## SUPPLEMENTARY MATERIAL

#### DNA extraction and bioinformatics

Field-caught tissue samples were bead-beat in a sterile 2ml screw cap tube with 750 µl of 0.1mm silica-zircon beads (Biospec Products), two 3.2mm stainless steel beads (Biospec Products) and 1ml of sterile CTAB buffer (0.1M Tris, 1.4M NaCl, 20mM EDTA, 2% PVP, 2 µl betamercaptanol, 20µl of 20mg/ml Proteinase-K). Tubes were bead beat at maximum speed for 2 min (Mini Beadbeater-96, Biospec Products) and incubated overnight at 55°C. RNAse (400µg, Qiagen) was added to the lysate and incubated at 37°C for 30 min. A phenol-chloroform extraction with isopropanol precipitation was performed to isolate the DNA.

Library preparation was done by the Genome Sequencing and Analysis Facility at the University of Texas at Austin using the NEBNext kit and sequenced on an Illumina Miseq using V3 chemistry. Using DADA2, we trimmed the forward and reverse primers, truncated reads when Illumina quality scores were less than two, and removed sequences with a maximum expected error of one. Sample composition was then determined with DADA2, specifying joint inference of sample composition and sequence error rates (selfConsist=T). Chimeric sequences were removed on merged reads using DADA2's removeBimeraDenovo algorithm and the remaining variants were classified using Greengenes 13.8 training set with DADA2's assignTaxonomy function with the default parameters. Variants classified as unassigned, mitochondria, or chloroplast, and those that comprised an average of less than 1% of the reads recovered within a given Mormon cricket, were removed prior to analysis using phyloseq 1.16.2 (McMurdie & Holmes 2013).

### Metagenomic prediction

The nearest sequenced taxon index (NSTI) was calculated in PICRUSt to determine the phylogenetic distance between our 16S rRNA sequences and the available genomes in the IMG database. NSTI values were small (mean + sd: 0.03 + 0.01, range: 0.006-0.040), indicating that the sequence variants identified by DADA2 from our 16S rRNA Illumina sequencing were closely related to the genomes available in the IMG database. PICRUSt metagenomic predictions of the human gut microbiome with similar NSTI values, for example, were positively correlated with empirical metagenomic analysis of those same samples (Spearman's rho=0.72, Langille et al. 2013). We thus proceeded with the caveat that PICRUSt is a predictive tool to inform future experiments rather than a complete surrogate for true metagenomic sampling.

Table S1. Posthoc Tukey tests comparing the number of genomic 16s rRNA copies among gut regions in field-caught Mormon crickets (n=8). Values are the test statistic with the significance of the test indicated with an asterisk. FG=foregut; MG=midgut; ILE=ileum; REC=rectum.

|                      | FG    | MG     | ILE  | REC |  |  |  |  |  |
|----------------------|-------|--------|------|-----|--|--|--|--|--|
| FG                   | -     |        |      |     |  |  |  |  |  |
| MG                   | 3.07* | -      |      |     |  |  |  |  |  |
| ILE                  | 0.35  | 2.79*  | -    |     |  |  |  |  |  |
| REC                  | 0.43  | 3.57** | 0.81 | -   |  |  |  |  |  |
| * p=<0.05, ** p<0.01 |       |        |      |     |  |  |  |  |  |

Table S2. Kruskal-Wallis tests for differences among gut regions in KEGG pathways. DF = 2 for all comparisons. P-values are corrected for multiple tests using the false discovery rate (FDR). Effect sizes ( $\eta^2$ ) were calculated as ( $X^2$ -k+1)/(N-k) following Cohen (1998 p. 2).

