Supporting Information

Supporting Information

Synthesis and Stabilities of Peptide-based [1]Rotaxanes: Molecular Grafting onto Lasso Peptide Scaffolds

Fumito Saito¹ and Jeffrey W. Bode¹*

¹Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences,

ETH-Zürich, 8093 Zürich, Switzerland

bode@org.chem.ethz.ch

Table of Contents

1. General Methods	S3
2. A feasibility study for the formation of a [2]rotaxane with the KAT-azide coupling reaction	S5
3. X ray structure of [2]rotaxane S9-PF ₆	S9
4. Synthesis of lasso peptide L1	S13
5. Synthesis of branched-cyclic peptide B1	S25
6. Comparison of NMR spectra of L1 and B1	S29
7. Synthesis of lasso peptide L2	S29
8. Synthesis of branched-cyclic peptide B2	S38
9. Synthesis of lasso peptide L3	S41
10. Synthesis of branched-cyclic peptide B3	S46
11. Comparison of HPLC retention time	S49
12. Syntheses of lasso peptides with other peptide sequences	S50
13. Synthesis of cyclic peptide C1	S66
14. Thermal stability assay	S69
15. Chymotrypsin assay	S71
16. Trypsin assay	S78
17. Proteinase K assay	S86
18. Serum stability assay	S96
19. References	S98
20. NMR spectra and HRMS data	S99

Supporting Information

1. General Methods

1.1. Reactions and purifications

Reactions were carried out under air otherwise stated. Thin layer chromatography (TLC) was performed on Merck TLC plates (0.25 mm) pre-coated with silica gel 60 F254 and visualized by UV guenching and/or staining with ninhydrin solution and warming with a heat gun. Flash column chromatography was performed under a forced-flow of air using Silicycle SiliaFlash F60 (40-63 mm particle size). Peptides were analyzed and purified by reversed phase high performance liquid chromatography (RP-HPLC) on Jasco analytical and preparative instruments with dual pumps, mixer and in-line degasser, a variable wavelength UV detector (simultaneous monitoring of the eluent at 220 nm, 254 nm, 301 nm) and a Rheodyne 7725i injector fitted with a 20 to 1000 uL injection loop. The mobile phase for analytical and preparative HPLC were Millipore-H₂O with 0.1% TFA (Buffer A) and HPLC grade CH₃CN with 0.1% TFA (Buffer B). Analytical HPLC was performed on Shiseido C18 (5 µm, 4.6 mm I.D. x 250 mm) column at a flow rate of 1 mL/min. Analytical HPLC traces (λ = 220 nm) used for reaction monitoring were obtained with the following method: 20 to 95% CH₃CN with 0.1% TFA in 17 min, then 95% CH₃CN with 0.1% TFA for 7 min. Preparative HPLC was performed on YMC C18 (5 µm, 20 mm I.D. x 250 mm) column at a flow rate of 10 mL/min. LCMS analysis was performed on Dionex UltiMate 3000 RSLC connected to a Surveyor MSQ Plus mass spectrometer; a reversed-phase RESTEK Pinnacle II C18 (4.6 x 50 mm) column was used, running a gradient of 5 to 100% CH₃CN in H₂O over 4.5 min, 100% CH₃CN for 2.5 min.

1.2. Characterization

NMR spectra were recorded on a Bruker AV-400, AV-III-600. Chemical shifts (δ) are given in ppm relative to residual solvent peaks. Data for ¹H NMR are reported as follows: chemical shift (multiplicity, coupling constants where applicable, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), dd (doublet of doublet), m (multiplet), br (broad). In ¹⁹F and ¹¹B NMR, multiplets are reported as the average of the observed signals. IR spectra were recorded on a Jasco FT/IR-4100 spectrometer and only major peaks are reported in frequency of absorption (cm⁻¹). Optical rotations were measured on a Jasco P-2000 operating at the sodium D line with a 100 mm path length cell. High-resolution mass spectra were obtained by the mass spectrometry service of the ETH Zürich Laboratorium für Organische Chemie on a Bruker Daltonics maXis ESI-QTOF spectrometer (ESI), or a Bruker Daltonics solariX spectrometer (MALDI). Analytical HPLC traces (λ = 220 nm) used to confirm the purity of peptides were obtained with the following method: 20 to 95% CH₃CN with 0.1% TFA in 17 min, then 95% CH₃CN with 0.1% TFA for 7 min.

1.3. Solvents and reagents

All organic solvents (acetone, CH₃CN, CHCl₃, CH₂Cl₂, DMF, DMSO, Et₂O, MeOH) were used as supplied (ACS or HPLC grade) otherwise stated. THF was purified by distillation from sodium benzophenone ketyl prior to use. H₂O used for reactions was obtained from Millipore purification system. Potassium acyltrifluoroborates¹ and protected leucine α -ketoacid resin **S1**² were prepared by reported procedures. All other starting materials were used as supplied by commercial vendors or prepared by the method described in the corresponding reference.

1.4. Solid phase peptide synthesis

The following Fmoc amino acids and Boc amino acid with side-chain protecting groups were used: Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Gly-OH, Fmoc-His(1-Trt)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Nle-OH, Fmoc-Phe-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc-D-Trp(Boc)-OH, Fmoc-Tyr(tBu)-OH, Boc-Cys(StBu)-OH. SPPS was performed on rink-amide polystyrene resin. Fmoc deprotections were performed with 20% piperidine in DMF (7 min x 2). Couplings were performed with Fmoc (or Boc) amino acid (4.0 equiv to resin substitution), HCTU (4.0 equiv) and NMM (8.0 equiv) in DMF for 2 h.

2. A feasibility study for the formation of a [2]rotaxane with the KAT-azide coupling

reaction

a)

Scheme S1. Initial feasibility study for the formation of [2]rotaxane S9-TFA.

Alcohol S2

To a solution of 2-(2-aminoethoxy)ethanol (27.2 mL, 270 mmol, 3.0 equiv) in CH_3CN (120 mL) was added ethyl bromoacetate (10.0 mL, 90.0 mmol, 1.0 equiv). The mixture was stirred at RT for 17 h and CH_3CN was evaporated under reduced pressure. The residue was dissolved in CH_2Cl_2 and washed with H_2O (3x). The combined aqueous phases were back-extracted with CH_2Cl_2 (1x). The combined organic phases were dried over Na_2SO_4 , filtered and concentrated under reduced pressure.

The residual oil was dissolved in CH_2CI_2 (250 mL) and Boc_2O (19.6 g, 90 mmol, 1.0 equiv to ethyl bromoacetate) was added to this solution. The mixture was stirred at RT for 30 min and CH_2CI_2 was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc 1:2) to give **S2** (4:6 rotamers by ¹H NMR integration, 5.8 g, 34% yield over 2 steps) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 4.19-4.13 (m, 2H), 4.01 (s, 2H x 0.4), 3.94 (s, 2H x 0.6), 3.68-3.64 (m, 2H), 3.61-3.56 (m, 2H), 3.52-3.42 (m, 4H), 2.41 (br s, 1H), 1.44-1.40 (m, 9H), 1.27-1.22 (m, 3H).

 $^{13}\textbf{C}$ NMR (100 MHz, CDCl₃) δ 170.50, 170.31, 155.41, 155.25, 80.30, 72.32, 70.24, 70.16, 61.62,

61.58, 60.96, 50.66, 50.03, 48.47, 48.20, 28.30, 28.15, 27.35, 14.19, 14.08.

IR (thin film) 3480, 2978, 2935, 2873, 1752, 1701, 1458, 1401, 1367, 1250, 1198, 1172, 1144 cm⁻¹. **HRMS** (ESI) calcd for C₁₃H₂₅NNaO₆ [M+Na]⁺: 314.1574, found: 314.1575.

Tosylate S3

S3

To a solution of **S2** (2.0 g, 6.9 mmol, 1.0 equiv) in CH_2Cl_2 were added NEt₃ (1.15 mL, 8.3 mmol, 1.2 equiv), DMAP (8.4 mg, 69 µmol, 0.01 equiv) followed by TsCl (1.6 g, 8.3 mmol, 1.2 equiv). The mixture was stirred at RT for 16 h and CH_2Cl_2 was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc 3:1 to 2:1) to give **S3** (4:6 rotamers by ¹H NMR integration, 2.6 g, 84% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80-7.78 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 4.19-4.14 (m, 2H), 4.13-4.09 (m, 2H), 3.95 (s, 2H x 0.4), 3.90 (s, 2H x 0.6), 3.61-3.56 (m, 2H), 3.54-3.50 (m, 2H), 3.42-3.35 (m, 2H), 2.44 (s, 3H), 1.44-1.41 (m, 9H), 1.29-1.24 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.22, 170.09, 155.40, 155.20, 144.85, 144.80, 133.00, 132.93, 129.82, 129.80, 127.91, 80.31, 80.23, 70.67, 70.62, 69.02, 68.47, 68.32, 60.88, 60.83, 50.59, 49.85, 48.15, 47.87, 28.32, 28.18, 21.61, 14.27, 14.16.

IR (thin film) 2978, 1750, 1699, 1365, 1190, 1177, 1142 cm⁻¹.

HRMS (ESI) calcd for C₂₀H₃₂NO₈S [M+H]⁺: 446.1843, found: 446.1839.

Azide-ethyl ester S4

To a solution of **S3** (3.7 g, 8.3 mmol, 1.0 equiv) in DMF/acetone/H₂O (36 mL, 1:1:1) was added NaN₃ (0.81 g, 12 mmol, 1.5 equiv). The mixture was stirred at 65 °C for 4 h and cooled to RT. The mixture was diluted with CH_2Cl_2 and washed with H_2O (3x), then brine (1x). The organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc 3:1) to give **S4** (4:6 rotamers by ¹H NMR integration, 2.3 g, 88% yield) as a pale yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 4.21-4.14 (m, 2H), 4.05 (s, 2H x 0.4), 3.98 (s, 2H x 0.6), 3.64-3.58 (m, 4H), 3.52-3.44 (m, 2H), 3.35-3.31 (m, 2H), 1.46-1.42 (m, 9H), 1.29-1.24 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 170.29, 170.15, 155.45, 155.24, 80.31, 80.23, 70.65, 70.52, 69.90,
 69.79, 60.89, 60.82, 50.74, 50.71, 49.95, 48.37, 48.14, 28.35, 28.20, 14.27, 14.15.

IR (thin film) 2979, 2110, 1751, 1701, 1249, 1197, 1171, 1142 cm⁻¹.

HRMS (ESI) calcd for C₁₃H₂₄N₄NaO₅ [M+Na]⁺: 339.1639, found: 339.1635.

Azide-acid S5

To a solution of **S4** (2.3 g, 7.3 mmol, 1.0 equiv) in MeOH (22 mL) was added 1 M aq NaOH (11 mL, 11 mmol, 1.5 equiv). The mixture was stirred at RT for 1.5 h and diluted with CH_2Cl_2 and H_2O . The aqueous phase was acidified with 1 M aq HCl to pH 2 and extracted with CH_2Cl_2 (3x). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure to give **S5** (4:6 rotamers by ¹H NMR integration, 1.7 g, 81% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 9.83 (br s, 1H), 4.09 (s, 2H x 0.4), 4.04 (s, 2H x 0.6), 3.65-3.58 (m, 4H), 3.53-3.46 (m, 2H), 3.36-3.33 (m, 2H), 1.46-1.42 (m, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 175.60, 175.25, 155.68, 155.12, 80.83, 80.78, 70.57, 70.45, 69.91, 69.80, 50.71, 50.66, 50.63, 50.03, 48.55, 48.29, 28.30, 28.14.

IR (thin film) 2979, 2934, 2111, 1729, 1699, 1251, 1170, 1146, 1127 cm⁻¹.

HRMS (ESI) calcd for $C_{11}H_{20}N_4NaO_5$ [M+Na]⁺: 311.1326, found: 311.1327.

Azide-Phe methyl ester S6

S6

To a solution of **S5** (1.0 g, 3.5 mmol, 1.0 equiv) in DMF (6.0 mL) were added HCTU (1.6 g, 3.9 mmol, 1.1 equiv), NMM (1.2 mL, 11 mmol, 3.0 equiv) followed by L-phenylalanine methyl ester hydrochloride (0.69 g, 3.9 mmol, 1.1 equiv). The mixture was stirred at RT for 24 h and diluted with CH_2CI_2 . The organic solution was washed with H_2O /brine (1:1, 3x), dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc 1:1) to give **S6** (1.0 g, 64% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30-7.20 (m, 3H), 7.13-7.10 (m, 2H), 6.76 (d, *J* = 7.9 Hz, 1H), 4.90-4.88 (m, 1H), 3.95-3.88 (m, 2H), 3.70 (s, 3H), 3.61-3.48 (m, 4H), 3.43 (m, 2H), 3.34-3.26 (m, 2H), 3.16-3.06 (m, 2H), 1.46-1.40 (m, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 171.72, 169.49, 155.11, 135.90, 129.17, 128.57, 127.06, 80.94, 69.43, 69.16, 52.96, 52.20, 50.53, 48.39, 48.11, 37.95, 28.18.

 $[\alpha]_{D}^{25} = +19.3^{\circ} (c 3.4, CHCl_{3})$

IR (thin film) 2976, 2932, 2869, 2108, 1746, 1699, 1525, 1456, 1366, 1248, 1173, 1144 cm⁻¹. HRMS (ESI) calcd for $C_{21}H_{32}N_5O_6$ [M+H]⁺: 450.2347, found: 450.2347.

Azide-Phe PF₆ salt S7

S7

To a solution of **S6** (1.0 g, 2.2 mmol, 1.0 equiv) in CH_2CI_2 (4.0 mL) was added TFA (2.0 mL). The mixture was stirred at RT for 3 h and basified with sat aq Na_2CO_3 . The aqueous phase was extracted with CH_2CI_2 (3x). The combined organic phases were dried over Na_2SO_4 , filtered and concentrated under reduced pressure.

The residue was redissolved in TFA (3.0 mL), and TFA was co-evaporated with CH_2Cl_2 (5x) under reduced pressure. To the resulting oil were added CH_2Cl_2/H_2O (30 mL, 2:1) and NH_4PF_6 (1.8 g, 11 mmol, 5.0 equiv). The biphasic mixture was vigorously stirred at RT for 13 h and two phases were separated. The aqueous phase was extracted with CH_2Cl_2 (3x). The combined organic phases were dried over Na_2SO_4 , filtered and concentrated under reduced pressure to give **S7** (0.40 g, 37% yield over 2 steps) as a pale yellow amorphous.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (br s, 2H), 7.29-7.25 (m, 2H), 7.22-7.13 (m, 4H), 4.83-4.76 (m, 1H), 3.98 (d, *J* = 16.1 Hz, 1H), 3.86 (d, *J* = 16.1 Hz, 1H), 3.72 (t, *J* = 5.1 Hz, 2H), 3.67 (s, 3H), 3.61 (t, *J* = 4.9 Hz, 2H), 3.38-3.36 (m, 2H), 3.30-3.18 (m, 2H), 3.13 (dd, *J* = 14.2, 5.7 Hz, 1H), 2.97 (dd, *J* = 13.8, 7.7 Hz, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ 171.67, 164.65, 135.63, 129.26, 128.66, 127.18, 69.78, 65.18, 54.27, 52.73, 50.43, 48.48, 48.35, 37.60.

 $[\alpha]_{D}^{25} = +18.7^{\circ} (c \ 1.0, \ CHCl_{3})$

IR (thin film) 3032, 2957, 2110, 1739, 1677, 1550, 1441, 1128, 842 cm⁻¹.

HRMS (ESI) calcd for $C_{16}H_{24}N_5O_4$ [M+H–PF₆]⁺: 350.1823, found: 350.1819.

