Title: pNaKtide Attenuates Steatohepatitis and Atherosclerosis by Blocking

Na/K-ATPase/ROS Amplification in C57Bl6 and ApoE Knockout Mice Fed a Western Diet

Authors: Komal Sodhi¹, Krithika Srikanthan¹, Perrine Goguet-Rubio¹, Alexandra Nichols¹,

Amrita Mallick¹, Athar Nawab¹, Rebecca Martin¹, Preeya T. Shah¹, Muhammad Chaudhry¹,

Saroj Sigdel¹, Mehiar El-Hamdani¹, Jiang Liu¹, Zijian Xie¹, Nader G. Abraham^{1,2}, and Joseph I.

Shapiro¹*

Affiliations:

¹Departments of Medicine, Surgery, Pathology, and Cardiology, Joan C. Edwards School of

Medicine, Marshall University.

²Department of Medicine, New York Medical College, Valhalla, NY, USA 10595.

*Correspondence:

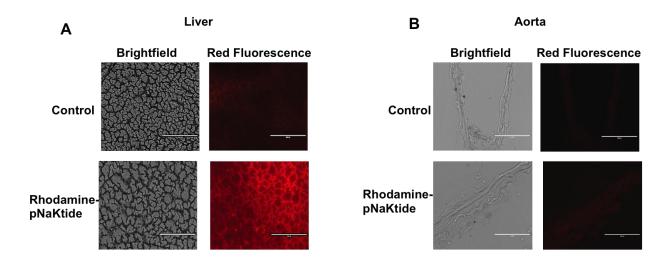
Joseph I. Shapiro, M.D.

Dean, Joan C. Edwards School of Medicine

Professor of Medicine

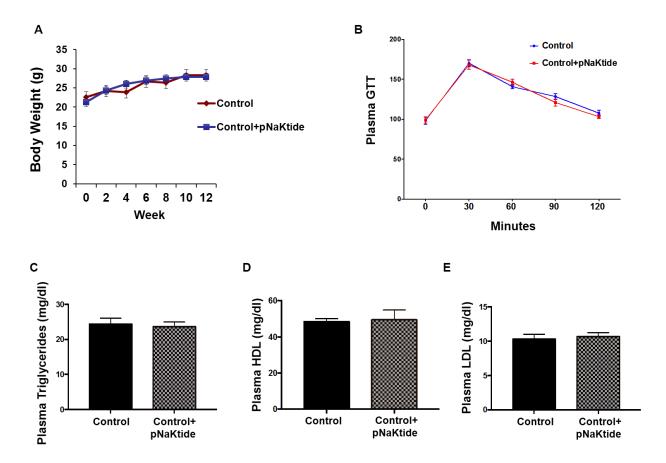
Marshall University

1600 Medical Center Drive

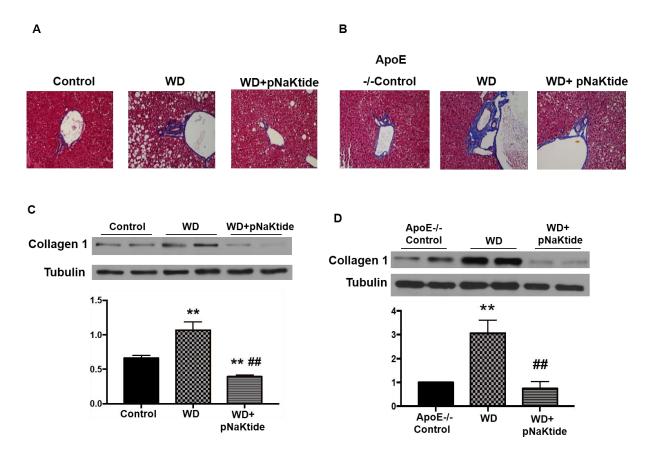

Suite 3408

Huntington, WV 25701-3655

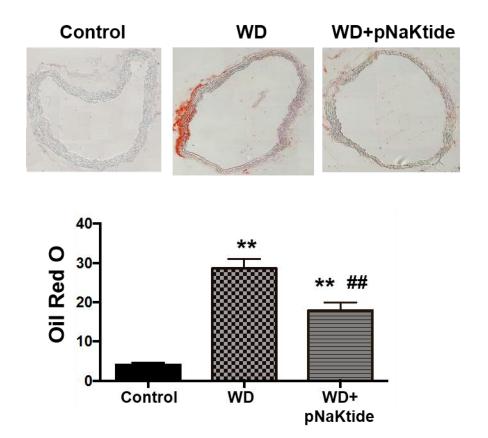
Email: shapiroj@marshall.edu


1

Supplementary Figure 1: pNaKtide distribution in hepatic and aortic tissue.


Supplementary Fig. 1: pNaKtide distribution in hepatic and aortic tissue. To study whether pNaKtide was distributed in the liver (\mathbf{A}) and aorta (\mathbf{B}), rhodamine-labeled pNaKtide or 1xPBS (for control) was injected intraperitoneally in mice. The rhodamine-labeled pNaKtide was efficiently distributed in the liver, power 5% (\mathbf{A}), but not aortic plaques, power 5% (\mathbf{B}) 3 hours after administration (n=4).

Supplementary Figure 2: Effect of pNaKtide on body weight, glucose tolerance, and lipid profile in control C57Bl6 mice.


Supplementary Fig. 2: Effect of pNaKtide on body weight, glucose tolerance, and lipid profile in control C57Bl6 mice. C57Bl6 mice were injected with 25mg/kg body weight of pNaKtide every 7 days while on a standard chow diet for 8 weeks. pNaKtide treatment did not significantly change body weight (**A**), glucose tolerance (**B**), serum triglyceride (**C**), serum HDL (**D**), or serum LDL (**E**) when compared to the control group. Results are expressed as means ± SEM, n=8-10/group.

Supplementary Figure 3: Effect of pNaKtide on hepatic fibrosis in C57Bl6 & ApoE-/- mice fed a western diet.

Supplementary Fig. 3: Effect of pNaKtide on hepatic fibrosis in C57Bl6 & ApoE-/- mice fed a western diet. Masson's trichrome staining of liver in C57Bl6(A) and ApoE-/-(B) and collagen-1 western blot analysis of liver homogenates with data shown as mean band density normalized to tubulin in C57Bl6 (C) and ApoE-/- mice(D). Results are means ± SEM, n=6/group, *p< 0.05 vs control, # p< 0.05 vs WD, **p<0.01 vs control, ## p<0.01 vs WD.

Supplementary Figure 4: Effect of pNaKtide on aortic lipid accumulation in C57Bl6 mice fed a western diet.

Supplementary Fig. 4: Effect of pNaKtide on aortic lipid accumulation in C57Bl6 mice fed a western diet. Aortic Oil Red O staining for lipid accumulation. Results are means \pm SEM, n=8-10/group, *p< 0.05 vs control, # vs. WD.