| KEGG Pathway                                | $X^2$ | $\eta^2$ | p(FDR) |
|---------------------------------------------|-------|----------|--------|
| Cell Growth and Death                       | 19.7  | 0.654    | 0.0005 |
| Metabolic Diseases                          | 18.7  | 0.618    | 0.0005 |
| Replication and Repair                      | 18.6  | 0.616    | 0.0005 |
| Translation                                 | 18.6  | 0.614    | 0.0005 |
| Nucleotide Metabolism                       | 18.6  | 0.614    | 0.0005 |
| Nervous System                              | 18.4  | 0.609    | 0.0005 |
| Signaling Molecules and Interaction         | 18.3  | 0.604    | 0.0005 |
| Lipid Metabolism                            | 18.0  | 0.592    | 0.0005 |
| Transcription                               | 17.9  | 0.589    | 0.0005 |
| Immune System Diseases                      | 17.8  | 0.586    | 0.0005 |
| Glycan Biosynthesis and Metabolism          | 17.7  | 0.582    | 0.0005 |
| Poorly Characterized                        | 17.5  | 0.575    | 0.0005 |
| Infectious Diseases                         | 17.5  | 0.573    | 0.0005 |
| Carbohydrate Metabolism                     | 17.2  | 0.564    | 0.0005 |
| Cancers                                     | 16.9  | 0.552    | 0.0005 |
| Genetic Information Processing              | 16.7  | 0.543    | 0.0006 |
| Signal Transduction                         | 16.2  | 0.527    | 0.0006 |
| Membrane Transport                          | 15.8  | 0.512    | 0.0008 |
| Folding, Sorting and Degradation            | 15.6  | 0.504    | 0.0008 |
| Excretory System                            | 15.3  | 0.491    | 0.0009 |
| Immune System                               | 15.2  | 0.490    | 0.0009 |
| Cell Motility                               | 15.1  | 0.484    | 0.0009 |
| Metabolism of Terpenoids and Polyketides    | 14.7  | 0.470    | 0.0010 |
| Enzyme Families                             | 14.5  | 0.462    | 0.0011 |
| Environmental Adaptation                    | 14.1  | 0.447    | 0.0013 |
| Cellular Processes and Signaling            | 13.9  | 0.441    | 0.0014 |
| Endocrine System                            | 13.6  | 0.431    | 0.0015 |
| Transport and Catabolism                    | 12.7  | 0.395    | 0.0024 |
| Biosynthesis of Other Secondary Metabolites | 12.0  | 0.372    | 0.0031 |
| Neurodegenerative Diseases                  | 11.8  | 0.362    | 0.0034 |
| Energy Metabolism                           | 11.5  | 0.353    | 0.0036 |
| Metabolism of Other Amino Acids             | 11.5  | 0.353    | 0.0036 |
| Amino Acid Metabolism                       | 11.4  | 0.347    | 0.0037 |
| Metabolism of Cofactors and Vitamins        | 11.4  | 0.347    | 0.0037 |
| Metabolism                                  | 10.7  | 0.322    | 0.0050 |
| Xenobiotics Biodegradation and Metabolism   | 10.4  | 0.310    | 0.0057 |
| Digestive System                            | 2.6   | 0.024    | 0.2671 |

Table S3. Kruskal-Wallis tests for differences among gut regions in the relative abundance of KEGG orthologs related to nutrition and pathogen defense. DF = 2 for all comparisons. P-values are corrected for multiple tests using the false discovery rate (FDR). Effect sizes ( $\eta^2$ ) were calculated as ( $X^2$ -k+1)/(N-k) following Cohen (1998 p. 2).