[2]Rotaxane S9-TFA

S9-TFA

4-Fluorophenyl KAT 1^3 (84 mg, 0.36 mmol, 1.0 equiv), B21C7 **S8**⁴ (0.13 g, 0.36 mmol, 1.0 equiv), and **S7** (0.18 g, 0.36 mmol, 1.0 equiv) were dissolved in CH₃CN (1.8 mL), and HBF₄•OEt₂ (98 µL, 0.72 mmol, 2.0 equiv) was added. The mixture was stirred at RT for 14 h. The reaction was guenched with H₂O. The crude material was purified by preparative HPLC using a YMC C18

column with a gradient of 20 to 95% CH_3CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 61 mg of **S9-TFA** (18% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (br m, 2H), 7.86-7.81 (m, 2H), 7.49 (t, *J* = 5.5 Hz, 1H), 7.24-7.15 (m, 3H), 7.10 (dd, *J* = 7.5, 1.8 Hz, 3H), 7.01 (t, *J* = 8.6 Hz, 2H), 6.91-6.87 (m, 2H), 6.83-6.79 (m, 2H), 4.76 (m, 1H), 4.40-4.21 (m, 2H), 4.18-4.13 (m, 2H), 4.07-4.04 (m, 2H), 3.88-3.83 (m, 2H), 3.68 (s, 3H), 3.67-3.39 (m, 26H), 3.15 (dd, *J* = 14.1, 5.4 Hz, 1H), 2.95 (dd, *J* = 14.1, 8.4 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.41, 166.83, 165.86, 164.55 (d, *J* = 252 Hz), 160.20 (q, *J* = 37.0 Hz), 146.74, 146.72, 136.25, 130.37 (d, *J* = 2.9 Hz), 129.51 (d, *J* = 9.0 Hz), 129.08, 128.42, 126.83, 121.56, 121.53, 116.01 (q, *J* = 289 Hz), 115.23 (d, *J* = 22.5 Hz), 111.65, 111.63, 71.21, 70.74, 70.72, 70.68, 70.61, 70.55, 69.48, 69.16, 68.08, 67.98, 65.75, 53.24, 52.33, 48.39, 47.05, 39.20, 37.22.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –108.71.

 $[\alpha]_{D}^{26} = +3.7^{\circ} (c \ 1.6, CHCl_{3})$

IR (thin film) 3068, 2905, 1742, 1691, 1504, 1250, 1200, 1118, 1104 cm⁻¹.

HRMS (MALDI) calcd for C₄₁H₅₇FN₃O₁₂ [M+H–TFA]⁺: 802.3921, found: 802.3917.

To obtain a PF₆ salt **S9-PF₆**, **S9-TFA** was dissolved in CH₂Cl₂/H₂O (6.0 mL, 2:1) and NH₄PF₆ (0.11 g, 0.67 mmol, 10 equiv) was added. The mixture was vigorously stirred at RT for 13 h and two phases were separated. The aqueous phase was extracted with CH₂Cl₂ (3x). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue **S9-PF₆** was directly used for the crystal growth (*vide infra*).

3. X-ray structure of [2]rotaxane S9-PF₆

S9-PF₆

Single crystals of **S9-PF**₆ were obtained by slow evaporation from a solution in EtOAc/MeOH/CH₂Cl₂ at 23 °C. A suitable crystal was selected and the sample was measured on a 'Bruker/Nonius Kappa Apex2' diffractometer. The crystal was kept at 100.0(2) K during data collection. Using Olex2⁵, the structure was solved with the XT⁶ structure solution program using Direct Methods and refined with the XL⁷ refinement package using Least Squares minimisation.

Figure S1. ORTEP diagram of S9-PF₆

Table S1 Crystal data and structure refinement for jb040915_1_1_0m.							
Identification code	jb040915_1_1_0m						
Empirical formula	$C_{41}H_{57}F_7N_3O_{12}P$						
Formula weight	947.86						
Temperature/K	100.0(2)						
Crystal system	monoclinic						
Space group	P2 ₁						
a/Å	9.9986(15)						
b/Å	18.897(3)						
c/Å	12.0500(19)						
a/°	90						
β/°	91.502(6)						
γ/°	90						
Volume/Å ³	2276.0(6)						
Z	2						
$\rho_{calc}g/cm^3$	1.383						
µ/mm⁻¹	0.152						
F(000)	996.0						
Crystal size/mm ³	$0.26 \times 0.16 \times 0.08$						
Radiation	ΜοΚα (λ = 0.71073)						
20 range for data collection/°	5.228 to 55.088						
Index ranges	$-10 \le h \le 13, -24 \le k \le 23, -15 \le l \le 15$						
Reflections collected	24488						
Independent reflections	10336 [$R_{int} = 0.0319$, $R_{sigma} = 0.0500$]						
Data/restraints/parameters	10336/5/590						
Goodness-of-fit on F ²	1.013						
Final R indexes [I>=2o (I)]	$R_1 = 0.0366, wR_2 = 0.0686$						
Final R indexes [all data]	$R_1 = 0.0486$, $wR_2 = 0.0732$						
Largest diff. peak/hole / e Å-3	0.21/-0.29						
Flack parameter	0.06(5)						

Table S2 Bond Lengths for jb040915_1_1_0m.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
F7	C38	1.362(3)	O6	C10	1.419(3)
01	C34	1.232(3)	O6	C11	1.421(3)

O2	C31	1.420(3)	07	C8	1.420(3)
O2	C32	1.427(3)	07	C9	1.418(3)
O3	C28	1.221(3)	O8	C6	1.435(3)
O4	C18	1.447(3)	O8	C7	1.424(3)
O4	C19	1.338(3)	O9	C4	1.425(3)
O5	C19	1.201(3)	O9	C5	1.425(3)
N1	C33	1.450(4)	O10	C2	1.426(3)
N1	C34	1.341(3)	O10	C3	1.429(3)
N2	C29	1.485(3)	O11	C00T	1.375(3)
N2	C30	1.491(3)	O11	C1	1.428(3)
N3	C20	1.452(3)	O12	C12	1.433(3)
N3	C28	1.345(3)	O12	C13	1.368(3)
C19	C20	1.528(4)	C00T	C13	1.400(4)
C20	C21	1.523(4)	C00T	C17	1.383(4)
C21	C22	1.512(4)	C1	C2	1.499(4)
C22	C23	1.388(4)	C3	C4	1.501(4)
C22	C27	1.396(4)	C5	C6	1.489(4)
C23	C24	1.381(4)	C7	C8	1.489(4)
C24	C25	1.375(4)	C9	C10	1.494(4)
C25	C26	1.383(4)	C11	C12	1.489(4)
C26	C27	1.392(4)	C13	C14	1.383(3)
C28	C29	1.514(3)	C14	C15	1.392(4)
C30	C31	1.498(3)	C15	C16	1.374(4)
C32	C33	1.500(4)	C16	C17	1.395(4)
C34	C35	1.495(4)	P1	F1	1.6019(17)
C35	C36	1.387(4)	P1	F2	1.6068(19)
C35	C40	1.386(4)	P1	F3	1.5872(18)
C36	C37	1.382(4)	P1	F4	1.6012(19)
C37	C38	1.355(4)	P1	F5	1.5992(19)
C38	C39	1.371(4)	P1	F6	1.5995(17)
C39	C40	1.384(4)			

Table S3 Bond Angles for jb040915_1_1_0m.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C31	O2	C32	111.21(19)	C7	08	C6	110.4(2)
C19	O4	C18	114.5(2)	C4	O9	C5	111.2(2)
C34	N1	C33	120.3(2)	C2	O10	C3	111.94(19)
C29	N2	C30	113.73(19)	C00T	O11	C1	115.6(2)
C28	N3	C20	118.2(2)	C13	012	C12	116.0(2)
O4	C19	C20	110.4(2)	O11	C00T	C13	116.4(2)
O5	C19	O4	124.1(2)	O11	C00T	C17	124.0(2)
O5	C19	C20	125.6(2)	C17	C00T	C13	119.6(2)
N3	C20	C19	109.6(2)	O11	C1	C2	110.1(2)
N3	C20	C21	110.0(2)	O10	C2	C1	110.6(2)
C21	C20	C19	111.36(19)	O10	C3	C4	108.7(2)
C22	C21	C20	112.0(2)	O9	C4	C3	108.4(2)
C23	C22	C21	121.0(2)	O9	C5	C6	109.4(2)
C23	C22	C27	118.2(3)	O8	C6	C5	110.3(2)
C27	C22	C21	120.8(2)	O8	C7	C8	110.4(2)
C24	C23	C22	121.4(3)	07	C8	C7	110.4(2)
C25	C24	C23	120.2(3)	07	C9	C10	110.3(2)
C24	C25	C26	119.5(3)	O6	C10	C9	109.7(2)
C25	C26	C27	120.5(3)	O6	C11	C12	109.4(2)
C26	C27	C22	120.3(3)	O12	C12	C11	108.6(2)
O3	C28	N3	122.8(2)	O12	C13	C00T	116.1(2)

O3 N3 N2 O2 O2 N1 O1 O1 N1 C36 C40 C40 C37 C37 C37 C37 C37 C37 C37 C37 C37 C37	C28 C29 C30 C31 C32 C33 C34 C34 C34 C34 C35 C35 C35 C35 C35 C35 C35 C35 C35 C35	C29 C28 C31 C30 C33 C32 N1 C35 C35 C34 C34 C36 C35 C36 C39 F7 C39 C40 C35 C11 C8	121 115 107 108 107 108 111 121 120 118 120 118 120 118 120 118 120 118 120 118 121 121 121 121 121 121	1.3(2) 5.9(2) 7.92(19) 9.7(2) 7.7(2) 3.1(2) 1.2(3) 0.5(2) 3.2(2) 3.4(3) 3.0(2) 3.6(3) 0.5(3) 3.9(3) 3.5(3) 3.5(3) 3.5(3) 3.5(3) 3.5(3) 3.1(2) 1.4(3) 1.0(2) 0.9(2)		012 C14 C13 C16 C15 C00T F1 F3 F3 F3 F3 F3 F3 F3 F3 F3 F3 F3 F5 F5 F5 F5 F5 F6 F6 F6 F6	C13 C14 C15 C16 C17 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	C14 C00T C15 C14 C17 C16 F2 F1 F2 F4 F5 F6 F1 F2 F4 F6 F1 F2 F4 F6 F1 F2 F4 F2 F4	124.3(119.6(120.4(120.0(120.1(120.3(89.53(90.04(90.43(90.89(90.05(179.62 178.86(89.80(90.13(179.41 90.53(89.92(89.59(89.49(2) 2) 3) 3) 3) 3) 3) 10) 10) 11) 11) 2(12) 5(12) 5(12) 10) 10) (11) 9) 9) 9) 10) 10)
Table	S4 To	rsion A	nales	for ib0/001	511	0m				
A	B	C	D	Angle/°	J_1_1_	A A	в	С	D	Angle/°
F7	C38	C39	C40	179.8(3)		C35	C36	C37	C38	0.2(5)
01	C34	C35	C36	179.7(3)		C36	C35	C40	C39	0.4(4)
O1	C34	C35	C40	-2.0(4)		C36	C37	C38	F7	-180.0(3)
O2	C32	C33	N1	-53.3(3)		C36	C37	C38	C39	0.3(5)
O3	C28	C29	N2	-41.2(3)		C37	C38	C39	C40	-0.4(5)
O4	C19	C20	N3	147.1(2)		C38	C39	C40	C35	0.1(5)
O4	C19	C20	C21	-91.0(2)		C40	C35	C36	C37	-0.5(4)
O5	C19	C20	N3	-33.7(3)		O6	C11	C12	O12	-71.4(3)
O5	C19	C20	C21	88.2(3)		07	C9	C10	06	76.2(3)
N1	C34	C35	C36	-1.6(4)		O8	C7	C8	07	-70.6(3)
N1	C34	C35	C40	176.7(2)		O9	C5	C6	08	70.5(3)
N2	C30	C31	02	-63.3(3)		O10	C3	C4	O9	-70.0(3)
N3	C20	C21	C22	-60.4(3)		011	COOT	C13	012	-1.9(3)
N3	C28	C29	N2	138.4(2)		011	COOT	C13	C14	178.0(2)
C18	04	C19	05	1.7(4)		011	COOT	C17	C16	-179.1(2)
C18	04	C19	C20	-179.1(2)		011	C1	C2	010	71.9(3)
C19	C20	C21	C22	177 9(2)		012	C13	C14	C15	-178 6(2)
C20	N3	C28	022	$-1 \ \Delta(\Delta)$		COOT	010	C1	C2	175 6(2)
C20	N3	C28	C29	179 0(2)		COOT	C13	C14	C15	1.5(4)
C20	C21	C22	C23	121 7(3)		C1	013		C13	-168 9(2)
C20	C21	C22	C27	-57.9(3)			011	COOT	C17	-100.9(2)
C21	C22	C22	C24	-37.9(3)			010	C3		-177 8(2)
C21	C22	C23	C24	179.7(2) 170.3(2)		C2	010	C2	C4	-177.0(2)
021 C00	022 C22	C24	020 C25	1 1(A)		C4		02 C5		140.1(Z)
022	C23	024 C27	020	0.2(4)		04 C5	09			-1/0.9(2)
023 C22	022	021	C26	-0.3(4)		00 Ce	09	C7		171.0(2)
C23	024 C2⊑	020 C26	C20	-0.5(4)		C7	00			-175 7(2)
024 C2⊑	020	020	021	-0.3(4)			00		C10	170 0(0)
020	020	027	022	0.9(4)			07	C9	010	1/0.0(Z)
027	U22	023	024	-0.7(4)		040	07			-100.0(2)
U20	IN 3	C20	019	-02.3(<i>3)</i>			00	UT	U1Z	-100.4(2)

Supporting Information

C28	N3	C20	C21	174.8(2)	C11	O6	C10	C9	-178.3(2)
C29	N2	C30	C31	178.6(2)	C12	O12	C13	C00T	179.2(2)
C30	N2	C29	C28	179.9(2)	C12	O12	C13	C14	-0.7(3)
C31	O2	C32	C33	166.2(2)	C13	O12	C12	C11	179.3(2)
C32	O2	C31	C30	173.7(2)	C13	C00T	C17	C16	1.2(4)
C33	N1	C34	O1	8.1(4)	C13	C14	C15	C16	0.3(4)
C33	N1	C34	C35	-170.6(2)	C14	C15	C16	C17	-1.4(4)
C34	N1	C33	C32	-176.1(2)	C15	C16	C17	C00T	0.7(4)
C34	C35	C36	C37	177.8(3)	C17	C00T	C13	012	177.8(2)
C34	C35	C40	C39	-178.0(3)	C17	C00T	C13	C14	-2.3(4)

4. Synthesis of lasso peptide L1

4.1. Synthesis of [2]rotaxane 4

a)

b)

c)

d)

Scheme S2. Synthesis of [2]rotaxane 4

Azide-Phe-Gly methyl ester S10

S10

Azide-acid **S5** (1.5 g, 5.2 mmol, 1.0 equiv), COMU (2.2 g, 5.2 mmol, 1.0 equiv), and NMM (1.1 mL, 10 mmol, 2.0 equiv) were premixed in DMF (10 mL), and to this mixture was added a solution of H_2N -Phe-Gly-OMe⁸ (1.2 g, 5.2 mmol, 1.0 equiv) in DMF (5.0 mL). The mixture was stirred at RT for 36 h and diluted with CH_2Cl_2 and H_2O . The aqueous phase was acidified with 1 M aq HCl to pH 3 and extracted with CH_2Cl_2 (3x). The combined organic phases were washed with brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc 1:2) to give **S10** (2.3 g, 87% yield) as a pale yellow amorphous.

¹**H NMR** (400 MHz, CDCl₃) δ 7.28-7.24 (m, 2H), 7.21-7.18 (m, 3H), 7.03-7.00 (m, 1H), 6.76-6.65 (m, 1H), 4.75 (m, 1H), 4.01-3.84 (m, 4H), 3.68-3.67 (m, 3H), 3.57-3.30 (m, 8H), 3.11-3.09 (m, 2H), 1.39 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 171.13, 169.82, 169.75, 155.98, 155.13, 136.59, 129.26, 128.61, 126.92, 81.08, 69.47, 69.26, 54.03, 53.82, 52.88, 52.20, 50.59, 48.67, 48.21, 41.15, 38.04, 37.34, 28.22.

