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S1. SAMPLE PREPARATION

The Fe-Ge binary alloy system has a complex equilibrium phase diagram, whereby a large

variety of phases exist with different stoichiometries, structural, and magnetic properties.

We performed thin growth by magnetron sputtering using a stoichiometric (Fe:Ge=1:1)

target. Except for the desired B20 phase, the most probable impurity phases to expect for

our growth conditions are the B35 and the monoclinic phase. Both are antiferromagnetic,

providing good magnetic contrast with the B20 phase.

FeGe thin film samples were grown in a home-built, two-chamber UHV magnetron sput-

tering system with a base pressure of 5 × 10−9 mbar. The MgO substrates were degreased

prior to loading as described in the main text, followed by a high-temperature anneal in UHV

for up to 8 h. The FeGe films are sputtered with an Ar partial pressure of 6 × 10−3 mbar,

using a DC power of 40 W. The substrate temperature was kept at 400◦C for the growth

of the FeGeH samples. A plot of the dependence of the magnetic transition temperature as

a function of growth temperature is shown in Fig. S4. The thickness is monitored by an

in-situ quartz crystal microbalance, and ex-situ using x-ray reflectivity (XRR), as shown in

Fig. S1. Subsequent to the growth, the samples are annealed in UHV at 400◦C for 4 h.
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FIG. S1. X-ray reflectivity data for a typical FeGe film. The film was grown at 400◦C on a 1”-

diameter MgO(001) wafer. The numerous Kiessig fringes are indicative of well-defined interfaces.

The data were fitted using the Parratt algorithm (red line). The thickness of this particular film

is 65.2 nm (nominally 70 nm), with a root-mean-square roughness of 1-2 nm. This film was used

for transverse field muon-spin rotation measurements.
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S2. STRUCTURAL PROPERTIES

Based on the high-resolution out-of-plane x-ray diffraction (XRD) measurements (exam-

ple shown in Fig. 1 in the main text), we are able to extract the FeGe(002) d-spacing of that

film, resulting in a lattice constant of 4.6480 Å. Given that the bulk FeGe lattice constant

is 4.70 Å, it can be concluded that the compressive strain is ∼1.1%.

Apart from the determination of the out-of-plane lattice parameters by XRD, we studied

the perfection of the interfaces, and the thickness of the epitaxial films, using x-ray reflec-

tivity. XRR scans were carried out on a D5000 diffractometer using Cu Kα1 radiation. The

reflectivity data was fitted using the Parratt32 algorithm1. An example of typical XRR data

for these films is shown in Fig. S1.

In order to determine the crystalline relationship between film and substrate, we per-

formed three-dimensional reciprocal space mapping using low-resolution XRD. The pro-

jected pole figure (see Fig. S2) shows the distribution of the MgO {113} (red) and FeGe

{112} (black) peaks projected onto the hk-plane (see blue arrows), viewed along the l-

direction. The four-fold symmetric MgO {113} substrate peaks are sharp, as expected. On

the other hand, the FeGe {102} film peaks are diffuse. Their |q|-values remain constant

and the overall pattern is roughly four-fold symmetric. Thus, it can be concluded that the

FeGe film is textured and lacking in-plane orientation, with a perfect (002) out-of-plane

orientation.

FIG. S2. Reciprocal space map of a typical FeGe film grown at 400◦C on MgO(001) wafer. The

MgO {311} and FeGe {210} peaks are labelled in red and black, respectively.
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S3. MAGNETIC PROPERTIES

The magnetic properties of the films were determined using a superconducting quantum

interference device (SQUID) magnetometer with a vibrating sample magnetometer module

(Quantum Design). Magnetisation measurements were performed as a function of tempera-

ture, for the field applied in-plane and out-of-plane, in a temperature range between 10 and

300 K.
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FIG. S3. Magnetic study of a ∼200 nm-thick FeGe film. (a) Magnetisation as a function of out-of-

plane field at different temperatures. The legend is shown in (b). (b) Susceptibility as a function

of field at various temperatures, derived from (a).

Figure S3a shows the M(H) magnetisation curves taken in an out-of-plane field, after

field-cooling from 300 K to the indicated temperature in an applied field of 2 T. The dia-

magnetic background stemming from the MgO substrate was subtracted by a linear fit to

the high-field data. The shape of the curves is consistent with previous studies on FeGe.

The susceptibility 1/µ0 · dM/dH, derived from the data shown in (a), is presented in Fig.

S3b.