| KEGG ortholog                         | EC         | $X^2$ | $\eta^2$ | р       |
|---------------------------------------|------------|-------|----------|---------|
| Carbohydrate metabolism               |            |       |          |         |
| xylan 1,4-beta-xylosidase             | 3.2.1.37   | 8.51  | 0.24     | 0.024   |
| endo-1,4-beta-xylanase                | 3.2.1.8    | 13.85 | 0.44     | 0.003   |
| raffinose galactosidase               | 3.2.1.22   | 15.70 | 0.51     | 0.001   |
| raffinose fructohydrolase             | 3.2.1.26   | 22.14 | 0.75     | < 0.001 |
| pectinesterase                        | 3.1.1.11   | 5.72  | 0.14     | 0.066   |
| cellulase                             | 3.2.1.4    | 18.81 | 0.62     | < 0.001 |
| cellubiose glucohydrolase             | 3.2.1.21   | 11.86 | 0.37     | 0.005   |
| Shikimate pathway                     |            |       |          |         |
| 3-deoxy-7-phosphoheptulonate synthase | 2.5.1.54   | 12.30 | 0.38     | 0.005   |
| 3-dehydroquinate synthase             | 4.2.3.4    | 6.04  | 0.15     | 0.061   |
| 3-dehydroquinate dehydratase          | 4.2.1.10   | 2.83  | 0.01     | 0.255   |
| shikimate dehydrogenase               | 1.1.1.25   | 15.85 | 0.24     | 0.001   |
|                                       | 1.1.5.8    |       |          |         |
| shikimate kinase                      | 2.7.1.71   | 9.88  | 0.29     | 0.013   |
| 3-phosphoshikimate 1-                 | 2.5.1.19   | 6.74  | 0.18     | 0.050   |
| carboxyvinyltransferase               |            |       |          |         |
| chorismate synthase                   | 4.2.3.5    | 6.74  | 0.18     | 0.050   |
| chorismate mutase                     | 5.4.99.5   | 19.51 | 0.20     | 0.000   |
| prephenate dehydratase                | 4.2.1.51   | 6.01  | 0.15     | 0.061   |
| prephenate dehydrogenase              | 1.3.1.12   | 13.35 | 0.13     | 0.003   |
| 2-oxoglutarate aminotransferase       | 2.6.1.1    | 30.00 | 0.32     | < 0.001 |
|                                       | 2.6.1.9    |       |          |         |
|                                       | 2.6.1.57   |       |          |         |
| Antimicrobial pathways                |            |       |          |         |
| lactate dehydrogenase                 | 1.1.1.27   | 4.06  | 0.076    | 0.145   |
| arbutin 6-phosphate glucohydrolase    | 3.2.1.86   | 19.64 | 0.653    | < 0.001 |
| vanillate monooxygenase               | 1.14.13.82 | 6.31  | 0.159    | 0.059   |
| p-hydroxybenzoate 3-monooxygenase     | 1.14.13.2  | 2.03  | 0.001    | 0.362   |