 $[\alpha]_{D}^{28} = -22.2^{\circ} (c \ 0.24, CHCl_{3})$

IR (thin film) 3296, 2977, 2932, 2109, 1754, 1697, 1655, 1547, 1248, 1207, 1175 cm⁻¹.

HRMS (ESI) calcd for $C_{23}H_{35}N_6O_7$ [M+H]⁺: 507.2562, found: 507.2560.

Azide-Phe-Gly acid S11

S11

To a solution of **S10** (2.0 g, 3.9 mmol, 1.0 equiv) in MeOH (12 mL) was added 1 M aq NaOH (5.9 mL, 5.9 mmol, 1.5 equiv). The mixture was stirred at RT for 1.5 h and diluted with CH_2CI_2 and H_2O . The aqueous phase was acidified with 1 M aq HCl to pH 2 and extracted with CH_2CI_2 (3x). The combined organic phases were washed with brine, dried over Na_2SO_4 , filtered and concentrated under reduced pressure to give **S11** (1.6 g, 83% yield) as a pale yellow solid.

¹**H NMR** (400 MHz, CD₃CN) δ 7.31-7.01 (m, 7H), 4.64-4.61 (m, 1H), 3.87 (d, *J* = 5.6 Hz, 2H), 3.79 (s, 2H), 3.60-3.51 (m, 4H), 3.36-3.28 (m, 4H), 3.23-3.13 (m, 1H), 2.95-2.89 (m, 1H), 1.42-1.33 (m, 9H).

¹³**C NMR** (100 MHz, CD₃CN) δ 172.51, 171.27, 170.83, 156.88, 156.16, 138.43, 130.28, 129.35, 127.60, 81.30, 80.88, 70.19, 69.73, 55.03, 52.57, 51.43, 49.03, 48.34, 41.69, 38.60, 38.06, 28.48. $[\alpha]_{p}^{27} = -15.8^{\circ}$ (c 0.23, CHCl₃) **IR** (thin film) 3305, 2977, 2932, 2110, 1660, 1540, 1406, 1250, 1146 cm⁻¹. **HRMS** (MALDI) calcd for C₂₂H₃₃N₆O₇ [M+H]⁺: 493.2405, found: 493.2405.

Azide-Phe-Gly thioester S12

Azide-acid **S11** (1.6 g, 3.2 mmol, 1.0 equiv), HCTU (1.3 g, 3.2 mmol, 1.0 equiv), and NMM (0.70 mL, 6.4 mmol, 2.0 equiv) were premixed in DMF (5.0 mL), and to this mixture was added ethyl thioglycolate (0.42 mL, 3.8 mmol, 1.2 equiv). The mixture was stirred at RT for 16 h and diluted with CH_2CI_2 and H_2O . The aqueous phase was extracted with CH_2CI_2 (3x). The combined organic phases were washed with H_2O /brine (1:1, 3x), dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc 1:2) to give **S12** (0.84 g, 44% yield) as a pale yellow amorphous.

¹**H NMR** (400 MHz, CD₃CN) δ 7.54-7.20 (m, 6H), 6.99 (br s, 1H), 4.70-4.66 (m, 1H), 4.13 (q, J = 7.1 Hz, 2H), 4.07 (d, J = 6.2 Hz, 2H), 3.79 (s, 2H), 3.65 (s, 2H), 3.59-3.51 (m, 4H), 3.36-3.31 (m, 4H), 3.27-3.17 (m, 1H), 2.94 (dd, J = 14.2, 9.1 Hz, 1H), 1.42-1.32 (m, 9H), 1.22 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CD₃CN) δ 197.78, 172.75, 170.61, 169.39, 156.89, 156.09, 138.49, 138.24, 130.21, 129.35, 127.57, 81.25, 80.71, 70.14, 69.69, 62.45, 55.10, 52.57, 51.40, 49.59, 49.02, 48.29, 38.33, 37.71, 31.63, 28.48, 14.41.

 $[\alpha]_{D}^{28} = -23.7^{\circ} (c \ 0.31, CHCl_{3})$

IR (thin film) 3289, 2977, 2932, 2108, 1697, 1657, 1542, 1298, 1249, 1170, 1146 cm⁻¹. **HRMS** (ESI) calcd for C₂₆H₄₂N₇O₈S [M+NH₄]⁺: 612.2810, found: 612.2812.

Azide-Phe-Gly thioester TFA salt 3

To a solution of **S12** (0.34 g, 0.57 mmol) in CH_2CI_2 (2.0 mL) was added TFA (2.0 mL). The mixture was stirred at RT for 1 h and diluted with CH_2CI_2 and H_2O . The aqueous phase was extracted with CH_2CI_2 (3x). The combined organic phases were dried over Na_2SO_4 , filtered and concentrated

under reduced pressure to give **3** (0.31 g, 89% yield) as a pale yellow amorphous.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 7.9 Hz, 1H), 7.98 (t, J = 5.9 Hz, 1H), 7.73 (br s, 2H), 7.28-7.15 (m, 5H), 4.78 (m, 1H), 4.18-4.10 (m, 4H), 4.02 (d, J = 16.2 Hz, 1H), 3.83 (d, J = 16.2 Hz, 1H), 3.75-3.73 (m, 2H), 3.65 (d, J = 0.78 Hz, 2H), 3.62-3.60 (m, 2H), 3.37 (m, 2H), 3.22-3.13 (m, 3H), 2.95 (dd, J = 13.9, 8.6 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.49, 172.45, 169.29, 165.54, 160.84 (q, J = 39 Hz), 135.74, 129.18, 128.66, 127.22, 115.42 (q, J = 287 Hz), 69.84, 65.66, 62.40, 55.32, 50.46, 48.85, 48.54, 47.77, 37.82, 30.95, 13.89.

 $[\alpha]_{D}^{26} = -12.3^{\circ} (c \ 0.47, CHCl_3)$

IR (thin film) 3287, 3067, 3033, 2987, 2932, 2109, 1667, 1556, 1304, 1200, 1179, 1139 cm⁻¹. **HRMS** (ESI) calcd for C₂₁H₃₁N₆O₆S [M+H−TFA]⁺: 495.2020, found: 495.2015.

N-Fmoc hydroxylamine S14

To a solution of *N*-Boc hydroxylamine **S13**⁹ (1.2 g, 3.8 mmol, 1.0 equiv) in CH₂Cl₂ (3.0 mL) was added TFA (3.0 mL). The mixture was stirred at RT for 2 h and the volatiles were evaporated under reduced pressure. The residue was dissolved in dioxane/H₂O (10 mL, 1:1), and Na₂CO₃ (2.0 g, 19 mmol, 5.0 equiv) followed by Fmoc chloride (1.2 g, 4.6 mmol, 1.2 equiv) were added to this solution. The mixture was stirred at RT for 2 h and diluted with CH₂Cl₂. The aqueous phase was acidified with 1 M aq HCl to pH 2 and extracted with CH₂Cl₂ (3x). The combined organic phases were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexanes/EtOAc 1:2) to give **S14** (rotamers, 1.0 g, 60% yield over 2 steps) as a colorless oil that solidified in the freezer.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (m, 2H), 7.60-7.55 (m, 2H), 7.39 (m, 2H), 7.30 (m, 2H), 4.50 (d, J = 6.8 Hz, 2H), 4.24 (t, J = 6.8 Hz, 1H), 3.73-3.71 (m, 2H), 3.32-3.30 (m, 4H), 2.42 (t, J = 7.3 Hz, 2H), 1.90 (q, J = 6.9 Hz, 2H), 1.16 (t, J = 7.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 178.22, 155.80, 153.96, 143.59, 141.28, 127.72, 127.08, 124.96, 119.92, 68.14, 49.70, 47.04, 43.08, 41.60, 30.84, 22.24, 14.02, 13.26.

IR (thin film) 2978, 2933, 1741, 1714, 1450, 1422, 1270, 1145, 1109 cm⁻¹.

HRMS (ESI) calcd for $C_{24}H_{29}N_2O_6$ [M+H]⁺: 441.2020, found: 441.2021.

B21C7-N-Boc amine S17

To a solution of *N*-Boc dopamine **S15**¹⁰ (1.6 g, 6.4 mmol, 1.0 equiv) in CH₃CN (50 mL) was added hexaethylene glycol ditosylate **S16**⁴ (3.8 g, 6.4 mmol, 1.0 equiv), K₂CO₃ (2.7 g, 19 mmol, 3.0 equiv) followed by KPF₆ (1.8 g, 9.6 mmol, 1.5 equiv). The mixture was refluxed at 105 °C for 21 h and cooled to RT. The reaction mixture was diluted with H₂O and extracted with CH₂Cl₂ (3x). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂/MeOH 20:1) to give **S17** (3.0 g, 94% yield) as a pale brown solid.

¹**H NMR** (400 MHz, CDCl₃) δ 6.84-6.82 (m, 1H), 6.74-6.72 (m, 2H), 4.58 (br s, 1H), 4.17-4.13 (m, 4H), 3.90-3.87 (m, 4H), 3.75-3.73 (m, 4H), 3.69-3.61 (m, 12H), 3.35-3.30 (m, 2H), 2.71 (t, *J* = 7.2 Hz, 2H), 1.42 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 155.87, 148.47, 147.00, 132.73, 121.78, 114.83, 114.50, 79.17, 70.14, 70.03, 69.80, 69.34, 69.31, 68.81, 68.56, 41.81, 35.67, 28.38.

IR (thin film) 2927, 2875, 1702, 1514, 1260, 1169, 1121 cm⁻¹.

HRMS (ESI) calcd for $C_{25}H_{45}N_2O_9$ [M+NH₄]⁺: 517.3120, found: 517.3123.

B21C7-N-Fmoc hydroxylamine 2

B21C7-*N*-Boc amine **S17** (0.49 g, 0.98 mmol) in CH_2CI_2 (2.0 mL) was added TFA (2.0 mL). The mixture was stirred at RT for 2 h and basified with sat aq Na_2CO_3 . The aqueous phase was extracted with CH_2CI_2 (3x). The combined organic phases were dried over Na_2SO_4 , filtered and concentrated under reduced pressure to give a crude material of the unprotected amine (0.34 g, 87% yield). The unprotected amine (0.34 g, 0.85 mmol, 1.0 equiv) was dissolved in DMF (2.0 mL),

and this solution was added to a solution of *N*-Fmoc hydroxylamine **S14** (0.45 g, 1.0 mmol, 1.2 equiv), HCTU (0.42 g, 1.0 mmol, 1.2 equiv), and DIPEA (0.44 mL, 2.6 mmol, 3.0 equiv) in DMF (3.0 mL). The mixture was stirred at RT for 18 h and diluted with CH_2CI_2 . The organic phase was washed with 1 M aq HCl (1x), then H_2O (2x), then dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by preparative RP-HPLC using a YMC C18 column with a gradient of 40 to 95% CH_3CN in 28 min. The pure product fractions were pooled and lyophilized to obtain **2** (rotamers, 0.41 g, 59% yield) as a colorless amorphous.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.56 (dd, *J* = 7.5, 1.0 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.29 (m, 2H), 6.80-6.78 (m, 1H), 6.73-6.69 (m, 2H), 6.50 (br s, 1H), 4.51 (d, *J* = 6.6 Hz, 2H), 4.22 (t, *J* = 6.6 Hz, 1H), 4.15-4.10 (m, 4H), 3.90-3.87 (m, 4H), 3.79-3.76 (m, 4H), 3.73-3.70 (m, 4H), 3.68-3.64 (m, 8H), 3.61 (t, *J* = 6.2 Hz, 2H), 3.47 (q, *J* = 6.8 Hz, 2H), 3.32-3.23 (m, 4H), 2.73 (t, *J* = 7.3 Hz, 2H), 2.24 (t, *J* = 7.3 Hz, 2H), 1.85 (p, *J* = 6.7 Hz, 2H), 1.15 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 174.07, 156.17, 154.14, 148.99, 147.55, 143.51, 141.32, 131.82, 127.81, 127.10, 124.93, 121.39, 120.00, 114.72, 114.51, 71.04, 71.03, 71.00, 70.98, 70.95, 70.51, 69.81, 69.79, 69.33, 69.20, 68.14, 49.65, 47.05, 43.15, 41.67, 41.06, 34.92, 33.01, 23.64, 14.06, 13.29.

IR (thin film) 2934, 2875, 1744, 1514, 1451, 1424, 1266, 1143, 1106 cm⁻¹. **HRMS** (ESI) calcd for C₄₄H₆₃N₄O₁₂ [M+NH₄]⁺: 839.4437, found: 839.4433.

[2]Rotaxane 4

4-Fluorophenyl KAT **1** (81 mg, 0.35 mmol, 1.0 equiv), crown ether **2** (0.29 g, 0.35 mmol, 1.0 equiv), and **3** (0.21 g, 0.35 mmol, 1.0 equiv) were dissolved in CH₃CN (3.2 mL), and HBF₄•OEt₂ (96 μ L, 0.70 mmol, 2.0 equiv) was added. The mixture was stirred at RT for 17 h. The reaction was quenched with H₂O. The crude material was purified by preparative HPLC using a YMC C18 column with a gradient of 60 to 80% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 116 mg of **4** (21% yield) as a mixture of diastereomers.

In the same purification, the peaks containing axle **5** were also collected, and these fractions were pooled and lyophilized. The lyophilizates were repurified by preparative HPLC using a YMC C18 column with a gradient of 20 to 95% CH_3CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 63 mg of **5** (31% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 9.54 (dd, *J* = 16.1, 8.5 Hz, 1H), 9.00-8.94 (m, 1H), 7.86-7.63 (m, 6H), 7.56 (d, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.34-7.27 (m, 4H), 7.19 (q, *J* = 7.6 Hz, 2H), 7.14-

7.08 (m, 1H), 7.02-6.97 (m, 2H), 6.91 (q, J = 5.5 Hz, 1H), 6.68-6.53 (m, 4H), 4.80-4.64 (m, 1H),
4.45 (d, J = 6.9 Hz, 1H), 4.29-4.19 (m, 3H), 4.16-3.77 (m, 10H), 3.72-3.26 (m, 37H), 2.98-2.91 (m, 1H),
2.71 (t, J = 6.9 Hz, 2H), 2.22 (q, J = 6.9 Hz, 2H), 1.90-1.83 (m, 2H), 1.25-1.21 (m, 3H), 1.15 (t, J = 7.1 Hz, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ 196.19, 196.14, 173.21, 173.15, 173.05, 168.62, 166.84, 166.09, 166.03, 164.59 (d, J = 252 Hz), 160.72 (q, J = 37.1 Hz), 156.10, 154.05, 146.83, 146.79, 145.47, 143.51, 141.24, 138.00, 132.20, 130.43 (d, J = 3.2 Hz), 129.53, 129.45, 129.21 (d, J = 9.0 Hz), 128.14, 127.79, 127.07, 126.18, 126.11, 124.96, 121.09, 119.96, 116.04 (q, J = 291 Hz),115.46 (d, J = 22.0 Hz), 112.17, 112.13, 111.38, 111.31, 71.15, 71.11, 71.09, 70.77, 70.67, 70.59, 70.54, 69.55, 69.46, 69.37, 69.35, 69.32, 68.19, 68.00, 67.91, 67.82, 66.33, 61.69, 56.09, 55.90, 49.76, 48.95, 48.44, 46.98, 46.35, 43.08, 41.61, 40.83, 40.76, 39.43, 38.00, 37.91, 34.93, 33.14, 30.81, 23.49, 14.06, 14.00, 13.27.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –107.82, –107.83.

IR (thin film) 3061, 2931, 1741, 1687, 1262, 1200, 1142, 1116 cm⁻¹.

HRMS (MALDI) calcd for C₇₂H₉₅FN₇O₁₉S [M+H–TFA]⁺: 1412.6382, found: 1412.6379.

