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S1 Assumptions for Theorem 2
We first state and comment on the assumptions Miller (1977) made to ensure consistency and asymptotic
normality of the MLE for parameters in equation (1) in Section 2 of the manuscript,

Y = Xβ +

R
∑

r=1

Zrαr + ε. (S1.1)

Assumption A.1 The partitioned matrix [X : Zr] has rank greater than p, r = 1, . . . , R.
Assumption A.2 The matrices G0, G1, . . . ,GR, defined as Gr = ZrZ

T
r , r = 1, . . . , R, are linearly inde-

pendent; that is,
∑R

r=0 τrGr = 0 implies τr = 0, r = 0, 1, . . . , R.
Assumption A.3 Each mr, r = 1, . . . , R, tend to infinity.
Assumption A.4 Let m0 = N . Then for each s, t = 0, 1, . . . , R, either limN→∞ ms/mt = ρst or
limN→∞ mt/ms = ρts exists. If ρst = 0, then let ρts = ∞ for notational convenience.

Without loss of generality, let Zr be labeled so that for s < t, ρst > 0; i.e., the mr are in decreasing
order of magnitude. Generate a partition of the integers 0, 1, . . . , R, S0, S1, . . . ,Sc, so that for indices r
in the same set Ss, the associated mr ’s have the same order of magnitude as follows:
i) r0 = 0; S0 = {0}; r1 = 1.
ii) For s = 1, 2, . . ., it is true that rs ∈ Ss. Then for r = rs+1, rs+2, . . . , include r in Ss until ρrs ,r = ∞;
call the first value of r where this occurs rs+1; then rs+1 ∈ Ss+1.
iii) Continue as in step ii) until R has been placed in a set. Call this set Sc.
There are then c + 1 sets in partitions, S0, S1, . . . ,Sc, and Ss = {rs, . . . , rs+1 − 1}.

For each r = 1, 2, . . . , R, r ∈ Ss for some s = 1, 2, . . . , c. Define sequences Kr (depending on N) as
follows:
Kr = rank[Zrs

: Zrs+1 : · · · : ZR] − rank[Zrs
: · · · : Zr−1 : Zr+1 : · · · : ZR], r = 1, 2, . . . , R,

K0 = N − rank[Z1, . . . ,ZR].
(The Kr so defined are closely related to the degrees of freedom of sums of squares in the analysis of
variance.)
Assumption A.5 Each of the limN→ Kr/mr , r = 1, . . . , R exists and is positive.

Let V0 =
∑R

r=1 σ2
rGr be the true covariance matrix.

Assumption A.6 There exists a sequence KR+1 (depending on N) increasing to infinity such that the
p × p matrix C0 defined by C0 = limN→∞[XT

V
−1
0 X]/KR+1 exists and is positive definite.

Define the (R + 1) × (R + 1) matrix C1 by

[C1]st =
1

2
lim
N→∞

[trV−1
0 GsV

−1
0 Gt]/K

1

2

s K
1

2

t , s, t = 0, 1, . . . , R.



Assumption A.7 Each of the limits used in defining [C1]st exists, s, t = 0, 1, . . . , R. The matrix C1 is
positive definite.
Remark 1 Assumption A.1 requires that the fixed effects not be confounded with any of the random
effects. A.2 requires that the random effects not be confounded with each other. Assumptions A.1–A.2

are sufficient to guarantee identifiability of the MLE θ̂. Assumptions A.3-A.7, which correspond to
Assumptions 3.1 − 3.5 in Miller (1977), are used to ensure the consistency of the MLE. Assumption
A.3 is natural and necessary for the consistency property of MLE estimators of both β and the variance
components σ2

ε and σ2
r , r = 1, . . . , R, because the sample size used to estimate β and σ2

ε is N and the
sample size used to estimate σ2

r is mr. Assumptions A.6–A.7 are used to establish the existence and

positive definiteness of the limiting variance-covariance matrix of the MLE θ̂. �

In addition to A.1–A.7 taken from Miller (1977), we also require the following Assumptions to ensure
the existence of components in the variance covariance matrix Σ = H −ΛJ

−1
ββΛ

T for the test statistic.

Assumption A.8 For any cell partition E1, . . . , EL, Λl = limN→∞
∑N

k=1 I{xk∈El}x
T
k /N exists for each

l = 1, . . . , L.