|              | Lactobacilliaceae |     |     |     |     |     |    | Enterobacteriaceae |           |           |     |     |     |     |     |  |  |
|--------------|-------------------|-----|-----|-----|-----|-----|----|--------------------|-----------|-----------|-----|-----|-----|-----|-----|--|--|
|              | C03               | C05 | H06 | H09 | H11 | H12 | I3 | I5                 | <b>I6</b> | <b>I7</b> | E02 | E03 | E06 | G02 | I09 |  |  |
| Gram Stain   | +                 | +   | +   | +   | +   | +   | -  | -                  | -         | -         | -   | -   | -   | -   | -   |  |  |
| Motility     | 0                 | 0   | 0   | 0   | 0   | 0   | 1  | 1                  | 1         | 1         | 1   | 1   | 1   | 1   | 0   |  |  |
| Fermentation | 1                 | 1   | 1   | 1   | 1   | 1   | 1  | 1                  | 1         | 1         | 1   | 1   | 1   | 1   | 1   |  |  |
| Aerobic      | 1                 | 1   | 1   | 1   | 1   | 1   | 1  | 1                  | 1         | 1         | 1   | 1   | 1   | 1   | 1   |  |  |
| Nitrate      |                   |     |     |     |     |     |    |                    |           |           |     |     |     |     |     |  |  |
| reduction    | 0                 | 0   | 0   | 0   | 0   | 0   | 1  | 1                  | 1         | 1         | 1   | 1   | 1   | 1   | 1   |  |  |
| Gelatin      |                   |     |     |     |     |     |    |                    |           |           |     |     |     |     |     |  |  |
| hydrolysis   | 0                 | 0   | 0   | 0   | 0   | 0   | 0  | 0                  | 0         | 0         | 0   | 0   | 0   | 0   | 0   |  |  |
| Citrate      |                   |     |     |     |     |     |    |                    |           |           | _   |     |     |     |     |  |  |
| utilization  | ND                | ND  | ND  | ND  | ND  | ND  | 1  | 1                  | 1         | 1         | 0   | 0   | 0   | 0   | 0   |  |  |
| Catalase     | 0                 | 0   | 0   | 0   | 0   | 0   | 1  | 1                  | 1         | 1         | 1   | 1   | 1   | 1   | 1   |  |  |
| Oxidase      | 0                 | 0   | 0   | 0   | 0   | 0   | 1  | 1                  | 1         | 1         | 0   | 0   | 0   | 0   | 0   |  |  |
| Growth at:   |                   |     |     |     |     |     |    |                    |           |           |     |     |     |     |     |  |  |
| 15C          | 1                 | 0   | 1   | 1   | 1   | 1   | ND | ND                 | ND        | ND        | ND  | ND  | ND  | ND  | ND  |  |  |
| 30C          | 1                 | 1   | 1   | 1   | 1   | 1   | 1  | 1                  | 1         | 1         | 1   | 1   | 1   | 1   | 1   |  |  |
| 35C          | 1                 | 1   | 1   | 1   | 1   | 1   | 1  | 1                  | 1         | 1         | 1   | 1   | 1   | 1   | 1   |  |  |
| 40C          | 1                 | 0   | 1   | 1   | 1   | 1   | 1  | 1                  | 1         | 1         | 1   | 1   | 1   | 1   | 1   |  |  |
| 45C          | 1                 | 0   | 1   | 1   | 1   | 1   | 0  | 0                  | 0         | 0         | 0   | 0   | 0   | 0   | 0   |  |  |
| 50C          | 0                 | 0   | 0   | 0   | 0   | 0   | 0  | 0                  | 0         | 0         | 0   | 0   | 0   | 0   | 0   |  |  |
| 55C          | 0                 | 0   | 0   | 0   | 0   | 0   | 0  | 0                  | 0         | 0         | ND  | ND  | ND  | ND  | ND  |  |  |
| pH 4.3       | 1                 | 0   | 1   | 1   | 1   | 1   | ND | ND                 | ND        | ND        | 1   | 1   | 1   | 1   | 1   |  |  |
| pH 7         | 1                 | 1   | 1   | 1   | 1   | 1   | ND | ND                 | ND        | ND        | 1   | 1   | 1   | 1   | 1   |  |  |
| pH 8.5       | 1                 | 0   | 1   | 0   | 1   | 1   | ND | ND                 | ND        | ND        | ND  | ND  | ND  | ND  | ND  |  |  |
| NaCl 4%      | 1                 | 1   | 1   | 1   | 1   | 1   | ND | ND                 | ND        | ND        | ND  | ND  | ND  | ND  | ND  |  |  |
| NaCl 6.5%    | 1                 | 0   | 0   | 0   | 1   | 0   | ND | ND                 | ND        | ND        | ND  | ND  | ND  | ND  | ND  |  |  |
| NaCl 18%     | 0                 | 0   | 0   | 0   | 0   | 0   | ND | ND                 | ND        | ND        | ND  | ND  | ND  | ND  | ND  |  |  |

