Supplementary Information

(6 pages, 1 figure, 2 tables)

Energy use and carbon footprints differ dramatically for diverse wastewaterderived carbonaceous substrates: An integrated exploration of biokinetics and life-cycle assessment

Yanbo Li^{1, 2, †}, Xu Wang^{1, 3, *, †}, David Butler⁴, Junxin Liu^{1, 2}, Jiuhui Qu^{1, 5}

¹ Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, China

² University of Chinese Academy of Sciences, Beijing 100049, China

³ State Key Joint Laboratory of Environmental Simulation and Pollution Control,

Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, China

⁴ Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom

⁵ Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, China

*To whom correspondence should be addressed. Phone/Fax.: +86 62911425. E-mail: xuwang@rcees.ac.cn (X. Wang)

[†]These authors contributed equally to this work.

Notation

X_S	Slowly biodegradable substrates
XSads	Adsorbed substrates
So	Dissolved oxygen
S_S	Readily biodegradable organic substrates
Xı	Inert particulate organic material
X_H	Active heterotrophic organisms
Xsto	Internal storage product of heterotrophic organisms
$Y_{H,S}$	Yield coefficient for direct growth
Y _{H,STO}	Yield coefficient for growth on stored products
Ysto	Yield of stored products on Ss
kads	Substrate adsorption rate
q_m	Saturation constant for absorption
kн	Hydrolysis rate constant
<i>fsto</i>	Ratio of substrate utilized for storage
<i>q</i> max	Maximum substrate uptake rate
UH,STO	Maximum growth rate on stored products
Ko	Half saturation constant for So
Ks	Half saturation constant for substrate Ss
Ksto	Half saturation constant for storage substance
KX	Half hydrolysis saturation constant
вн	Endogenous respiration rate of heterotrophs
<i>bsto</i>	Endogenous respiration rate of storage products
f_i	Fraction of inert particulate substance

Figure S1 A schematic illustration of the proposed activated sludge respirometer.

Deveryon of our		Courses			
Parameters —	HAc	HPr	SolS	BSA	Source
Y _{H,S} (mg COD/mg COD)	0.57	0.56	0.63	0.55	this study
Y _{H,STO} (mg COD/mg COD)	0.65	0.63	0.65	0.60	this study
Ysto (mg COD/mg COD)	0.81	0.76	0.92	0.74	this study
k_{ads} (h ⁻¹)	-	-	15.0	15.0	ref 1
$q_m (mg \text{ COD}/mg \text{ COD})$	-	-	0.071	0.098	this study
$k_H(d^{-1})$	-	-	0.91	0.85	this study
f_{STO} (d ⁻¹)	0.67	0.45	0.72	0.45	this study
$q_{max}(d^{-1})$	4.4	1.8	-		this study
<i>µн,sто</i> (d ⁻¹)	1.1	1.3	1.2	1.1	this study
Ko (mg/L)	0.2	0.2	0.2	0.2	ref 2
$K_S (mg COD/L)$	0.7	0.7	-	-	ref 2
K _{STO} (mg COD/mg COD)	0.5	0.4	0.4	0.5	this study
K_X (mg COD/mg COD)	-	-	0.05	0.01	this study
$b_H(d^{-1})$	0.2	0.2	0.2	0.2	ref 3
<i>bsto</i> (d ⁻¹)	0.2	0.2	0.2	0.2	ref 3
$f_i(-)$	0.2	0.2	0.2	0.2	ref 3

 Table S1 Kinetic and stoichiometric parameters for different substrates.

Process	Xs	\mathbf{X}_{Sads}	So	Ss	XI	X_{H}	Xsto	Kinetics
Adsorption	-1	1						$k_{ads} \cdot \frac{q_m - (X_{sads}/X_H)}{q_m} \cdot X_S$
Hydrolysis		-1		1				$k_{\rm H} {\cdot} \frac{(X_{\rm sads}/X_{\rm H})}{K_{\rm X} {+} (X_{\rm sads}/X_{\rm H})} {\cdot} X_{\rm H}$
Growth on Ss			$1 - 1/Y_{H,S}$	-1/Y _{H,S}		1		$f_{STO} \cdot q_{max} \cdot Y_{STO} M_O \cdot M_S \cdot X_H$
Storage of Ss			1-1/ Ysto	$-1/Y_{STO}$			1	$(1-f_{STO}){\cdot}q_{max}{\cdot}Y_{H,S}{\cdot}M_O{\cdot}M_S{\cdot}X_H$
Growth on Xsto			1-1/Y _{H,STO}			1	-1/Y _{H,STO}	$\mu_{H,STO} \cdot M_O \cdot \frac{(X_{STO}/X_H)}{K_{STO} + (X_{STO}/X_H)} \cdot \frac{K_S}{S_S + K_S} \cdot X_H$
Endogenous respiration			fi-1		\mathbf{f}_{i}	-1		$b_H \cdot M_O \cdot X_H$
Endogenous respiration of X _{STO}			-1				-1	$b_{STO} \cdot M_O \cdot X_{STO}$

M stands for a Monad kinetic function e.g. $M_S = S_S / (K_S + S_S)$.

References

1. Karahan, O.; van Loosdrecht, M. C.; Orhon, D. Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth.

Biotechnol. bioeng. 2006, 94 (1), 43-53.

2. Sin, G.; Vanrolleghem, P. A. Extensions to modeling aerobic carbon degradation using combined respirometric-titrimetric measurements in view of activated sludge model calibration. *Water Res.* **2007**, *41* (15), 3345-3358.

3. Gujer, W.; Henze, M.; Mino, T.; van Loosdrecht, M. Activated Sludge Model No. 3. *Water Sci. Technol.* **1999**, *39* (1), 183-193.