Whole-exome sequencing identifies a novel *de novo* mutation in *DYNC1H1* in epileptic encephalopathies

Zhongdong Lin^{1,3, †}, Zhenwei Liu^{2, †}, Xiucui Li³, Feng Li³, Ying Hu³, Bingyu Chen⁴, Zhen Wang^{4, *}, Yong Liu^{1, *}

¹Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xian, China

²Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China

³Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China

⁴Research Center of Blood Transfusion Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial People's Hospital, Hangzhou, China

[†]These authors contributed equally to this work

*Correspondence should be addressed to Zhen Wang (<u>yuchen6046@163.com</u>) and Yong Liu (<u>liuy5599@mail.xjtu.edu.cn</u>)

Supplementary figure 1. *De novo* **mutations identified in** *SNX9*. The *SNX9* variant (c.454C>A, p.Q152K) of trio E1 were confirmed using Sanger sequencing and Schematic representation of the SNX9 protein

Supplementary figure 2. Expression analysis of *DYNC1H1* and *RTP1* in 11 areas of the neocortex (NCX). OFC, orbital prefrontal cortex; DFC, dorsolateral prefrontal cortex; VFC, ventrolateral prefrontal cortex; MFC, medial prefrontal cortex; M1C, primary motor cortex; S1C, primary somatosensory cortex; IPC, posterior inferior parietal cortex; A1C, primary auditory cortex; STC, posterior superior temporal cortex; ITC, inferior temporal cortex; V1C, primary visual cortex.

Sample	Clean data	Initial bases	Alignment	Base	Fraction of	Average	4×	10×	20 ×
	(Gb)	on target	rate (%)	covered on	effective bases	sequencing	coverage	coverage	coverage
		(Mb)		target(Mb)	on target (%)	depth	(%)	(%)	(%)
E1F	3.18	50.34	99.48	49.06	56.60	61.38	96.00	92.40	83.90
E1M	4.24	50.34	99.61	49.07	57.20	84.35	96.40	94.00	88.70
E1P	3.09	50.34	99.51	49.03	57.40	61.77	95.90	92.10	83.50
E2F	2.12	50.34	99.48	48.69	56.20	41.01	93.60	86.00	71.30
E2M	3.72	50.34	99.45	48.68	55.30	63.43	95.20	91.10	82.70
E2P	3.47	50.34	99.49	49.19	55.70	66.51	96.20	93.00	85.30
E3F	3.92	50.34	99.55	48.98	58.00	77.36	95.90	92.70	86.10
E3M	3.43	50.34	99.52	48.94	56.20	65.95	95.70	92.20	84.30
E3P	4.72	50.34	99.58	48.99	56.70	86.45	96.10	93.30	87.80
E4F	3.79	50.34	99.51	48.98	55.90	69.27	96.00	92.70	85.50
E4M	4.30	50.34	99.43	48.77	55.70	72.83	95.60	92.40	85.60
E4P	3.76	50.34	99.42	48.66	55.70	63.76	95.20	91.20	83.00
Mean	3.78	50.34	99.51	48.93	56.38	70.25	95.72	92.15	84.56
SD	0.67	0.00	0.06	0.18	0.79	12.33	0.72	1.93	4.19

Supplemental Table 1. Summary of whole-exome sequencing data

			0		
Trio	Gene	Probability of HI	RVIS	RVIS Percentile	Z score for missense from ExAC
E1	SNX9	0.143	-0.13	43.91%	1.31
E2	RTP1	0.736	0.06	58.84%	0.76
E3	DYNC1H1	0.436	-6.01	4.13%	13.88

Supplemental Table 2. The evaluation of the tolerance of genes with de novo mutation in this study

Not: HI, haploinsufficiency; RVIS, residual variation intolerance score; Lower RVIS percentiles and higher Z scores correspond to higher constraint

Trio	Gene	Mutation	Primers $(5' \rightarrow 3')$	Length(bp)
E1	SNX9	c.454C >A, p.Q152K	Forword: CAACTGGGACACTGCCTTCG	110
			Reverse: CTTCCCTGTCTCTCCCACTCAG	
E2	RTP1	c.323T>A, p.I108N	Forword: AGTGCACCAAGCGCATTTT	858
			Reverse: GGCCCAACCACGGAATCTTA	
E3	DYNC1H1	c.10174A>G, p.M3392V	Forword: TCAGTCACTGGGGGCAATGAG	279
			Reverse: AAGAGGTCACCTTTCACACGG	

Supplemental Table 3. PCR information for the validation of de novo mutation in this study