# Table S4. Phenotypic description of Mormon cricket gut isolates. ND=not determined.

|                 | Lactobacilliaceae |     |     |     |     |     |  |    |    |           | Enter | obacte | eriacea | ae  |     |            |  |  |  |  |  |  |  |
|-----------------|-------------------|-----|-----|-----|-----|-----|--|----|----|-----------|-------|--------|---------|-----|-----|------------|--|--|--|--|--|--|--|
|                 | C03               | C05 | H06 | H09 | H11 | H12 |  | I3 | I5 | <b>I6</b> | I7    | E02    | E03     | E06 | G02 | <b>I09</b> |  |  |  |  |  |  |  |
| Decarboxylation |                   |     |     |     |     |     |  |    |    |           |       |        |         |     |     |            |  |  |  |  |  |  |  |
| of:             |                   |     |     |     |     |     |  |    |    |           |       |        |         |     |     |            |  |  |  |  |  |  |  |
| Arg             | ND                | ND  | ND  | ND  | ND  | ND  |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| Lys             | ND                | ND  | ND  | ND  | ND  | ND  |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| Orn             | ND                | ND  | ND  | ND  | ND  | ND  |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| MR              | ND                | ND  | ND  | ND  | ND  | ND  |  | 0  | 0  | 0         | 0     | 0      | 0       | 0   | 0   | 0          |  |  |  |  |  |  |  |
| VP              | ND                | ND  | ND  | ND  | ND  | ND  |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 0          |  |  |  |  |  |  |  |
| H2S             | ND                | ND  | ND  | ND  | ND  | ND  |  | 0  | 0  | 0         | 0     | 0      | 0       | 0   | 0   | 0          |  |  |  |  |  |  |  |
| Indole          | ND                | ND  | ND  | ND  | ND  | ND  |  | 0  | 0  | 0         | 0     | 0      | 0       | 0   | 0   | 0          |  |  |  |  |  |  |  |
| Urease          | ND                | ND  | ND  | ND  | ND  | ND  |  | 0  | 0  | 0         | 0     | 0      | 0       | 0   | 0   | 0          |  |  |  |  |  |  |  |
| Acid production |                   |     |     |     |     |     |  |    |    |           |       |        |         |     |     |            |  |  |  |  |  |  |  |
| from:           |                   |     |     |     |     |     |  |    |    |           |       |        |         |     |     |            |  |  |  |  |  |  |  |
| fructose        | 1                 | 1   | 1   | 1   | 1   | 1   |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| galactose       | 1                 | 1   | 1   | 1   | 1   | 1   |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| glucose         | 1                 | 1   | 1   | 1   | 1   | 1   |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| lactose         | 1                 | 1   | 1   | 1   | 1   | 1   |  | 0  | 0  | 0         | 0     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| maltose         | 1                 | 1   | 1   | 1   | 1   | 1   |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| ribose          | 1                 | 1   | 1   | 1   | 1   | 1   |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| sucrose         | 1                 | 1   | 1   | 1   | 1   | 1   |  | 1  | 1  | 0         | 0     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |
| xylose          | 1                 | 1   | 1   | 1   | 1   | 1   |  | 1  | 1  | 1         | 1     | 1      | 1       | 1   | 1   | 1          |  |  |  |  |  |  |  |



Fig S1. Species diversity among gut regions in Mormon crickets. Note that field-caught and laboratory-raised animals differ in the DNA extraction method that was used.



Figure S2. Ordination of sequence scores from the db-RDA of (a) field-caught and (b) laboratory-raised Mormon crickets. Means of sample scores for each tissue type are indicated in text [midgut and ileum centroids were similar and overlap in (b)]. Taxonomic groups are colored as in Figure 2.



Figure S3. Relative abundance of *Lactobacillus sp.*, *Pediococcus*, and *Pantoea agglomerans* (reduced dataset) identified in the ordination (see Supplementary Figure 2) as associated with different gut regions. Note that field-caught and laboratory-raised animals differ in the DNA extraction method that was used.



Figure S4. (a) Relative abundance of KEGG orthologs in the shikimate pathway (Fig. S5) and (b) the contributions of taxonomic groups to each ortholog as predicted by PICRUSt. Enzymes in the shikimate trunk are listed in the order that they occur in the pathway. Below the dotted line are the enzymes in the branch from the shikimate trunk to phenylalanine (phe) and tyrosine (tyr) synthesis. Key for colors representing taxonomic groups in (b) are in Figure 2. Sample sizes are foregut (n=11), midgut (n=11) and hindgut (n=9).



Fig S5. The Shikimate pathway. KEGG orthologs found in the PICRUSt metagenomic predictions are in blue. Sourced from <u>http://www.genome.jp/kegg-bin/show\_pathway?map00400+C00254</u>.

#### References

Cohen, B.H. (1998) *Explaining Psychological Statistics*, 3rd ed. Wiley and Sons, New York.

- Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. & Huttenhower, C. (2013)
  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. *Nature Biotechnology*, **31**, 814–821.
- McMurdie, P.J. & Holmes, S. (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS ONE*, **8**, e61217.