archaeal and bacterial genomes has a highly biased 
distribution of isolates across taxa. For example, it includes 46 strains of Escherichia coli,
whereas entire phyla, such as Nanoarchaeota, Korarchaeota, Chrysiogenetes and others, are 
represented by a single genome. This extreme bias makes quantitative characterization of 
genomic features challenging and renders unusable most standard statistical methods that rely on 
random independent sampling as a null model. A relative genome weighting scheme that assigns
low values to members of the densely sampled clades and high values to lone representatives of
clades, can be used to mitigate the effects of the sampling bias.

Two notions are central to our model of relative genome weighting: first, closely related 
genomes should contribute individually less to the total clade weight than their more distant 
relatives; second, the relative contribution of the clades should reflect the number of independent 
evolutionary events that occurred in the history of the clade. Using the sum of branch lengths in a 
(sub)tree allows one to quantify both concepts.

Consider a node in a rooted phylogenetic tree that has several descendant clades, each 
with the sum of branch lengths (including the length of the branch connecting this subtree to the 
parent node) Ti. If the total weight assigned to this node is set to W, then it is distributed between 
the descendant subtrees as Wi = WTi/ΣTi. The sums of branch lengths for each internal tree node 
can be easily computed iteratively in the leaf-to-root direction and the total tree weight can be 
iteratively distributed between clades and leaves in the root-to-leaf direction.

To estimate the genome weights, we used an approximate phylogenetic tree reconstructed 
from concatenated alignments of ribosomal proteins 1 that was rooted between bacteria and 
archaea. The subtree encompassing the 1302 cas-positive genomes was extracted from the 
original tree. The weights calculated using this procedure are robust to minor perturbations of 
tree topology, especially those that involve deep clades and short internal branches.

CRISPR-cas loci identification 

An exhaustive search for cas genes was performed within the set of protein sequences 
annotated in 2751 complete archaeal and bacterial genomes that were available at the NCBI as of 
February 1, 2014. The 185 multiple sequence alignments of Cas proteins that were not available 
through public databases were constructed and added to the ~29,500 CD, COG and PFAM 
profiles in the NCBI CDD database 2. Altogether, 395 profiles represented 93 distinct Cas 
protein families. Searches were performed using PSI-BLAST 3, with the alignment consensus 
employed as the master query.
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The 93 cas genes were classified by sequence similarity into 35 families that belong to 12
distinct functional classes according to the functions of the respective proteins in CRISPR-Cas 
systems (Supplementary File 1). Of the 35 families of cas genes, 11 constitute the cas core and 
the rest are classified as “ancillary”.

The cas loci were identified using a two-step procedure. In the first step, PSI-BLAST 
search results with e-value threshold of 10-6 were used to annotate all proteins in the set of 
complete archaeal and bacterial genomes. The highest-scoring profile for all non-overlapping 
sequence segments were identified. In the second step, gene products from neighborhoods of ±20 
genes around all identified cas genes were used as queries for the second round of PSI-BLAST 
search with e-value threshold of 0.01. Additional genes with moderately significant matches to 
Cas profiles and located in the vicinity of confidently predicted cas genes were identified.

Gene neighborhoods of ±5 genes around all identified cas genes were extracted;
overlapping neighborhoods were merged and trimmed to the first and the last cas gene, to form 
the candidate loci. A locus that contains at least two cas genes, of which at least one gene 
belongs to the cas core, was identified as a valid cas locus.

Profile-based CRISPR-cas loci classification 

A set of Cas sequence profiles was collected over the years since the previous publication 
on CRISPR-Cas classification 4. Correspondence between the profiles, gene names and CRISPR-
Cas system types and subtypes was reexamined in the course of this work. To assist the assembly 
of a non-redundant and self-consistent set of Cas protein profiles, the multiple profiles for Cas5, 
Cas7 and Large Subunit were aligned to each other using HMMER 3.0 5 and cluster 
dendrograms were constructed from matrices of relative pairwise scores using UPGMA. The 
dendrograms were examined for inconsistent annotation of similar profiles; potential 
discrepancies were investigated on a case by case basis, and annotation was adjusted where 
required.

Loci were classified using the correspondence table between Cas sequence profiles and 
CRISPR-Cas (sub)types (Supplementary File 1). The classification procedure consisted of two 
steps. First, a gene group annotation was used to identify genes of the effector module (cas5-like, 
cas7-like and Large Subunit), cas9 and cpf1. A genomic segment containing either each of the 
major effector module genes or one cas9 gene or one cpf1 gene was considered a complete 
CRISPR-Cas system unit of type I/III/IV, type II or type V, respectively. Loci that contained 
neither the full complement of effector module genes nor cas9 or cpf1 were classified as partial.

At the second step, each locus unit or single-unit locus was analyzed separately. Each Cas 
profile within the unit contributed a “vote” for the type and subtype that this profile 
corresponded to. Contributions from profiles with multiple affinities (such as, for example, cas5
pfam09704 profile that does not discriminate between subtypes of type I) were equally divided 
between the corresponding (sub)types. The “votes” were tallied across the unit; if the dominant 
(sub)type accounted for at least 2/3 of the total, the locus (unit) was assigned to the respective
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(sub)type. If no type or subtype received the qualified majority, the locus or unit was considered 
to be ambiguously classified.