The magnetic transition temperature Tc, obtained from determining the minimum in the

differentiated M(T ) plots, varies with the temperature at which the FeGe film was grown,

as plotted in Fig. S4. Within reasonable limits, Tc is independent of the annealing time and

temperature.
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FIG. S4. Dependence of Tc of FeGe films as a function of growth temperature. The error bars

indicate the variation of Tc for samples grown at the same temperature.

S4. FMR RESONANCES

For the interpretation of the FMR data we use the free energy functional for a chiral

magnetic film F = F0 + Fdip with F0 =
∫
d~rF0 and

F0 = A
(

(∇in̂j)
2 + 2Qn̂(∇× n̂)

)
+Kn̂2

z − µ0Msn̂ ~H , (1)

where the unit vector n̂(~r, t) represents the orientation of the local magnetisation, A is the

exchange stiffness constant, K is the magnetic anisotropy, Ms is the saturation magnetisa-

tion, and ~H is the applied magnetic field. The second term is the Dzyaloshinskii-Moriya

interaction parametrised by the helix pitch vector Q. The remaining term Fdip describes the

dipolar interaction of the magnetisation field at finite momenta ~k,

Fdip =
µ0M

2
s

2V

∑
~k

(n̂(~k)~k)(~kn̂(−~k))

k2
(2)

with n̂(~k) =
∫
d~rn̂(~r)e−i

~k~r and the volume V .

We consider the magnetic field applied perpendicular to the film along the z-axis, ~H =

Hẑ. The ground state is obtained by minimizing the energy functional. There is a phase

transition between the conical phase and the field-polarised phase at the critical field Hc2,z =

DQ2

gµBµ0
+ 2K

µ0Ms
+Ms where D = 2AgµB/Ms, see Ref. 2. The boundary conditions at the film
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surfaces3,

∂zn̂−Qẑ × n̂ = 0 (3)

must be fulfilled by the vector n̂, from which follow the boundary conditions for the spin

waves. The Dzyaloshinskii-Moriya interaction, Q, results in an effective pinning4 of the

magnetisation at the surface.The boundary condition might be modified in case of additional

surface-pinning potentials which we do not consider here.

The magnon excitation spectrum is derived in the standard linear spin-wave approxima-

tion following Refs. 5 and 6. The spin-wave excitation is parametrised in terms of a complex

wave function ψ,

n̂ = ê3

√
1− 2

gµB
Ms

|ψ|2 +

√
gµB
Ms

(
ψê+ + ψ∗ê−

)
(4)

where ê± = 1√
2
(ê1 ± iê2). The unit vectors êi with i = 1, 2, 3 are orthonormal êiêj = δij and

the third component is identified with the equilibrium configuration ê3 ≡ n̂eq. Expanding

the equation of motion ∂tn̂ = −gµB
~ n̂× ~B with ~B = − 1

Ms

δF
δn̂

in first order in the wave function

ψ, one obtains an effective wave equation for the spin waves.

In the following, we discuss the result for the field-polarised phase, H > Hc2,z, where the

magnetisation is field-polarised and n̂eq = ẑ. We limit ourselves however to a discussion of

magnon excitations homogeneous within the plane of the film, i.e., with vanishing in-plane

wavevector, ~k⊥ = 0. The stationary wave equation then reduces to (for ~k⊥ = 0)

i~ωψω(z) =
[
D(−i∂z −Q)2 + gµBµ0(H −Hc2,z)

]
ψω(z). (5)

In addition, it follows from Eq. (3) that the wave function must obey the boundary condition

(−i∂z +Q)ψω(z)
∣∣∣
surface

= 0. (6)

For a film with surfaces located at z = 0 and z = d with the film thickness d, the normalised

eigenfunctions consistent with the boundary condition are given by

ψp(z) =
1√
d/2

cos
(πp
d
z
)
e−iQz (7)

with the integer quantum number p = 0, 1, 2, 3, .... They specify the so-called perpendicular

standing spin wave (PSSW) modes4 of a film with Dzyaloshinskii-Moriya interaction. The

corresponding discrete energy spectrum is given by

~ωp = D
(πp
d

)2
+ gµBµ0(H −Hc2,z). (8)
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Note that the PSSW modes differ from a conventional ferromagnet7 due to the oscillating

factor e−iQz as was pointed out in Ref. 8.

In Fig. 3 of the main text, we have assumed that at large fields the two modes seen

experimentally correspond to p = 0 and 1. With these assumptions, the resulting fit yields

µ0Hc2,z ≈ 0.05 T and Dπ2/d2

gµBµ0Hc2,z
≈ 3 with g = 1.9. We have refrained from fitting the data

at low fields to a theory for the conical phase. The small value for the critical field indicates

that the film at zero field is already close to the phase transition between the conical and

the paramagnetic phase hampering a quantitative comparison with theory.
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