5

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.2 Hz, 1H), 8.18 (t, *J* = 5.5 Hz, 1H), 7.85-7.81 (m, 2H), 7.58 (br s, 1H), 7.22-7.11 (m, 5H), 7.03 (t, *J* = 8.5 Hz, 2H), 4.79-4.73 (m, 1H), 4.14-4.05 (m, 4H), 3.95 (d, *J* = 16.1 Hz, 1H), 3.74 (d, *J* = 16.1 Hz, 1H), 3.65-3.57 (m, 8H), 3.16-3.06 (m, 3H), 2.88 (dd, *J* = 14.0, 8.9 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 195.77, 171.96, 169.06, 167.48, 165.50, 164.77 (d, J = 252 Hz), 161.67 (q, J = 38.4 Hz), 136.21, 130.05 (d, J = 3.2 Hz), 129.70 (d, J = 8.9 Hz), 129.23, 128.52, 127.01, 116.14 (q, J = 291 Hz), 115.46 (d, J = 21.8 Hz), 70.08, 65.33, 62.22, 55.07, 48.84, 48.34, 47.42, 39.83, 37.95, 30.95, 13.95.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –107.85.

 $[\alpha]_{D}^{28} = -10.3^{\circ} (c \ 0.81, CHCl_{3})$

IR (thin film) 3293, 3066, 1669, 1555, 1504, 1296, 1200, 1133 cm⁻¹.

HRMS (ESI) calcd for C₂₈H₃₆FN₄O₇S [M+H–TFA]⁺: 591.2283, found: 591.2272.

4.2. Peptide α -ketoacid 7

Peptide α -ketoacid **7** was prepared using the protected leucine α -ketoacid resin **S1** on a 0.18 mmol scale (1.0 g) with a substitution capacity of 0.18 mmol/g. After the full assembly of amino acids, the resin was treated with (95:2.5:2.5) TFA:DODT:H₂O for 1 h and removed by filtration. The volatiles were evaporated from the filtrate under reduced pressure. The residue was triturated with Et₂O and centrifuged to obtain the crude **7**. Purification of crude **7** was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 44 mg of **7** (27% yield for peptide synthesis, resin cleavage and purification steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{44}H_{65}N_8O_9S_2$ [M+H]⁺: 913.4310, found: 913.4319.

Fig. S2. Analytical HPLC of purified 7

Fig. S3. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of 7

Note: Products derived from [2]rotaxane 4 were obtained as a mixture of diastereomers. For simplicity, strucutres of one of the diastereomers are shown in the following sections.

Scheme S3. Synthesis of lasso peptide L1

Peptido[2]rotaxane 8

8

To a solution of rotaxane **4** (40 mg, 28 μ mol) in DMSO (760 μ L) was added Et₂NH (40 μ L), and the mixture was incubated at RT for 5 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fraction was lyophilized to give the unprotected hydroxylamine **6** (31 mg, 78% yield). The isolated unprotected hydroxylamine **6** was somewhat unstable and immediately used for the next ligation step. Characterization was therefore conducted only by HRMS (MALDI).

HRMS (MALDI) calcd for $C_{57}H_{85}FN_7O_{17}S [M+H]^+$: 1190.5701, found: 1190.5701.

The lyophilizate **6** (21 mg, 22 μ mol, 1.2 equiv) and peptide α -ketoacid **7** (17 mg, 18 μ mol, 1.0 equiv) were dissolved in DMSO/H₂O (6:4, 360 μ L, 0.1 M oxalic acid). The resulting mixture was incubated at 60 °C for 15 h and cooled to RT. Purification was performed by preparative HPLC

Supporting Information

using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 8.2 mg of **8** (23% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. **HRMS** (MALDI) calcd for $C_{95}H_{138}FN_{14}O_{22}S_3$ [M+H]⁺: 1941.9251, found: 1941.9277.

Fig. S4. HPLC monitoring of the KAHA ligation to form 8

Fig. S5. Analytical HPLC of purified 8

Fig. S6. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of 8

Lasso peptide 9

4-Mercaptophenylacetic acid (8.2 mg, 49 μ mol, 10 equiv) and TCEP-HCI (28 mg, 98 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 1.2 mL), and pH of this solution was adjusted to 7.5 by adding 1 M aq NaOH. A solution of **8** (9.5 mg, 4.9 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.20 mL) was prepared, and a portion (50 μ L) of this solution was added to the ligation buffer. The mixture was incubated at RT for 10 min, and the next portion (50 μ L) of the solution of **8** was added to the mixture. This addition-incubation process was repeated every 10 minutes. After complete addition, the mixture was further incubated at RT for 1 h and purified by preparative HPLC using YMC C18 column (20 x 250

mm) with a gradient of 20 to 95% CH_3CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 6.0 mg of **9** (71% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{87}H_{122}FN_{14}O_{20}S$ [M+H]⁺: 1733.8659, found: 1733.8661.

Fig. S7. HPLC of monitoring of the NCL to form 9

Fig. S8. Analytical HPLC of purified 9

Cys-alkylated lasso peptide L1

To a solution of **9** (8.9 mg, 5.1 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 410 μ L) was added a solution of iodoacetamide (1.0 mg, 5.6 μ mol, 1.1 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 100 μ L). The mixture was incubated at RT for 40 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 6.0 mg of **L1** (66% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{89}H_{125}FN_{15}O_{21}S [M+H]^+$: 1790.8874, found: 1790.8859.

Fig. S10. HPLC monitoring of the cysteine alkylation to form L1

Fig. S11. Analytical HPLC of purified L1

Fig. S12. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of L1

5. Synthesis of branched-cyclic peptide B1

Scheme S4. Synthesis of branched-cyclic peptide B1

KAHA ligation product S19

S19

To a solution of crown ether **2** (91 mg, 0.11 mmol) in DMSO (570 μ L) was added Et₂NH (30 μ L), and the mixture was incubated at RT for 5 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fraction was lyophilized to give the unprotected hydroxylamine **S18** (57 mg, 86% yield). The isolated unprotected hydroxylamine **S18** was somewhat unstable and immediately used for the next ligation step. Characterization was therefore conducted only by HRMS (ESI).

HRMS (ESI) calcd for $C_{29}H_{50}N_3O_{10}$ [M+H]⁺: 600.3491, found: 600.3478.

The lyophilizate **S18** (14 mg, 23 μ mol, 2.0 equiv) and peptide α -ketoacid **7** (11 mg, 12 μ mol, 1.0 equiv) were dissolved in DMSO/H₂O (6:4, 234 μ L, 0.1 M oxalic acid). The resulting mixture was incubated at 60 °C for 8.5 h and cooled to RT. Purification was performed by preparative HPLC

Supporting Information

using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 5.9 mg of **S19** (37% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. **HRMS** (MALDI) calcd for $C_{67}H_{103}N_{10}O_{15}S_2$ [M+H]⁺: 1351.7040, found: 1351.7039.

Fig. S13. HPLC monitoring of the KAHA ligation to form S19

Fig. S14. Analytical HPLC of purified S19

Fig. S15. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S19

NCL product S20

S20

4-Mercaptophenylacetic acid (12 mg, 73 μ mol, 10 equiv) and TCEP-HCI (42 mg, 146 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 1.4 mL), and pH of this solution was adjusted to 7.9 by adding 1 M aq NaOH. To this ligation buffer were added a solution of axle-thioester **5** (5.2 mg, 8.8 μ mol, 1.2 equiv) in CH₃CN (0.20 mL) followed by a solution of **S19** (9.9 mg, 7.3 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.30 mL), and the mixture was incubated at RT for 2 h. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 9.2 mg of **S20** (73% yield).

Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. HRMS (MALDI) calcd for $C_{87}H_{122}FN_{14}O_{20}S$ [M+H]⁺: 1733.8659, found: 1733.8662.

Fig. S16. HPLC monitoring of the NCL to form S20

Fig. S18. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S20

Fig. S17. Analytical HPLC of purified S20

Branched-cyclic peptide B1

B1

To a solution of **S20** (10 mg, 5.8 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.46 mL) was added a solution of iodoacetamide (1.2 mg, 6.4 μ mol, 1.1 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.12 mL). The mixture was incubated at RT for 50 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 8.1 mg of **B1** (78% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{89}H_{125}FN_{15}O_{21}S$ [M+H]⁺: 1790.8874, found: 1790.8871.

Fig. S19. HPLC monitoring of the cysteine alkylation to form B1

Fig. S20. Analytical HPLC of purified B1

Fig. S21. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of B1

Comparison of NMR spectra of L1 and B1 6.

Significant peak overlaps around 3.2 ppm to 4.5 ppm in ¹H NMR made complete assignment impossible. However, ¹H NMR spectra of L1 and B1 were distinct, and a few characteristic peaks were found in the spectrum of L1.

.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2 1 4.0 f1 (ppm)

3.0 2.9 2.8 2.7 2.6 2 5 5.4 4.1 4.0 3.9 f1 (ppm) 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1

Figure S22. Selected regions of ¹H NMR spectra (600 MHz, d₇-DMF) of L1 and B1

7. Synthesis of lasso peptide L2

7.1. Synthesis of crown ether-N-Fmoc hydroxylamine 13

Scheme S5. Synthesis of crown ether-N-Fmoc hydroxylamine 13

Crown ether-diBn amine S21

Note: this reaction was conducted under N_2 *atmosphere.* To a suspension of NaH (60% in mineral oil, 1.4 g, 36 mmol, 3.0 equiv) in dry THF (78 mL) was added a solution of 2-(*N*,*N*-dibenzylamino)-1,3-propanediol¹¹ (3.2 g, 12 mmol, 1.0 equiv) in dry THF (10 mL) at RT. The mixture was stirred at 60 °C for 10 min, and hexaethylene glycol ditosylate **S16** (7.0 g, 12 mmol, 1.0 equiv) was added. The reaction mixture was stirred at 60 °C for 16 h and cooled to RT. Sat aq NH₄Cl (10 mL) was added carefully, and the mixture was diluted with CH₂Cl₂ and H₂O. The two phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3x). The combined organic phases were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc to EtOAc/MeOH 50:1) to give **S21** (1.3 g, 21% yield) as a pale yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38-7.36 (m, 4H), 7.29-7.27 (m, 3H), 7.26-7.25 (m, 1H), 7.21-7.17 (m, 2H), 3.78 (s, 4H), 3.72-3.52 (m, 28H), 3.06 (p, *J* = 5.8 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 140.66, 128.50, 128.02, 126.58, 70.81, 70.75, 70.67, 70.62, 70.55, 69.71, 56.54, 55.22.

IR (thin film) 2866, 1494, 1453, 1351, 1297, 1250, 1115 cm⁻¹.

HRMS (ESI) calcd for $C_{29}H_{44}NO_7$ [M+H]⁺: 518.3112, found: 518.3112.

Crown ether-N-Fmoc hydroxylamine 13

To a solution of **S21** (1.1 g, 2.1 mmol) in MeOH/THF (18 mL, 5:1) was added Pd/C (10%, 123 mg). The mixture was stirred at RT under 1 atm H_2 (baloon) for 19 h and filtered through Celite[®]. The filtrate was concentrated under reduced pressure.

The residue (0.76 g, 2.2 mmol, 1.0 equiv) was dissolved in DMF (2.0 mL) and added to a premixed solution of **S14** (1.1 g, 2.4 mmol, 1.1 equiv), HCTU (1.0 g, 2.4 mmol, 1.1 equiv) and NMM (0.48

mL, 4.4 mmol, 2.0 equiv) in DMF (8.0 mL). The mixture was stirred at RT for 15 h and diluted with CH_2Cl_2 and H_2O . The two phases were separated and the aqueous phase was extracted with CH_2Cl_2 (3x). The combined organic phases were washed with H_2O , dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/MeOH 10:1) to give **13** (rotamers, 1.5 g, 88% yield) as a pale yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 2H), 7.58 (dd, *J* = 7.6, 1.1 Hz, 2H), 7.39 (td, *J* = 7.6, 1.0 Hz, 2H), 7.30 (td, *J* = 7.5, 1.2 Hz, 2H), 7.02-7.00 (m, 1H), 4.46 (d, *J* = 6.9 Hz, 2H), 4.25-4.18 (m, 2H), 3.71-3.60 (m, 28H), 3.53 (dd, *J* = 10.0, 5.2 Hz, 2H), 3.34-3.29 (m, 4H), 2.27 (t, *J* = 7.5 Hz, 2H), 1.96-1.89 (m, 2H), 1.16 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 172.87, 155.87, 153.92, 143.63, 141.24, 127.71, 127.06, 125.02, 119.90, 70.98, 70.63, 70.59, 70.56, 70.53, 70.45, 69.46, 68.08, 49.88, 49.19, 47.02, 42.99, 41.55, 33.10, 23.26, 14.06, 13.28.

IR (thin film) 2873, 1743, 1666, 1451, 1421, 1351, 1269, 1143, 1107 cm⁻¹.

HRMS (ESI) calcd for $C_{39}H_{58}N_3O_{12}$ [M+H]⁺: 760.4015, found: 760.4006.

7.2. Synthesis of 3,5-dimethylphenyl KAT 15

Scheme S6. Synthesis of 3,5-dimethylphenyl KAT 15

Bt-ethoxy *N*,*O*-acetal S22

S22

3,5-Dimethylbenzaldehyde¹² (2.75 g, 20.5 mmol, 1.00 equiv), benzotriazole (3.05 g, 25.6 mmol, 1.25 equiv), EtOH (2.40 mL, 41.0 mmol, 2.00 equiv), and triethylorthoformate (10.2 mL, 61.5 mmol, 3.00 equiv) were dissolved in THF (40 mL) at RT. To this solution was added H_2SO_4 (10 drops), resulting in a white precipitate. The reaction was stirred at RT for 15 min, capped tightly with a plastic cap, and placed at 70 °C for 30 min. The reaction was cooled to RT, and 1.0 g solid NaHCO₃ was added and the heterogeneous solution was concentrated. The residue was purified by flash column chromatography (hexanes/EtOAc 10:1) to give **S22** (4.35 g, 75% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08-8.04 (m, 1H), 7.38-7.30 (m, 3H), 7.13 (s, 1H), 7.06-7.05 (m, 2H), 6.97-6.95 (m, 1H), 3.72 (dq, J = 9.5, 7.0 Hz, 1H), 3.45 (dq, J = 9.5, 7.0 Hz, 1H), 2.27 (s, 6H), 1.24

Supporting Information

(t, J = 7.0 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 146.93, 138.17, 136.25, 131.11, 130.57, 127.31, 124.08, 123.57, 119.80, 111.77, 89.68, 64.94, 21.30, 14.67.

IR (thin film) 2977, 2918, 1609, 1449, 1331, 1274, 1163, 1104, 1085 cm⁻¹.

HRMS (ESI) calcd for C₁₇H₁₉N₃NaO [M+Na]⁺: 304.1420, found: 304.1423.

3,5-Dimethylphenyl KAT 15

Note: this reaction was conducted under N_2 atmosphere. In a 500 mL flask, **S22** (3.85 g, 13.7 mmol, 1.10 equiv) was dissolved in dry THF (88 mL) at RT. The flask was placed in a dry ice/acetone bath which was cooled with liq. N2 until solidification of acetone (ca. -110 °C) and stirred for 15 min. n-BuLi (1.6 M in hexane, 8.1 mL, 12.5 mmol, 1.00 equiv) was added slowly down the side of the flask over 5 min. During this time, an intense green color developed. The solution was stirred for 2 min following the end of *n*-BuLi addition, and neat B(OMe)₃ (2.90 mL, 24.9 mmol, 2.00 equiv) was added slowly over 2 min directly into the solution. The deep green color gradually became brownish yellow after ca. 10 min of stirring. The flask was kept in the dry ice/acetone bath for 1 h, which slowly warmed to -78 °C, and the color of the reaction mixture became nearly colorless. The flask was removed from the bath, and with vigorous stirring, four portions of sat ag KHF₂ were added (4 x 10 mL, 40 mL total). As the reaction warmed, a biphasic mixture consisting of a milky white aqueous layer and a yellow organic layer formed. This was stirred overnight (16 h from the time of KHF₂ addition) over which time the organic layer stayed yellow. The two layers were separated and the yellow organic phase was evaporated until some water remained. To the residual yellow wet slurry were added Et₂O (30 mL) and hexanes (10 mL), and the mixture was stirred at RT for 1 h. The resulting precipitates were filtered, washed with Et₂O (4 x 10 mL) and dried to give 15 (1.19 g, 40% yield) as a white solid.

