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We derive Ry by using the definition notations and technique of Diekmann et al. [1] and van

den Driessche and Watmough [3]. When 6 = 0, that is no colonized patients are admitted into
hospital, the disease-free equilibrium (DFE) is defined to be

ED - (Pua-PCvHuanBE) - (NpaouNhaouo)v

where N, N}, are total number of patients and HCWs, respectively. The infected compartments are
colonized patients P,, contaminated HCWs H,. and bacterial load B.; the uninfected compartments
are uncolonized patients P, and uncontaminaed HCWs H,. Thus, for our model, n = 5,m = 3.
After rearrangement, we denote

& = (P, H,, Be, Pu, H,)", 9= (0,0,0,N,, Np),

and
zi = fi(x) = Fi(z) — (Vi(z)),
with
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It is easy to check that the assumptions in van den Driessche and Watmough [3] are satisfied.
Thus,
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then

1 HeYb 0 0
V71 = 0 L) 0 ) (85)
ThTe Vple YVh o HcY
with v = 0v, + (1 — 0)7..
Hence,
L 0 apBp(l =n)N,  kpN, e 0 0
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The basic reproduction number is defined the spectral radius of FV
o kpl/pr khl/hNh
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One can see that if P), PO, HY H?, BY > 0, then solutions are non-negative and remain bounded
in the positively invariant set in R®

G = {(Py,P.,Hy,H.,B.) € R : P, + P.+ H, + H. + B. < N},

where N is a fixed integer.

In fact, it is easy to see that the solutions remain in the positive cone if the initial conditions
are in the positive cone (Smith and Waltman [2, App. B]). Let T'(t) = P,(t) + P.(t) + Hy(t) +
H.(t) + Be(t). From (??) we have

) Bl o) i 0) = B0

< vpNp + vnNp — 1 Be(t),

which implies that

(vpNp + v Nh)
Ty

So Be(t) is bounded by a fixed number

Be(t) < (1 — e ) 4 Blemmt,

(WpNp + v1Ni)
b

M = + BY.

Let N = N, + Nj, + M, then
P,(t) + P.(t) + Hy(t) + Ho(t) + Be(t) < N.

Thus, the solutions remain bounded in a positive cone of R®, and the system induces a global
semiflow in the positively invariant set G' of R.

When 6§ = 0, following a result of van den Driessche and Watmough [3], we know that if
Ry < 1, the disease-free steady state (N, 0, Ny, 0,0) is locally asymptotically stable; if Ry > 1,
the disease-free steady state is unstable.
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