Assumption A.9 H = limN→∞ FVF
T exists and is positive definite, with F given in equation (13) in

the main paper.

Remark 2 Assumption A.8 ensures the existence of Λ, that has elements defined in (14) in the main
paper. Assumption A.9 ensures the existence and positive definiteness of H in Σ, where H denotes the
limiting variance covariance matrix for {f− e(β0)}/N . �

S2 Proof of Theorem 2

Let J be the limit of the sample information matrix per observation,

J =

[

Jββ Jβψ

J
T
βψ Jψψ

]

. (S2.1)

Under model (S1.1), Jβψ = 0 (Wand 2007, equation (3)), and J and J
−1 are block diagonal matrices. By

Taylor series expansion of the score function S(θ̂), we obtain

√
N(θ̂ − θ0) ≈ (− 1

N

∂S(θ0)

∂θ
)−1 1√

N
S(θ0) ≈ J

−1 1√
N

S(θ0), (S2.2)

where A ≈ B means that A − B ≈ oP (1) as N → ∞.

As Y−Xβ ∼ N(0, V), the score function for β, corresponding to the first p components of S(θ), is
Sβ(θ) = ∂

∂β
l(θ) = X

T
V

−1(Y − Xβ), where l(θ) is the log-likelihood function. By extracting the first p

components of (S2.2), we have

√
N(β̂ − β0) ≈ J

−1
ββ

1√
N

Sβ(θ0)

= J
−1
ββX

T
V

−1(Y −Xβ0)/
√

N.
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Thus,

√
N

( {f − e(β0)}/N
β̂ − β0

)

≈













1√
N

[I[x1∈E1 ] · · ·I[xN∈E1 ]]

...
1√
N

[I[x1∈EL] · · ·I[xN∈EL ]]
1√
N

J
−1
ββX

T
V

−1













(Y −Xβ0)

=D(Y − Xβ0),

which is a linear combination of Gaussian random variables, with D being a (L + p) × N matrix.

Therefore, as N → ∞,
√

N

( {f − e(β0)}/N
β̂ − β0

)

D→ N(0, A0),

where

lim
N→∞

DVD
T =

(

H ΛJ
−1
ββ

J
−1
ββΛ

T
J
−1
ββ

)

≡ A0,

and H = limN→∞ FVF
T is a symmetric L × L matrix, with

F =
1√
N







I[x1∈E1 ] · · ·I[xN∈E1 ]

...
I[x1∈EL ] · · ·I[xN∈EL ]






.

and

Λ =







ΛT1
...

ΛTL







L×p

= lim
N→∞







1
N

∑N
k=1 I[xk∈E1 ]x

T
k

...
1
N

∑N
k=1 I[xk∈EL]x

T
k






.

The existence of H and Λ are ensured by Assumptions A.8 and A.9. Also, by consistency of β̂ and
Taylor expansion,

1√
N

{f − e(β̂)} =
1√
N

{f − e(β0)} +
1√
N

{e(β0) − e(β̂)}

≈ 1√
N

{f − e(β0)} −
1√
N

∇e(β0)(β̂ − β0)

P→ 1√
N

{f − e(β0)} −Λ

√
N(β̂ − β0).

Since 1√
N
{f− e(β̂)} is a linear combination of components of

√
N

( {f − e(β0)}/N
β̂ − β0

)

, we get

1√
N

{f − e(β̂)} D→ N(0, Σ),

with Σ = H − ΛJ
−1
ββΛ

T . Thus, T = {f − e(β̂)}TΣ
−1{f − e(β̂)}/

√
N

D→ χ2
k, where Σ

−1 denotes the
generalized inverse of Σ and k = rank(Σ).
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Web Table 1

Table 1: Impact of cell partition on empirical power (Scenario II).
m = 500, E(N) = 1750, β3 = .2, σa = 1, σε = .5,K = 1000.

Partition
ρ12 = 0 ρ12 = 0.3

L = 12 L = 42 L = 12 L = 42

x1 0.049 0.049 0.256 0.182
x2 0.038 0.041 0.273 0.173
x3 0.893 0.771 0.859 0.749

x1, x2 0.991 0.966 0.989 0.975
x1, x3 0.843 0.938 0.885 0.939
x2, x3 0.936 0.912 0.956 0.928
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