¹**H NMR** (600 MHz, d₆-acetone) δ 7.69-7.68 (m, 2H), 7.08-7.07 (m, 1H), 2.31-2.30 (m, 6H).

¹³**C NMR** (150 MHz, d₆-acetone) δ 236.03, 137.67, 133.29, 127.13, 127.12, 21.36.

¹⁹**F NMR** (470 MHz, d₆-acetone) δ –144.44.

¹¹**B NMR** (160 MHz, d_6 -acetone) δ –0.82.

IR (thin film) 2957, 2901, 1637, 1594, 1299, 1200 cm⁻¹.

HRMS (ESI) calcd for C₉H₉BF₃O [M–K]⁻: 201.0706, found: 201.0707.

7.3. Synthesis of [2]Rotaxane S23

S23

3,5-Dimethylphenyl KAT **15** (0.13 g, 0.53 mmol, 1.1 equiv), crown ether **13** (0.37 g, 0.48 mmol, 1.0 equiv), and **3** (0.31 g, 0.48 mmol, 1.0 equiv) were dissolved in CH₃CN (2.4 mL), and HBF₄•OEt₂ (135 μ L, 0.96 mmol, 2.0 equiv) was added. The mixture was stirred at RT for 16 h. The reaction was quenched with H₂O. The crude material was purified by preparative HPLC using a YMC C18 column with a gradient of 40 to 95% CH₃CN with 0.1% TFA in 38 min. The pure product fractions were pooled and lyophilized to obtain 91 mg of **S23** (14% yield) as a mixture of diastereomers.

In the same purification, the peaks containing axle **S24** were also collected, and these fractions were pooled and lyophilized. The lyophilizates were repurified by preparative HPLC using a YMC C18 column with a gradient of 20 to 95% CH_3CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 114 mg of **S24** (34% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 9.88 (d, *J* = 8.8 Hz, 1H x 0.55), 9.59 (d, *J* = 8.8 Hz, 1H x 0.45), 9.04 (t, *J* = 6.0 Hz, 1H x 0.45), 8.80 (t, *J* = 6.0 Hz, 1H x 0.45), 7.75-7.73 (m, 2H), 7.66-7.43 (m, 4H), 7.40-7.37 (m, 2H), 7.35-7.32 (m, 2H), 7.31-7.27 (m, 4H), 7.21-7.17 (m, 2H), 7.14-7.09 (m, 2H + 1H x 0.55), 6.95-6.93 (m, 1H), 6.59 (d, *J* = 8.5 Hz, 1H x 0.45), 4.90-4.83 (m, 1H), 4.43 (dd, *J* = 14.0, 7.0 Hz, 2H), 4.25-4.19 (m, 2H), 4.17-3.98 (m, 5H), 3.93-3.72 (m, 1H), 3.72-3.28 (m, 45H), 3.01-2.93 (m, 1H), 2.32-2.24 (m, 8H), 1.95-1.88 (m, 2H), 1.26-1.22 (m, 3H), 1.18-1.15 (m, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 196.10, 196.08, 173.13, 172.91, 172.72, 172.25, 168.60, 168.57, 168.55, 168.53, 165.78, 165.57, 161.20 (q, J = 35.7 Hz), 156.09, 155.87, 153.99, 153.97, 143.68, 143.53, 141.24, 141.23, 138.16, 138.13, 137.90, 134.74, 134.63, 133.10, 133.07, 129.40, 129.36, 128.19, 128.10, 127.79, 127.68, 127.07, 126.27, 126.06, 125.10, 124.97, 124.66, 119.97, 119.88, 116.40 (q, J = 292 Hz), 71.37, 71.32, 71.28, 71.15, 71.03, 71.01, 70.96, 70.90, 70.86, 70.84, 70.83, 70.80, 70.78, 70.75, 70.64, 70.60, 70.52, 70.51, 69.88, 69.76, 69.43, 69.39, 68.79, 68.73, 68.21, 68.19, 66.12, 66.03, 61.71, 61.68, 56.01, 55.84, 49.94, 49.69, 49.02, 49.00, 48.97, 48.27, 47.84, 47.13, 47.02, 46.96, 46.90, 43.06, 43.00, 41.59, 39.56, 39.41, 38.02, 37.95, 33.08, 33.00, 30.86, 23.38, 23.25, 21.22, 21.20, 14.04, 14.03, 13.29.

IR (thin film) 2908, 1741, 1688, 1539, 1452, 1422, 1200, 1092 cm⁻¹.

HRMS (MALDI) calcd for C₆₉H₉₈N₇O₁₉S [M+H–TFA]⁺: 1360.6633, found: 1360.6612.

S24

¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.4 Hz, 1H), 8.26 (t, *J* = 6.5 Hz, 1H), 7.40 (s, 2H), 7.29 (br s, 1H), 7.21-7.11 (m, 5H), 7.08 (s, 1H), 4.77-4.71 (m, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 4.08-3.96 (m, 3H), 3.72-3.53 (m, 9H), 3.15 (dd, *J* = 14.0, 5.2 Hz, 1H), 3.08-3.00 (m, 2H), 2.86 (dd, *J* = 14.0, 9.3 Hz, 1H), 2.29 (s, 6H), 1.23 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ 195.95, 171.89, 169.13, 168.85, 165.60, 162.02 (q, J = 34.3 Hz), 138.23, 136.45, 133.99, 133.27, 129.25, 128.46, 126.89, 124.92, 116.43 (q, J = 293 Hz), 70.22, 65.53, 62.15, 55.14, 48.80, 48.40, 47.29, 39.75, 37.82, 30.94, 21.10, 13.97.

 $[\alpha]_{\rm p}^{26} = -12.2^{\circ} (c \ 0.32, \ {\rm CHCl}_3)$

IR (thin film) 3065, 2926, 1670, 1543, 1303, 1200, 1134 cm⁻¹.

HRMS (ESI) calcd for $C_{30}H_{41}N_4O_7S$ [M+H–TFA]⁺: 601.2690, found: 601.2687.

7.4. Comparison of thermal stability of [2]rotaxanes

Initially, we have preprared [2]rotaxane **S25** using 4-fluorophenyl KAT **1** as a capping agent. Although **S25** was isolated and characterized by HRMS (MALDI), we found that **S25** was thermally unstable. **S25** gradually underwent deslippage under the KAHA ligation reaction condition (**60** °C, DMSO/H₂O (6:4), 0.1 M oxalic acid). On the other hand, [2]rotaxane **S23** did not show deslippage under the same condition.

Figure S23. Comparison of thermal stability of [2]rotaxanes S25 and S23

[2]Rotaxane S25

S25

4-Fluorophenyl KAT **1** (0.26 g, 1.1 mmol, 1.2 equiv), crown ether **13** (0.72 g, 0.95 mmol, 1.0 equiv), and **3** (0.47 g, 0.95 mmol, 1.0 equiv) were dissolved in CH₃CN (4.8 mL), and HBF₄•OEt₂ (264 μ L, 1.9 mmol, 2.0 equiv) was added. The mixture was stirred at RT for 16 h. The reaction was quenched with H₂O. The crude material was purified by preparative HPLC using a YMC C18 column with a gradient of 40 to 95% CH₃CN with 0.1% TFA in 38 min. The pure product fractions were pooled and lyophilized to obtain 78 mg of **S25** (6% yield) as a mixture of diastereomers. Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. **HRMS** (MALDI) calcd for C₆₇H₉₃FN₇O₁₉S [M+H–TFA]⁺: 1350.6225, found: 1350.6222.

40 to 95% CH₃CN in 17 min with 0.1% TFA

Fig. S24. Analytical HPLC of purified S25

Fig. S25. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S25

Note: Products derived from [2]rotaxane S23 were obtained as a mixture of diastereomers. For simplicity, strucutres of one of the diastereomers are shown in the following sections.

7.5. Synthesis of lasso peptide L2

Peptido[2]rotaxane S26

S26

To a solution of rotaxane **S23** (16 mg, 12 μ mol, 1.0 equiv) in DMSO (95 μ L) was added Et₂NH (5 μ L), and the mixture was incubated at RT for 4 min and directly added to a solution of peptide α -ketoacid **7** (13 mg, 14 μ mol, 1.2 equiv) in DMSO/H₂O (6:4, 360 μ L, 0.1 M oxalic acid). The resulting

mixture was incubated at 60 °C for 16 h and cooled to RT. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH_3CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 11 mg of **S26** (51% yield for deprotection and KAHA ligation steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for C₉₂H₁₄₀N₁₄NaO₂₂S₃ [M+Na]⁺: 1911.9321, found: 1911.9320.

Fig. S28. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S26

Lasso peptide S27

S27

4-Mercaptophenylacetic acid (14 mg, 81 μ mol, 10 equiv) and TCEP-HCI (46 mg, 162 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 2.1 mL), and pH of this solution was adjusted to 7.4 by adding 1 M aq NaOH. A solution of **S26** (15 mg, 8.1 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.40 mL) was prepared, and a portion (100 μ L) of this solution was added to the ligation buffer. The mixture was incubated at RT
for 15 min, and the next portion (100 μ L) of the solution of **S26** was added to the mixture. This addition-incubation process was repeated every 15 minutes. After complete addition, the mixture was further incubated at RT for 1 h and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 5.3 mg of **S27** (39% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{84}H_{125}N_{14}O_{20}S$ [M+H]⁺: 1681.8910, found: 1681.8904.

Fig. S29. HPLC monitoring of the NCL to form S27

Fig. S31. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S27

Cys-alkylated lasso peptide L2

To a solution of **S27** (5.3 mg, 3.2 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 255 μ L) was added a solution of iodoacetamide (0.65 mg, 3.5 μ mol, 1.1 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 65 μ L). The mixture was incubated at RT for 40 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of

20 to 95% CH_3CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 3.7 mg of L2 (66% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{86}H_{128}N_{15}O_{21}S [M+H]^+$: 1738.9124, found: 1738.9098.

Fig. S32. HPLC monitoring of the cysteine alkylation to form L2

Fig. S33. Analytical HPLC of purified L2

Fig. S34. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of L2

8. Synthesis of branched-cyclic peptide B2

KAHA ligation product S28

S28

To a solution of crown ether **13** (16 mg, 21 μ mol, 2.0 equiv) in DMSO (76 μ L) was added Et₂NH (4.0 μ L), and the mixture was incubated at RT for 4 min and directly added to a solution of peptide α -ketoacid **7** (9.6 mg, 11 μ mol, 1.0 equiv) in DMSO/H₂O (6:4, 220 μ L, 0.1 M oxalic acid). The resulting mixture was incubated at 60 °C for 20 h and cooled to RT. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 5.6 mg of **S28** (41% yield for deprotection and KAHA ligation steps). Analytical HPLC and HRMS were used

to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{62}H_{101}N_{10}O_{15}S_2 [M+H]^+$: 1289.6884, found: 1289.6881.

Fig. S35. HPLC monitoring of the KAHA ligation to form S28

Fig. S37. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S28

NCL product S29

S29

4-Mercaptophenylacetic acid (7.3 mg, 43 μ mol, 10 equiv) and TCEP-HCI (24.9 mg, 68 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 0.60 mL), and pH of this solution was adjusted to 7.4 by adding 1 M aq NaOH. To this ligation buffer were added a solution of **S28** (5.6 mg, 4.3 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.40 mL) followed by a solution of axle-thioester **S24** (2.9 mg, 4.7 μ mol, 1.1 equiv) in CH₃CN (0.10 mL), and the mixture was incubated at RT for 1.5 h. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 4.5 mg of **S29** (63% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{84}H_{125}N_{14}O_{20}S$ [M+H]⁺: 1681.8910, found: 1681.8901.

Fig. S38. HPLC monitoring of the NCL to form S29

Fig. S40. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S29

Branched-cyclic peptide B2

B2

To a solution of **S29** (4.5 mg, 2.7 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 211 μ L) was added a solution of iodoacetamide (0.59 mg, 3.0 μ mol, 1.2 equiv) in CH₃CN (59 μ L). The mixture was incubated at RT for 1.5 h and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 3.3 mg of **B2** (70% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. HRMS (MALDI) calcd for C₈₆H₁₂₈N₁₅O₂₁S [M+H]⁺: 1738.9124, found: 1738.9110.

Fig. S41. HPLC monitoring of the cysteine alkylation to form B2

Fig. S42. Analytical HPLC of purified B2

Fig. S43. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of B2

9. Synthesis of lasso peptide L3

9.1. Synthesis of [2]rotaxane S30

Crown ether-N-Fmoc hydroxylamine 14

S14 (0.61 g, 1.4 mmol, 1.1 equiv), HCTU (0.57 g, 1.4 mmol, 1.1 equiv), and NMM (275 μ L, 2.5 mmol, 2.0 equiv) were premixed in DMF (1.5 mL). 1-Aza-24-crown-8¹³ (0.44 g, 1.3 mmol, 1.0 equiv) in DMF (1.0 mL) was added, and the mixture was stirred at RT for 1h. The reaction was diluted with DCM, and 1 M aq HCl was added. The aqueous phase was extracted with DCM (3x). The combined organic phases were washed with H₂O, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by preparative RP-HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 0.29 g of **14** (30% yield) as a pale yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H)

2H), 7.29 (td, *J* = 7.4 Hz, 2H), 4.45 (d, *J* = 7.2 Hz, 2H), 4.23 (t, *J* = 7.0 Hz, 1H), 3.73 (t, *J* = 6.9 Hz, 2H), 3.66-3.55 (m, 32H), 3.32 (t, *J* = 7.5 Hz, 4H), 2.50 (t, *J* = 7.5 Hz, 2H), 1.95 (p, *J* = 7.1 Hz, 2H), 1.17 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 173.52, 155.96, 153.95, 143.63, 141.22, 127.69, 127.05, 125.04, 119.89, 70.80, 70.69, 70.66, 70.64, 70.58, 70.48, 70.43, 69.62, 69.38, 68.20, 50.08, 49.21, 47.12, 46.99, 42.99, 41.55, 29.92, 22.77, 14.04, 13.26.

IR (thin film) 2935, 2873, 1744, 1642, 1451, 1421, 1350, 1144, 1111 cm⁻¹.

HRMS (ESI) calcd for $C_{40}H_{60}N_3O_{12}$ [M+H]⁺: 774.4172, found: 774.4157.

[2]Rotaxane S30

S30

3,5-Dimethylphenyl KAT **15** (98 mg, 0.41 mmol, 1.1 equiv), crown ether **14** (0.29 g, 0.37 mmol, 1.0 equiv), and **3** (0.24 g, 0.37 mmol, 1.0 equiv) were dissolved in CH₃CN (1.9 mL), and HBF₄•OEt₂ (104 μ L, 0.82 mmol, 2.0 equiv) was added. The mixture was stirred at RT for 16 h. The reaction was quenched with H₂O. The crude material was purified by preparative HPLC using a YMC C18 column with a gradient of 40 to 95% CH₃CN with 0.1% TFA in 38 min. The pure product fractions were pooled and lyophilized to obtain 63 mg of **S30** (12% yield).

In the same purification, the peaks containing axle **S24** were also collected, and these fractions were pooled and lyophilized. The lyophilizates were repurified by preparative HPLC using a YMC C18 column with a gradient of 20 to 95% CH_3CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 93 mg of **S24** (36% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 9.53 (dd, J = 22.9, 8.1 Hz, 1H), 8.77-8.73 (m, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.63-7.59 (m, 1H), 7.57-7.56 (m, 2H), 7.52-7.47 (m, 1H), 7.37 (t, J = 7.5 Hz, 2H), 7.33-7.26 (m, 6H), 7.21-7.18 (m, 2H), 7.14-7.10 (m, 1H), 7.09-7.06 (m, 2H), 4.85-4.79 (m, 1H), 4.42 (d, J = 7.0 Hz, 2H), 4.21 (t, J = 7.1 Hz, 1H), 4.14-4.10 (m, 4H), 3.99-3.83 (m, 2H), 3.75-3.29 (m, 49H), 2.98-2.93 (m, 1H), 2.39-2.32 (m, 2H), 2.30 (s, 6H), 1.95-1.90 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H), 1.18-1.14 (m, 6H).