Sequence-based phylogenetic reconstruction

Multiple sequence alignments were constructed using a combination of MUSCLE 6 to 
align closely related sequences and MAFFT 7 to merge these alignments. Sites with of gap 
character fraction >0.5 and homogeneity <0.1 8 were removed from the alignment. Phylogenetic 
trees were reconstructed using the FastTree program 9 with the WAG evolutionary model and the 
discrete gamma model with 20 rate categories. The same program was used for bootstrap value 
calculation.

For the phylogenetic analysis of the Cas1 family, 1418 Cas1 protein sequences were 
used. A filtered Cas1 alignment (306 positions) was used for tree reconstruction. For the 
phylogenetic analysis of the Cas3 family, 1093 protein sequences were used, and the filtered 
Cas3 alignment for tree reconstruction included 283 positions. For the Cas10 family, three 
alignments for three distinct families were constructed and used for phylogenetic analysis. These 
families consisted of 443, 36 and 10 protein sequences, and the respective filtered alignments 
included 427, 910 and 652 positions.

Classification comparison and information consistency index 

To compare classifications of CRISPR-cas loci based on different criteria (e.g. according 
to the CRISPR-Cas subtypes or according to the sequence classification of repeats in the adjacent 
CRISPR cassette), we used the Normalized Mutual Information index (mutual information 
divided by the geometric mean of the entropies of both classifications) 10.

To compare different trees reconstructed for the same set of leaves, the distances between 
the leaves along the tree branches were computed by summing the branch lengths along the path, 
connecting the leaves; then, the Spearman rank correlation coefficients between the distances 
induced by the two trees were calculated.

To quantify the fit between the tree structure and classification of the leaves, the 
following procedure was used. Within each clade of a rooted tree, the clade entropy was 
calculated from the distribution of its descendant leaves across the classes. Weighted average of 
clade entropies was calculated across the tree using clade weights, producing the tree-wide 
estimate of the classification entropy ET. Then, the tree labels were scrambled, and the procedure 
was repeated 10 times to estimate the expectation of the tree entropy for the random labeling, ER.
The information consistency index then is calculated as 1-min(ET,ER)/ER. A perfect tree that 
segregates at the root into clades corresponding to pure classes has ET equal to zero, and 
therefore, has an information consistency index of 1. The tree with the entropy as high as that of 
a tree with random leaf labeling (or higher) has the information consistency index of 0.
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Locus architecture dendrogram

To compare the architectures of the cas loci, the following procedure was developed. 
First, the gene order in the loci encoded in the negative strand was inverted. All non-cas genes 
were removed; cas genes were classified according to the family classification (Supplementary 
File 1). Each locus was encoded as a set of weighted components in the following way: all
individual genes were included in the set with weights of 1; all ordered pairs of adjacent genes 
were included in the set with weights of 1/2 (see figure below). The weighted Jaccard similarity 
index JW

A,B for the component sets of loci A and B was computed as the sum of weights of the 
intersection of sets A and B divided by the sum of weights of the union of sets A and B. The 
distance between the loci A and B was computed as -ln(JW

A,B). The figure below shows an 
example of the weighted Jaccard similarity index calculation.
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The loci architecture similarity dendrogram was constructed from the pairwise loci 
distance matrix using the UPGMA method.

Locus sequence similarity dendrogram

In order to automatically group cas loci, we introduce a clustering approach based on protein 
similarity. Given a cas locus, as defined in the Section CRISPR-cas loci identification, we select
the interference proteins for Type I and Type III and Cas9 for Type II. Becuase some cas loci
contain multiple effector modules of different types, the effector proteins of each locus were
separated according to their types. For each pair of proteins  𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗  (belonging to different cas
loci), the FASTA 11 protein sequence similarity score 𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗� was computed. To guarantee 
appropriate metric properties, the similarity was symmetrized to 𝑆𝑆𝑆𝑆∗𝑆𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗� =

�𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗� + 𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗,𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖�� 2⁄ , and the score was normalized to

�̂�𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗� = 𝑆𝑆𝑆𝑆∗𝑆𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗� �𝑆𝑆𝑆𝑆∗(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖)𝑆𝑆𝑆𝑆∗𝑆𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 ,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗�� .

The similarity between two cas loci 𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚 and 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 is then defined as the average pairwise similarity
between all possible protein pairings: 

𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚, 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛) =  1
|𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚|| 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛|

∑ ∑ �̂�𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗�  𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗∈𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖∈𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚 .

Finally, the dendrogram was generated by manually rooting the unrooted tree obtained by Rapid
Neighbor-Joining 12 on the derived pairwise distance, 𝐷𝐷𝐷𝐷 𝐿𝐿𝐿𝐿  = 1 − 𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿 .  The software and 
instructions for clustering CRISPR-cas loci by protein sequence similarity and automatic 
subtype assignment are available from http://www.bioinf.uni-freiburg.de/Supplements/
NRMmicro_Koonin_2015/.
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