¹³**C** NMR (150 MHz, CDCl₃) δ 195.81, 195.79, 172.69, 172.65, 172.01, 171.97, 168.54, 168.43, 165.23, 165.21, 161.01 (q, J = 36.5 Hz), 156.02, 153.89, 143.55, 143.54, 141.16, 138.05, 137.67, 137.63, 134.56, 134.55, 133.00, 129.26, 129.22, 128.20, 127.70, 127.02, 126.33, 126.30, 125.00, 124.69, 119.88, 116.23 (q, J = 292 Hz), 71.32, 71.27, 71.06, 70.97, 70.95, 70.83, 70.80, 70.76, 70.74, 70.72, 70.68, 70.65, 70.62, 70.56, 70.51, 70.49, 70.47, 70.45, 70.42, 70.40, 69.78, 68.17, 65.76, 61.66, 55.95, 55.76, 50.04, 49.15, 48.92, 48.22, 48.18, 47.98, 47.95, 46.93, 46.63, 46.58,

42.96, 41.52, 39.40, 37.96, 37.94, 30.80, 29.67, 29.65, 22.53, 21.13, 14.05, 13.97, 13.25. $[\alpha]_{D}^{26} = -5.8^{\circ} (c \ 0.70, CHCl_{3})$ IR (thin film) 2910, 1741, 1690, 1647, 1537, 1451, 1421, 1200, 1093 cm⁻¹. HRMS (MALDI) calcd for C₇₀H₁₀₀N₇O₁₉S [M+H–TFA]⁺: 1374.6789, found: 1374.6753.

9.2. Synthesis of lasso peptide L3

Peptido[2]rotaxane S31

S31

To a solution of rotaxane **S30** (35 mg, 24 μ mol, 1.0 equiv) in DMSO (190 μ L) was added Et₂NH (10 μ L), and the mixture was incubated at RT for 4 min and directly added to a solution of peptide α -ketoacid **7** (27 mg, 30 μ mol, 1.3 equiv) in DMSO/H₂O (6:4, 400 μ L, 0.1 M oxalic acid). The resulting mixture was incubated at 60 °C for 15 h and cooled to RT. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 13 mg of **S31** (29% yield for deprotection and KAHA ligation steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{93}H_{143}N_{14}O_{22}S_3$ [M+H]⁺: 1903.9658, found: 1903.9656.

Fig. S44. HPLC monitoring of the KAHA ligation to form S31

Fig. S45. Analytical HPLC of purified S31

Fig. S46. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S31

Lasso peptide S32

4-Mercaptophenylacetic acid (11 mg, 63 μ mol, 10 equiv) and TCEP-HCl (36 mg, 126 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 0.63 mL), and pH of this solution was adjusted to 7.5 by adding 1 M aq NaOH. A solution of **S31** (12 mg, 6.3 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.20 mL) was prepared, and a portion (20 μ L) of this solution was added to the ligation buffer. The mixture was incubated at RT for 5 min, and the next portion (20 μ L) of the solution of **S31** was added to the mixture. This addition-incubation process was repeated every 5 minutes. After complete addition, the mixture was further incubated at RT for 30 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 5.2 mg of **S32** (49% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{85}H_{127}N_{14}O_{20}S [M+H]^+$: 1695.9066, found: 1695.9068.

Fig. S47. HPLC monitoring of the NCL to form S32

Fig. S49. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S32

Cys-alkylated lasso peptide L3

To a solution of **S32** (7.1 mg, 4.2 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 327 μ L) was added a solution of iodoacetamide (0.93 mg, 5.0 μ mol, 1.2 equiv) in CH₃CN (59 μ L). The mixture was incubated at RT for 40 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 4.4 mg of L3 (60% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. HRMS (MALDI) calcd for C₈₇H₁₃₀N₁₅O₂₁S [M+H]⁺: 1752.9281, found: 1752.9265.

Fig. S48. Analytical HPLC of purified S32

Fig. S50. HPLC monitoring of the cysteine alkylation to form L3

Fig. S51. Analytical HPLC of purified L3

Fig. S52. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of L3

10. Synthesis of branched-cyclic peptide B3

KAHA ligation product S33

S33

To a solution of crown ether **14** (7.8 mg, 10 μ mol, 1.0 equiv) in DMSO (57 μ L) was added Et₂NH (3.0 μ L), and the mixture was incubated at RT for 4 min and directly added to a solution of peptide α -ketoacid **7** (11 mg, 12 μ mol, 1.2 equiv) in DMSO/H₂O (6:4, 240 μ L, 0.1 M oxalic acid). The resulting mixture was incubated at 60 °C for 19 h and cooled to RT. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 4.2 mg of **S33** (32% yield for deprotection and KAHA ligation steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{63}H_{103}N_{10}O_{15}S_2$ [M+H]⁺: 1303.7040, found: 1303.7036.

Fig. S53. HPLC monitoring of the KAHA ligation to form S33

Fig. S54. Analytical HPLC of purified S33

Fig. S55. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S33

NCL product S34

S34

4-Mercaptophenylacetic acid (5.4 mg, 32 μ mol, 10 equiv) and TCEP-HCI (18 mg, 64 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 0.50 mL), and pH of this solution was adjusted to 7.2 by adding 1 M aq NaOH. To this ligation buffer were added a solution of **S33** (4.2 mg, 3.2 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.30 mL) followed by a solution of axle-thioester **S24** (2.1 mg, 3.5 μ mol, 1.1 equiv) in CH₃CN (0.10 mL), and the mixture was incubated at RT for 1 h. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 3.2 mg of **S34** (59% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. **HRMS** (MALDI) calcd for C₈₅H₁₂₇N₁₄O₂₀S [M+H]⁺: 1695.9066, found: 1695.9051.

S34

Fig. S56. HPLC monitoring of the NCL to form S34

Fig. S57. Analytical HPLC of purified S34

Fig. S58. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S34

Branched-cyclic peptide B3

To a solution of **S34** (3.2 mg, 1.9 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 148 μ L) was added a solution of iodoacetamide (0.42 mg, 2.3 μ mol, 1.2 equiv) in CH₃CN (42 μ L). The mixture was incubated at RT for 1.5 h and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 2.6 mg of **B3** (78% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. **HRMS** (MALDI) calcd for C₈₇H₁₃₀N₁₅O₂₁S [M+H]⁺: 1752.9281, found: 1752.9272.

S48

Fig. S59. HPLC monitoring of the cysteine alkylation to form B3

Fig. S60. Analytical HPLC of purified B3

Fig. S61. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of B3

11. Comparison of HPLC retention time

11.1. Lasso peptide L1 vs Branched-cyclic peptide B1

Fig. S62. Distinction between L1 and B1 by HPLC

11.2. Lasso peptide L2 vs Branched-cyclic peptide B2

Fig. S63. Distinction between L2 and B2 by HPLC

11.3. Lasso peptide L3 vs Branched-cyclic peptide B3

Fig. S64. Distinction between L3 and B3 by HPLC

12. Syntheses of lasso peptides with other peptide sequences

12.1. Peptide sequence from antibody Fc-region binder

12.1.1. Synthesis of lasso peptide 10

Peptide α -ketoacid S35

Peptide α -ketoacid **S35** was prepared using the protected leucine α -ketoacid resin **S1** on a 0.24 mmol scale (1.4 g) with a substitution capacity of 0.17 mmol/g. After the full assembly of amino acids, the resin was treated with (95:2.5:2.5) TFA:DODT:H₂O for 1.5 h and removed by filtration. The volatiles were evaporated from the filtrate under reduced pressure. The residue was triturated

Saito and Bode

with MTBE and centrifuged to obtain the crude **S35**. Purification of crude **S35** was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 32 mg of **S35** (10% yield for peptide synthesis, resin cleavage and purification steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{67}H_{97}N_{16}O_{12}S_2 [M+H]^+$: 1381.6908, found: 1381.6892.

Fig. S65. Analytical HPLC of purified S35

Fig. S66. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S35

Peptido[2]rotaxane S36

S36

To a solution of rotaxane **4** (13 mg, 9.2 μ mol, 1.0 equiv) in DMSO (95 μ L) was added Et₂NH (5 μ L), and the mixture was incubated at RT for 4 min and directly added to a solution of peptide α -ketoacid **S35** (17 mg, 12 μ mol, 1.3 equiv) in DMSO/H₂O (6:4, 268 μ L, 0.1 M oxalic acid). The resulting mixture was incubated at 60 °C for 17 h and cooled to RT. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 4.8 mg of **S36** (22% yield for deprotection and KAHA ligation steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{118}H_{170}FN_{22}O_{25}S_3$ [M+H]⁺: 2410.1848, found: 2410.1897.

t = 16 h

Supporting Information

Fig. S67. HPLC monitoring of the KAHA ligation to form S36

Fig. S69. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S36

Lasso peptide S37

4-Mercaptophenylacetic acid (3.2 mg, 19 μ mol, 10 equiv) and TCEP-HCI (11 mg, 38 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 475 μ L), and pH of this solution was adjusted to 7.3 by adding 1 M aq NaOH. A solution of **S36** (4.6 mg, 1.9 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 200 μ L) was prepared, and a portion (50 μ L) of this solution was added to the ligation buffer. The mixture was incubated at RT for 20 min, and the next portion (50 μ L) of the solution of **S36** was added to the mixture. This addition-incubation process was repeated every 5 minutes. After complete addition, the mixture was further incubated at RT for 40 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 2.7 mg of **S37** (65% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{110}H_{153}FN_{22}NaO_{23}S$ [M+Na]⁺: 2224.1076, found: 2224.1118.

Fig. S70. HPLC monitoring of the NCL to form S37

Fig. S71. Analytical HPLC of purified S37

Fig. S72. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S37

Cys-alkylated lasso peptide 10

10

To a solution of **S37** (2.7 mg, 1.2 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 240 μ L) was added a solution of iodoacetamide (0.27 mg, 1.4 μ mol, 1.2 equiv) in CH₃CN (27 μ L). The mixture was incubated at RT for 40 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 1.0 mg of **10** (37% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product. **HRMS** (MALDI) calcd for C₁₁₂H₁₅₇FN₂₃O₂₄S [M+H]⁺: 2259.1471, found: 2259.1504.

Fig. S73. HPLC monitoring of the cysteine alkylation to form 10

12.1.2. Trypsin digestion of 10

In order to briefly confirm the formation of **10**, trypsin digestion of **10** was conducted. A solution of **10** in H₂O (1 μ g/ μ L) and a solution of trypsin in H₂O (1 μ g/ μ L) were prepared. A solution of 20 μ g of peptide was diluted with 50 μ L of a buffer (50 mM Tris-HCl, 1 mM CaCl₂, pH 7.6). To this solution was added a solution of 1 μ g of trypsin. The mixture was incubated at RT for 4 h. The major degradation product was analyzed and identified as [2]rotaxane **S38** by HRMS (MALDI) analysis.

Fig. S76. Trypsin digestion of 10

Degradation product S38

HRMS (MALDI) calcd for C₉₁H₁₃₁FN₁₇O₂₁S [M+H]⁺: 1848.9405, found: 1848.9399.

Fig. S77. Analytical HPLC of purified S38

Fig. S78. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S38

12.2. Peptide sequence from lassomycin

12.2.1. Synthesis of lasso peptide 11

Peptide α-ketoacid S39

S39

Peptide α -ketoacid **S39** was prepared using the protected leucine α -ketoacid resin **S1** on a 0.10 mmol scale (0.49 g) with a substitution capacity of 0.20 mmol/g. After the full assembly of amino acids, the resin was treated with (95:2.5:2.5) TFA:DODT:H₂O for 1.5 h and removed by filtration. The volatiles were evaporated from the filtrate under reduced pressure. The residue was triturated with Et₂O and centrifuged to obtain the crude **S39**. Purification of crude **S39** was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 45 mg of **S39** (36% yield for peptide synthesis, resin cleavage and purification steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{56}H_{96}N_{17}O_{13}S_2 [M+H]^+$: 1278.6809, found: 1278.6816.

Supporting Information

Fig. S79. Analytical HPLC of purified S39

Fig. S80. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S39

Peptido[2]rotaxane S40

S40

Hydroxylamine **6** (21 mg, 18 μ mol, 1.5 equiv) and α -ketoacid **S39** (15 mg, 12 μ mol, 1.0 equiv) were dissolved in DMSO/H₂O (6:4, 400 μ L, 0.1 M oxalic acid). The resulting mixture was incubated at 60 °C for 10 h and cooled to RT. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 7.2 mg of **S40** (26% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{107}H_{169}FN_{23}O_{26}S_3$ [M+H]⁺: 2307.1750, found: 2307.1749.

Fig. S81. HPLC monitoring of the KAHA ligation to form S40

Fig. S82. Analytical HPLC of purified S40

Fig. S83. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S40

Lasso peptide S41

S41

4-Mercaptophenylacetic acid (3.5 mg, 21 μ mol, 10 equiv) and TCEP-HCI (12 mg, 42 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 600 μ L), and pH of this solution was adjusted to 7.5 by adding 1 M aq NaOH. A solution of **S40** (4.8 mg, 2.1 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 90 μ L) was prepared, and a portion (30 μ L) of this solution was added to the ligation buffer. The mixture was incubated at RT for 20 min, and the next portion (30 μ L) of the solution of **S40** was added to the mixture. This addition-incubation process was repeated every 20 minutes. After complete addition, the mixture was further incubated at RT for 1 h and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 1.5 mg of **S41** (34% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for C₉₉H₁₅₃FN₂₃O₂₄S [M+H]⁺: 2099.1158, found: 2099.1167.

Fig. S84. HPLC monitoring of the NCL to form S41

Fig. S86. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S41

Cys-alkylated lasso peptide 11

11

To a solution of **S41** (3.1 mg, 1.5 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 117 μ L) was added a solution of iodoacetamide (0.33 mg, 1.8 μ mol, 1.2 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 33 μ L). The mixture was incubated at RT for 50 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 1.7 mg of **11** (53% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{101}H_{156}FN_{24}O_{25}S$ [M+H]⁺: 2156.1373, found: 2156.1304.

Fig. S87. HPLC monitoring of the cysteine alkylation to form 11

12.2.2. Trypsin digestion of 11

In order to briefly confirm the formation of **11**, trypsin digestion of **11** was conducted. A solution of **11** in H₂O (1 μ g/ μ L) and a solution of trypsin in H₂O (1 μ g/ μ L) were prepared. A solution of 20 μ g of peptide was diluted with 50 μ L of a buffer (50 mM Tris-HCl, 1 mM CaCl₂, pH 7.6). To this solution was added a solution of 1 μ g of trypsin. The mixture was incubated at RT for 4 h. The major degradation product was analyzed and identified as [2]rotaxane **S42** by HRMS (MALDI) analysis.

Fig. S90. Trypsin digestion of 11

Degradation product S42

HRMS (MALDI) calcd for $C_{95}H_{146}FN_{20}O_{25}S$ [M+H]⁺: 2018.0467, found: 2018.0472.

Fig. S91. Analytical HPLC of purified S42

Fig. S92. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S42

12.3. Peptide sequence from somatostatin

12.3.1. Synthesis of lasso peptide 12

Peptide α-ketoacid S43

S43

Peptide α -ketoacid **S43** was prepared using the protected leucine α -ketoacid resin **S1** on a 0.10 mmol scale (0.50 g) with a substitution capacity of 0.20 mmol/g. After the full assembly of amino acids, the resin was treated with (95:2.5:2.5) TFA:DODT:H₂O for 1.5 h and removed by filtration. The volatiles were evaporated from the filtrate under reduced pressure. The residue was triturated with Et₂O and centrifuged to obtain the crude **S43**. Purification of crude **S43** was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 43 mg of **S43** (26% yield for peptide synthesis, resin cleavage and purification steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{79}H_{113}N_{16}O_{18}S_2$ [M+H]⁺: 1637.7855, found: 1637.7863.

Fig. S93. Analytical HPLC of purified S43

Fig. S94. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S43

Peptido[2]rotaxane S44

S44

Hydroxylamine **6** (11 mg, 9.3 μ mol, 1.0 equiv) and α -ketoacid **S43** (23 mg, 14 μ mol, 1.5 equiv) were dissolved in DMSO/H₂O (6:4, 465 μ L, 0.1 M oxalic acid). The resulting mixture was incubated at 60 °C for 23 h and cooled to RT. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 7.3 mg of **S44** (29% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{130}H_{186}FN_{22}O_{31}S_3$ [M+H]⁺: 2666.2795, found: 2666.2788.

Fig. S95. HPLC monitoring of the KAHA ligation to form S44

Fig. S96. Analytical HPLC of purified S44

Fig. S97. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S44

Lasso peptide S45

4-Mercaptophenylacetic acid (6.6 mg, 38 μ mol, 20 equiv) and TCEP-HCI (11 mg, 38 μ mol, 20 equiv) were dissolved in 0.25 M sodium phosphate buffer (pH 8.0)/CH₃CN (1:1, 1.0 mL), and pH of this solution was adjusted to 7.8 by adding 1 M aq NaOH. A solution of **S44** (5.2 mg, 1.9 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.20 mL) was prepared, and a portion (50 μ L) of this solution was added to the ligation buffer. The mixture was incubated at 40 °C for 10 min, and the next portion (50 μ L) of the solution of **S44** was added to the mixture. This addition-incubation process was repeated every 10 minutes. After complete addition, the mixture was further incubated at 40 °C for 1.5 h and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 2.2 mg of **S45** (47% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{122}H_{169}FN_{22}NaO_{29}S [M+Na]^+$: 2480.2023, found: 2480.2052.

Fig. S98. HPLC monitoring of the NCL to form S45

Fig. S99. Analytical HPLC of purified S45

Fig. S100. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S45

Cys-alkylated lasso peptide 12

To a solution of **S45** (1.4 mg, 0.57 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 277 μ L) was added a solution of iodoacetamide (0.13 mg, 0.68 μ mol, 1.2 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 13 μ L). The mixture was incubated at RT for 20 min and purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 0.9 mg of **12** (63% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{124}H_{173}FN_{23}O_{30}S$ [M+H]⁺: 2515.2418, found: 2515.2424.

FT07872a_0_G21_0_G23.d: +M

Fig. S101. HPLC monitoring of the cysteine alkylation to form 12

Fig. S102. Analytical HPLC of purified 12

Fig. S103. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of 12

12.3.2. Trypsin digestion of 12

In order to briefly confirm the formation of **12**, trypsin digestion of **12** was conducted. A solution of **12** in H₂O (1 μ g/ μ L) and a solution of trypsin in H₂O (1 μ g/ μ L) were prepared. A solution of 20 μ g of peptide was diluted with 50 μ L of a buffer (50 mM Tris-HCl, 1 mM CaCl₂, pH 7.6). To this solution was added a solution of 1 μ g of trypsin. The mixture was incubated at RT for 4 h. The starting peptide was degraded to two products, and these were identified as linear peptide **S46** and [2]rotaxane **S47** by HRMS (MALDI) analysis. This result strongly supported the formation of **12**.

Fig. S104. Trypsin digestion of 12

Saito and Bode

Supporting Information

Degradation product S46

HRMS (MALDI) calcd for $C_{39}H_{49}N_8O_7$ [M+H]⁺: 741.3719, found: 741.3718.

Fig. S105. Analytical HPLC of purified S46

Degradation product **S47**

Fig. S106. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S46

HRMS (MALDI) calcd for $C_{85}H_{129}FN_{15}O_{25}S [M+H]^+$: 1810.8983, found: 1810.8970.

Fig. S108. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S47

13. Synthesis of cyclic peptide C1

13.1. Bifunctional linear peptide S48

S48

Bifunctional linear peptide **S48** was prepared using the protected leucine α -ketoacid resin **S1** on a 0.22 mmol scale (1.2 g) with a substitution capacity of 0.18 mmol/g. In addition to Fmoc amino acids listed in 1.4., *N*-Boc hydroxylamine **S13** was used for this peptide synthesis. The resin was treated with (95:2.5:2.5) TFA:DODT:H₂O for 1 h and removed by filtration. The volatiles were evaporated from the filtrate under reduced pressure. The residue was triturated with Et₂O and centrifuged to obtain the crude **S48**. Purification of crude **S48** was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 20.9 mg of **S48** (8% yield for peptide synthesis, resin cleavage and purification steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{60}H_{85}N_{12}O_{14}S [M+H]^+$: 1229.6023, found: 1229.6019.

Fig. S110. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S48

13.2. Cyclic peptide S49

Bifunctional linear peptide S48 (12 mg, 9.9 μ mol) was dissolved in CH₃CN/H₂O (2:1, 3.3 mL, 0.1 M oxalic acid). The mixture was incubated at 70 °C for 7 h and cooled to RT. Purification was

Saito and Bode

performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 4.4 mg of **S49** (42% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{54}H_{74}N_{11}O_{10}S [M+H]^+$: 1068.5335, found: 1068.5332.

Fig. S111. HPLC monitoring of the KAHA cyclization to form S49

ed **S49** Fig. S113. HRMS (M.

13.3. Cyclic peptide C1

To a solution of **S49** (4.4 mg, 4.1 μ mol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 319 μ L) was added a solution of iodoacetamide (0.91 mg, 4.9 μ mol, 1.2 equiv) in CH₃CN (91 μ L). The mixture was incubated at 37 °C for 2 h. Purification was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 1.5 mg of **C1** (33% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{56}H_{77}N_{12}O_{11}S [M+H]^+$: 1125.5550, found: 1125.5547.

Fig. S114. HPLC monitoring of the cysteine alkylation to form C1

Fig. S116. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of C1

Investigation of the properties of the lasso peptides

Note: Lyophilized peptides were dissolved in DMSO to make 10 mM stock solutions. The following stability assays were conducted by taking an aliquot from these stock solutions.

14. Thermal stability assay

A solution of 0.1 mg of lasso peptide was diluted with H_2O (10% (v/v) final concentration of DMSO) and incubated at 95 °C for 8 h. Samples were cooled to RT and analyzed by analytical RP-HPLC.

14.1. Lasso peptide L1

Fig. S117. Thermal stability assay of L1

14.2. Lasso peptide L2

14.3. Lasso peptide L3

Fig. S119. Thermal stability assay of L3

15. Chymotrypsin assay

A solution of 20 μ g of peptide was diluted with 51 μ L of a buffer (100 mM Tris-HCl, 10 mM CaCl₂, pH 8.2). An aliquot (10 μ L) was taken from this solution, diluted with H₂O/ CH₃CN (1:1, 10 μ L, 0.1% TFA) and injected to analytical RP-HPLC. The peak area of the peptide (A₀) was determined by integration.

A solution of 20 μ g of peptide was diluted with 50 μ L of a buffer (100 mM Tris-HCl, 10 mM CaCl₂, pH 8.2). To this solution was added chymotrypsin dissolved in the same buffer (1.0 μ g/ μ L, 1.0 μ L). The mixture was incubated at RT for 24 h and analyzed at selected time points: 2, 4, and 24 h for lasso peptides; 2 and 4 h for branched-cyclic peptides; 2, 4, and 12 h for cyclic peptide. For analysis, an aliquot (10 μ L) was taken from the reaction mixture, diluted with H₂O/CH₃CN (1:1, 10 μ L, 0.1% TFA) and injected to analytical RP-HPLC. The peak area of the starting peptide (A_t) was determined by integration. Percentage of the remaining peptide at each time point was calculated as follows:

Peptide remaining (%) = $\binom{A_t}{A_0} \times 100$

15.1. Lasso peptide L1

15.1.1. Analytical HPLC traces

Fig. S120. Chymotrypsin assay of L1

15.2. Branched-cyclic peptide B1

15.2.1. Analytical HPLC traces

Fig. S121. Chymotrypsin assay of B1

15.2.2. Characterization of degradation products

Degradation product S50

HRMS (MALDI) calcd for $C_{51}H_{81}N_8O_{13}$ [M+H]⁺: 1013.5918, found: 1013.5905.

Fig. S122. Analytical HPLC of purified S50

Fig. S123. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S50
Degradation product S51

HRMS (MALDI) calcd for $C_{67}H_{101}N_{12}O_{17}S [M+H]^+$: 1377.7123, found: 1377.7121.

Fig. S125. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S51

15.3. Lasso peptide L2

Fig. S126. Chymotrypsin assay of L2

15.4. Branched-cyclic peptide B2

15.4.1. Analytical HPLC traces

Fig. S127. Chymotrypsin assay of B2

15.4.2. Characterization of degradation products

Degradation product S52

HRMS (MALDI) calcd for $C_{62}H_{99}N_{12}O_{17}S [M+H]^+$: 1315.6966, found: 1315.6964.

Fig. S128. Analytical HPLC of purified S52

Fig. S129. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S52

15.5. Lasso peptide L3

15.5.1. Analytical HPLC traces

Fig. S130. Chymotrypsin assay of L3

15.5.2. Characterization of degradation products

HRMS (MALDI) calcd for $C_{63}H_{101}N_{12}O_{17}S [M+H]^+$: 1329.7123, found: 1329.7118.

Fig. S131. Analytical HPLC of purified S53

Fig. S132. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S53

15.6. Branched-cyclic peptide B3

Fig. S133. Chymotrypsin assay of B3

15.7. Cyclic peptide C1

15.7.1. Analytical HPLC traces

Fig. S134. Chymotrypsin assay of C1

15.7.2. Characterization of degradation products

Degradation product **S54** (Shown here is a possible structure based on specificity of chymotrypsin)

HRMS (MALDI) calcd for $C_{56}H_{79}N_{12}O_{12}S$ [M+H]⁺: 1143.5656, found: 1143.5656.

Fig. S136. HRMS (MALDI) of measured (top) and calculated

(bottom) isotopic pattern of S54

Fig. S135. Analytical HPLC of purified S54

15.8. Plots of time vs conversion

Fig. S137. Plots of time vs conversion (chymotrypsin assay)

16. Trypsin assay

A solution of 20 μ g of peptide was diluted with 51 μ L of a buffer (50 mM Tris-HCl, 1 mM CaCl₂, pH 7.6). An aliquot (10 μ L) was taken from this solution, diluted with H₂O/ CH₃CN (1:1, 10 μ L, 0.1% TFA) and injected to analytical RP-HPLC. The peak area of the peptide was determined by integration.

A solution of 20 μ g of peptide was diluted with 50 μ L of a buffer (50 mM Tris-HCl, 1 mM CaCl₂, pH 7.6). To this solution was added trypsin dissolved in the same buffer (1.0 μ g/ μ L, 1.0 μ L). The mixture was incubated at RT for 8 h and analyzed at selected time points: 2, 4, and 8 h for lasso peptides and cyclic peptide; 2 and 4 h for branched-cyclic peptides. For analysis, an aliquot (10 μ L) was taken from the reaction mixture, diluted with H₂O/CH₃CN (1:1, 10 μ L, 0.1% TFA) and injected to analytical RP-HPLC. The peak area of the starting peptide was determined by integration. Percentage of the remaining peptide was calculated as described in ESI section 15.

16.1. Lasso peptide L1

16.1.1. Analytical HPLC traces

Fig. S138. Trypsin assay of L1

16.1.2. Characterization of degradation products

Degradation product **S55** (Shown here is a possible structure based on specificity of trypsin)

HRMS (MALDI) calcd for $C_{89}H_{127}FN_{15}O_{22}S$ [M+H]⁺: 1808.8979, found: 1808.8985.

Fig. S139. Analytical HPLC of purified S55

Fig. S140. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S55

16.2. Branched-cyclic peptide B1

16.2.1. Analytical HPLC traces

16.2.2. Characterization of degradation products

Degradation product S56

HRMS (MALDI) calcd for C₃₄H₅₉N₄O₁₁ [M+H]⁺: 699.4175, found: 699,4166.

Fig. S142. Analytical HPLC of purified S56

Fig. S143. HRMS (ESI) of measured (top) and calculated (bottom) isotopic pattern of S56

Degradation product S57

HRMS (MALDI) calcd for $C_{55}H_{69}FN_{11}O_{11}S$ [M+H]⁺: 1110.4877, found: 1110.4855.

Fig. S144. Analytical HPLC of purified S57

Fig. S145. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S57

16.3. Lasso peptide L2

16.3.1. Analytical HPLC traces

Fig. S146. Trypsin assay of L2

16.3.2. Characterization of degradation products

Degradation product S58 (Shown here is a possible structure based on specificity of trypsin)

HRMS (MALDI) calcd for $C_{86}H_{130}N_{15}O_{22}S$ [M+H]⁺: 1756.9230, found: 1756.9229.

Fig. S147. Analytical HPLC of purified S58

Fig. S148. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S58

16.4. Branched-cyclic peptide B2

16.4.1. Analytical HPLC traces

16.4.2. Characterization of degradation products

Degradation product S59

HRMS (MALDI) calcd for $C_{57}H_{74}N_{11}O_{11}S [M+H]^+$: 1120.5284, found: 1120.5282.

Fig. S150. Analytical HPLC of purified S59

Fig. S151. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S59

16.5. Lasso peptide L3

16.5.1. Analytical HPLC traces

Fig. S152. Trypsin assay of L3

16.5.2. Characterization of degradation products

Degradation product S60 (Shown here is a possible structure based on specificity of trypsin)

HRMS (MALDI) calcd for $C_{87}H_{132}N_{15}O_{22}S [M+H]^+$: 1770.9387, found: 1770.9372.

Fig. S153. Analytical HPLC of purified S60

Fig. S154. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S60

16.6. Branched-cyclic peptide B3

Fig. S155. Trypsin assay of B3

16.7. Cyclic peptide C1

16.7.1. Analytical HPLC traces

Fig. S156. Trypsin assay of C1

16.7.2. Characterization of degradation products

Degradation product S61 (Shown here is a possible structure based on specificity of trypsin)

HRMS (MALDI) calcd for $C_{56}H_{79}N_{12}O_{12}S$ [M+H]⁺: 1143.5656, found: 1143.5656.

Fig. S157. Analytical HPLC of purified S61

16.8.

Plots of time vs conversion

Fig. S159. Plots of time vs conversion (trypsin assay)

17. Proteinase K assay

A solution of 20 μ g of peptide was diluted with 51 μ L of a buffer (50 mM Tris-HCl, pH 7.6). An aliquot (10 μ L) was taken from this solution, diluted with H₂O/ CH₃CN (1:1, 10 μ L, 0.1% TFA) and injected to analytical RP-HPLC. The peak area of the peptide was determined by integration.

A solution of 20 μ g of peptide was diluted with 50 μ L of a buffer (50 mM Tris-HCl, pH 7.6). To this solution was added proteinase K dissolved in the same buffer (1.0 μ g/ μ L, 1.0 μ L). The mixture was incubated at 37 °C for 8 h and analyzed at selected time points: 2, 4, and 8 h for lasso peptides and cyclic peptide; 2 and 4 h for branched-cyclic peptides. For analysis, an aliquot (10 μ L) was taken from the reaction mixture, diluted with H₂O/CH₃CN (1:1, 10 μ L, 0.1% TFA) and injected to analytical RP-HPLC. The peak area of the starting peptide was determined by integration. Percentage of the remaining peptide was calculated as described in ESI section 15.

17.1. Lasso peptide L1

17.1.1. Analytical HPLC traces

Fig. S160. Proteinase K assay of L1

Saito and Bode

17.1.2. Characterization of degradation products

Degradation product S62

HRMS (MALDI) calcd for $C_{83}H_{116}FN_{14}O_{21}S$ [M+H]⁺: 1695.8139, found: 1695.8110.

Fig. S162. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S62

Degradation product **S63** (Shown here is a possible structure based on specificity of proteinase K)

HRMS (MALDI) calcd for $C_{89}H_{127}FN_{15}O_{22}S$ [M+H]⁺: 1808.8979, found: 1808.8987.

Fig. S163. Analytical HPLC of purified S63

Fig. S164. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S63

17.2. Branched-cyclic peptide B1

17.2.1. Analytical HPLC traces

Fig. S165. Proteinase K assay of B1

17.2.2. Characterization of degradation products

Degradation product S64

HRMS (MALDI) calcd for $C_{60}H_{90}N_9O_{14}$ [M+H]⁺: 1160.6602, found: 1160.6602.

Fig. S166. Analytical HPLC of purified S64

Fig. S167. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S64

17.3. Lasso peptide L2

17.3.1. Analytical HPLC traces

Fig. S168. Proteinase K assay of L2

17.3.2. Characterization of degradation products

Degradation product S65

HRMS (MALDI) calcd for $C_{80}H_{119}N_{14}O_{21}S [M+H]^+$: 1643.8389, found: 1643.8392.

Fig. S169. Analytical HPLC of purified S65

Degradation product S66 (Shown here is a possible structure based on specificity of proteinase K)

HRMS (MALDI) calcd for $C_{86}H_{129}N_{15}NaO_{22}S$ [M+Na]⁺: 1778.9050, found: 1778.9042.

Fig. S171. Analytical HPLC of purified S66

Fig. S172. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S66

17.4. Branched-cyclic peptide B2

17.4.1. Analytical HPLC traces

Saito and Bode

17.4.2. Characterization of degradation products

Degradation product S67

HRMS (MALDI) calcd for $C_{55}H_{88}N_9O_{14}$ [M+H]⁺: 1098.6445, found: 1098.6444.

Fig. S174. Analytical HPLC of S67 (mixture)

Fig. S175. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S67

17.5. Lasso peptide L317.5.1. Analytical HPLC traces

Fig. S176. Proteinase K assay of L3

17.5.2. Characterization of degradation products

Degradation product **S68**

HRMS (MALDI) calcd for $C_{81}H_{121}N_{14}O_{21}S [M+H]^+$: 1657.8546, found: 1657.8534.

Fig. S177. Analytical HPLC of purified S68

Fig. S178. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S68

Degradation product **S69** (Shown here is a possible structure based on specificity of proteinase K)

HRMS (MALDI) calcd for $C_{87}H_{132}N_{15}O_{22}S$ [M+H]⁺: 1770.9387, found: 1770.9337.

Fig. S180. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S69

Fig. S179. Analytical HPLC of purified S69

17.6. Branched-cyclic peptide B3

17.6.1. Analytical HPLC traces

17.6.2. Characterization of degradation products

Degradation product S70

HRMS (MALDI) calcd for $C_{56}H_{90}N_9O_{14}$ [M+H]⁺: 1112.6602, found: 1112.6606.

Fig. S182. Analytical HPLC of S70 (mixture)

Fig. S183. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S70

17.7. Cyclic peptide C1

17.7.1. Analytical HPLC traces

Fig. S184. Proteinase K assay of C1

17.7.2. Characterization of degradation products

HRMS (MALDI) calcd for $C_{36}H_{52}N_7O_7$ [M+H]⁺: 694.3923, found: 694.3921.

Fig. S186. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S71

Fig. S185. Analytical HPLC of purified S71

Saito and Bode

FT08834a_0_M3_000001.d: +MS

Degradation product S72 (Shown here is a possible structure based on specificity of proteinase K)

lens. 1143.5 [%]

HRMS (MALDI) calcd for $C_{56}H_{79}N_{12}O_{12}S [M+H]^+$: 1143.5656, found: 1143.5650.

80 60 1144.5884 40 20 1145.5723 1145.5723 1145.5758 FT085348_0_MS_000001.dt C 59 H 79 N 12 O 12 S T .1143.57 80 1144.5058 60 1144.5058 80 1144.5754 1145.5754 1145.5754 1145.5754 1147.5581 80 1144.5754 1145.5754 1147.5581 1146.5754 1147.5581 1146.5754 1147.5581 1148.5754

Fig. S187. Analytical HPLC of purified S72

17.8. Plots of time vs conversion

Fig. S189. Plots of time vs conversion (proteinase K assay)

- 18. Serum stability assay
- 18.1. Synthesis of linear peptide R1
- 18.1.1. Linear peptide α -ketoacid S73

S73

Linear peptide α -ketoacid **S73** was prepared using the protected leucine α -ketoacid resin **S1** on a 0.24 mmol scale (1.4 g) with a substitution capacity of 0.17 mmol/g. After the full assembly of amino acids, a half of the resin was transferred to another fritted syringe, and Fmoc deprotection was performed with 20% piperidine in DMF (7 min x 2). The resin was treated with (95:2.5:2.5) TFA:DODT:H₂O for 1 h and removed by filtration. The volatiles were evaporated from the filtrate under reduced pressure. The residue was triturated with Et₂O and centrifuged to obtain the crude **S73**. Purification of crude **S73** was performed by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 25.2 mg of **S73** (20% yield for peptide synthesis, resin cleavage and purification steps). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for $C_{51}H_{69}N_{10}O_{11}S [M+H]^+$: 1029.4863, found: 1029.4863.

Fig. S191. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of S73

18.1.2. Linear peptide R1

R1

To a solution of S73 (11 mg, 10 µmol, 1.0 equiv) in 0.1 M sodium phosphate buffer (pH

7.4)/CH₃CN (1:1, 0.79 mL) was added a solution of iodoacetamide (2.1 mg, 11 μ mol, 1.1 equiv) in 0.1 M sodium phosphate buffer (pH 7.4)/CH₃CN (1:1, 0.21 mL). The mixture was incubated at RT for 30 min, and 30% H₂O₂ in H₂O (0.82 mL) was added. The mixture was further incubated at RT for 5 min and immediately purified by preparative HPLC using YMC C18 column (20 x 250 mm) with a gradient of 20 to 95% CH₃CN with 0.1% TFA in 28 min. The pure product fractions were pooled and lyophilized to obtain 5.3 mg of **R1** (49% yield). Analytical HPLC and HRMS were used to confirm the purity and exact mass of the product.

HRMS (MALDI) calcd for C₅₂H₇₁N₁₁NaO₁₁S [M+Na]⁺: 1080.4947, found: 1080.4946.

Fig. S193. HRMS (MALDI) of measured (top) and calculated (bottom) isotopic pattern of R1

18.2. Procedure for serum stability assay¹⁴

Serum stability was studied using male human serum type AB (Sigma). A 10 mM peptide solution (2.7 μ L) was added to serum (132 μ L) and incubated at 37 °C and analyzed at selected time points: 0 min, 2, 4, 8, and 24 h for all the peptides except linear peptide **R1**; 0 min, 2, 4, and 8 h for linear peptide **R1**. For analysis, an aliquot (15 μ L) was taken from the reaction mixture and poured into cold MeOH (15 μ L, pre-cooled in the freezer) to precipitate the serum proteins. The mixture was centrifuged, and an aliquot (7.5 μ L) was taken from the supernatant and injected to analytical RP-HPLC. The peak area of the starting peptide was used to calculate percentage of the remaining peptide relative to the initial peptide sample (t = 0 min). Experiments were conducted in duplicate.

18.3. Plots of time vs conversion

Fig. S194. Plots of time vs conversion (serum assay)

19. References

[1] Dumas, A. M.; Bode, J. W. Org. Lett. 2012, 14, 2138.

[2] Wucherpfennig, T. G.; Pattabiraman, V. R.; Limberg, F. R. P.; Ruiz-Rodríguez, J.; Bode, J. W. Angew. Chem. Int. Ed. **2014**, 53, 12248.

[3] Noda, H.; Erős, G.; Bode, J. W. J. Am. Chem. Soc. 2014, 136, 5611.

[4] Zhang, C.; Li, S.; Zhang, J.; Zhu, K.; Li, N.; Huang, F. Org. Lett. 2007, 9, 5553.

[5] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Cryst.* **2009**, *42*, 339.

[6] Sheldrick, G. M. Acta Cryst. 2015, A71, 3.

[7] Sheldrick, G. M. Acta Cryst. 2008, A64, 112.

[8] Sayyadi, N.; Skropeta, D.; Jolliffe, K. A. Org. Lett. 2005, 7, 5497.

[9] Mazunin, D.; Broguiere, N.; Zenobi-Wong, M.; Bode, J. W. ACS Biomater. Sci. Eng. 2015, 1, 456.

[10] Nemoto, H.; Nishiyama, T.; Akai, S. Org. Lett. 2011, 13, 2714.

[11] Kota, R.; Samudrala, R.; Mattern, D. L. J. Org. Chem. 2012, 77, 9641.

[12] Ebner, C.; Müller, C. A.; Markert, C.; Pfaltz, A. J. Am. Chem. Soc. 2011, 133, 4710.

[13] Mao, H.; Thorne, J. B.; Pharr, J. S.; Gawley, R. E. Can. J. Chem. 2006, 84, 1273.

[14] Knappe, T. A.; Manzenrieder, F.; Mas-Moruno, C.; Linne, U.; Sasse, F.; Kessler, H.; Xie, X.; Marahiel, M. A. *Angew. Chem. Int. Ed.* **2011**, *50*, 8714.

20. NMR spectra and HRMS data Alcohol S2

Tosylate S3

Azide-acid S5

¹H NMR (400 MHz, CDCI₃)

Azide-Phe methyl ester S6

Azide-PF₆ salt S7

[2]Rotaxane S9-TFA

¹H NMR (400 MHz, CDCl₃)

f1 (ppm)

¹⁹F NMR (376 MHz, CDCI₃)

90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -1: 11 (ppm)

Azide-Phe-Gly methyl ester S10

¹H NMR (400 MHz, CDCl₃)

Azide-Phe-Gly acid S11

¹H NMR (400 MHz, CD₃CN)

Azide-Phe-Gly thioester S12

Azide-Phe-Gly thioester TFA salt 3

N-Fmoc hydroxylamine S14

B21C7-N-Boc amine S17

B21C7-N-Fmoc hydroxylamine 2

[2]Rotaxane 4

¹⁹F NMR (376 MHz, CDCI₃)

Axle 5

¹⁹F NMR (376 MHz, CDCI₃)

W -91 -92 -93 -94 -95 -96 -97 -98 -99 -100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -15 -116 (μpm)

—-107.854

Lasso peptide L1

c 110 100 90 f1 (ppm)

¹⁹F NMR (565 MHz, d₇-DMF)

¹H-¹H TOCSY (600 MHz, d₇-DMF)

¹H-¹H ROESY (600 MHz, d₇-DMF)

S121

¹H-¹⁵N HSQC (d₇-DMF)

Branched-cyclic peptide B1

110 100 f1 (ppm) c

¹⁹F NMR (565 MHz, d₇-DMF)

Crown ether-diBn amine S21

Crown ether-*N*-Fmoc hydroxylamine 13

Bt-ethoxy *N,O*-acetal S22

3,5-Dimethylphenyl KAT 15

¹H NMR (600 MHz, d₆-acetone)

¹⁹F NMR (470 MHz, d₆-acetone)

[2]Rotaxane S23

Axle S24

Crown ether *N*-Fmoc hydroxylamine 14

[2]Rotaxane S31 ¹H NMR (600 MHz, CDCl₃)

Supporting Information

Peptide α -ketoacid 7

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 408.9481, 794.9069, 1180.8657, 1566.8246); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Supporting Information

Unprotected hydroxylamine 6

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 408.9481, 794.9069, 1180.8657, 1566.8246); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Peptido[2]rotaxane 8

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 1566.8246, 1952.7834, 2338.7423, 3110.6599); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Supporting Information

Lasso peptide 9

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 408.9481, 794.9069, 1180.8657, 1566.8246, 1952.7834); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Cys-alkylated lasso peptide L1

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 408.9481, 794.9069, 1180.8657, 1566.8246, 1952.7834); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Supporting Information

Unprotected hydroxylamine S18

Box 1: Full scale spectra with internal reference peaks (Tunemix (pos) ESI-TOF Spezial: 118.0863, 322.0481, 622.0290, 922.0098, 1221.9906); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

KAHA ligation product S19

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 408.9481, 794.9069, 1180.8657, 1566.8246); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

NCL product S20

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 408.9481, 794.9069, 1180.8657, 1566.8246, 1952.7834); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Branched-cyclic peptide B1

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 408.9481, 794.9069, 1180.8657, 1566.8246, 1952.7834); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

[2]Rotaxane S25

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 408.9481, 794.9069, 1180.8657, 1566.8246); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Peptido[2]rotaxane S26

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 794.9069, 1180.8657, 1566.8246, 1952.7834, 2338.7423, 2724.7011); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Lasso peptide S27

Cys-alkylated lasso peptide L2

KAHA ligation product S28

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 322.0481, 622.0290, 1221.9906, 1521.9715, 2421.9140); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

NCL product S29

Branched-cyclic peptide B2

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 622.0290, 922.0098, 1221.9906, 1521.9715, 2421.9140); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Peptido[2]rotaxane S31

Lasso peptide S32

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 322.0481, 622.0290, 922.0098, 1221.9906, 1821.9523, 2421.9140); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Cys-alkylated lasso peptide L3

KAHA ligation product S33

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 322.0481, 622.0290, 1221.9906, 1821.9523, 2421.9140); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

NCL product S34

Branched-cyclic peptide B3

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 622.0290, 922.0098, 1221.9906, 1521.9715, 2121.9332, 2421.9140); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Peptide α -ketoacid Fc binder S35

Peptido[2]rotaxane S36

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 1566.8246, 1952.7834, 2724.7011, 3110.6599); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Lasso peptide S37

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 1952.7834, 2724.7011, 3110.6599, 4268.5365, 4654.4953); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Cys-alkylated lasso peptide 10

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 1952.7834, 2724.7011, 3110.6599, 4268.5365, 5426.4130); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Saito and Bode

Trypsin digestion product S38

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA DCTBTmix 322.0481, 408.9481, 622.0290, 794.9069, 922.0098, 1180.8657, 1221.9906, 1521.9715, 1566.8246, 1821.9523, 1952.7834, 2338.7423); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Peptide α-ketoacid lassomycin S39

Peptido[2]rotaxane S40

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 1952.7834, 2724.7011, 3110.6599, 3496.6188); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Lasso peptide S41

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 1952.7834, 2338.7423, 2724.7011, 3110.6599); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Cys-alkylated lasso peptide 11

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 1566.8246, 1952.7834, 2724.7011, 3110.6599); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Trypsin digestion product S42

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 1521.9715, 1821.9523, 2121.9332, 2421.9140, 2721.8948); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Saito and Bode

Peptide α -ketoacid somatostatin S43

Peptido[2]rotaxane S44

Box 1: Full scale spectra with internal reference peaks (ESI: Na-PFHA 2338.7423, 2724.7011, 3110.6599, 3882.5776); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Lasso peptide S45

Cys-alkylated lasso peptide 12

Supporting Information

Degradation product S46

Bifunctional linear peptide S48

Saito and Bode

Supporting Information

Cyclic peptide S49

Supporting Information

Saito and Bode

Cyclic peptide C1

Saito and Bode

Supporting Information

Degradation product S54

Supporting Information

Degradation product S55

Degradation product S56

Box 1: Full scale spectra with internal reference peaks (Tunemix (pos) ESI-TOF Spezial 118.0863, 622.0290, 922.0098, 1221.9906); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Supporting Information

Degradation product S61

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 322.0481, 622.0290, 922.0098, 1221.9906, 1521.9715); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Degradation product S67

Supporting Information

Saito and Bode

Degradation product S71

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 322.0481, 622.0290, 922.0098, 1521.9715); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Supporting Information

Degradation product S72

Linear peptide α -ketocacid S73

Box 1: Full scale spectra with internal reference peaks (ESI: Tuning Mix ES-TOF (ESI) (pos)DCTB 622.0290, 922.0098, 1221.9906, 1521.9715, 1821.9523, 2121.9332, 2421.9140); **Box 2:** Measured isotopic pattern of the product peak; **Box 3:** Calculated isotopic pattern of the product peak.

Linear peptide R1

