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Videos illustrating the dynamics of the gyro-
system
• Three-dimensional representation of how the periodic cell of the lattice

deforms under pressure waves when the lattice points are connected to rigid
rods without gyricity (Video1) and to gyroscopic spinners (Video2). The
trajectories of the lattice particles are indicated in red colour.

• Two-dimensional representation of the lattice deformation under shear waves
when gyros are absent (Video3) and present (Video4).

• Two-dimensional representation of the lattice deformation under pressure
waves without gyros (Video5) and with gyros (Video6).
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Stiffness matrix and dispersion relation
The stiffness matrix C = [Cij ]4i,j=1 in (1) and (3) is given by

C = c
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The matrices Cj (j = 1, ..., 4) in (S2) are defined as
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Effective group velocity for pressure waves: de-
generate case
The behaviour of the gyro-system is isotropic near the origin of the dispersion
diagram. In fact, at low frequencies the slowness contours are circles, given by

ω̃2 = c̃2
g(k̃2

x + k̃2
y), (S4)

where c̃g =
√
m/(cl2)ω/|k| is the non-dimensional effective group velocity.

After substituting the expression (S4) for ω̃, we expand the non-dimensional
dispersion relation (4) in Taylor series around the origin of the dispersion diagram
up to the second order in k̃x and k̃y, and we obtain the following biquadratic
equation in c̃g:

3
[
4− (α̃1 + α̃2)2

]
c̃4
g − 18c̃2

g + 81/16 = 0. (S5)

In the limit when |α̃1 + α̃2| → 2 one positive solution of (S5) tends to infinity:
c̃ p
g →∞, where c̃ p

g represents the effective group velocity for pressure waves. The
other positive solution of (S5) c̃ s

g → 3/(4
√

2) when |α̃1 + α̃2| → 2, where c̃ s
p is the

effective group velocity for shear waves.
Figure S1a shows the dispersion diagram for a choice of the spinner constants

α̃1 and α̃2 such that |α̃1 + α̃2| = 2. It is apparent that the effective group velocity
for pressure waves, given by the slope of the curve in magenta at the origin, tends to
infinity. The inset on the right of Fig. S1a represents the amplitude field of the total
normalised displacement, |ũ| =

√
ũ2
x + ũ2

y = |u| /l =
√

(ux/l)2 + (uy/l)2, generated
by a harmonic displacement of amplitude 0.01, acting in the y direction, imposed on
the central node of a lattice with gyros, having a low frequency f̃ = ω̃/(2π) = 0.05.
The displacement amplitude field is determined by means of a finite element model
developed in Comsol Multiphysics. PML (Perfectly Matched Layers) are attached
to the boundaries of the lattice to minimise the amplitudes of the reflected waves,
thus reproducing an infinite medium.

The wave pattern in Fig. S1a is characterised by large wavelengths, due to the
high speed of pressure waves. On the other hand, Fig. S1b contains the dispersion
diagram and the displacement amplitude field in a lattice where both pressure
waves (the magenta curve) and shear waves (the green curve) can propagate, but
where pressure waves are characterised by a lower speed with respect to the case
investigated in Fig. S1a. In order to decrease the speed of pressure waves, a lower
value of α̃1 is chosen in the second case examined. Figure S1c refers to a lattice
where only shear waves can travel. For this purpose, a larger value of α̃1 is taken
with respect to the situation in S1a. In the third case, the wavelength is much
smaller in comparison with Fig. S1a, because the effects of pressure waves with
high speed are absent.
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Figure S1: Cross-sections of the dispersion surfaces for k̃y = 0 (left) and amplitude fields
of the total normalised displacement, produced by a harmonic vertical displacement of
low frequency f̃ = 0.05 and amplitude 0.01 applied at the central node of the lattice
(right), calculated for the following values of the spinner constants: (a) α̃1 = 0.5, α̃2 = 1.5,
(b) α̃1 = 0.1, α̃2 = 1.5, (c) α̃1 = 0.9, α̃2 = 1.5. The finite element computations are
performed on a lattice with an aspect ratio approximately equal to 1, having side length
100, surrounded by PML.
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Figure S2: Amplitude of the total normalised displacement in logarithmic scale for (a)
α̃1 = 0.9, α̃2 = −0.9 and (b) α̃1 = 0.8, α̃2 = −0.9, when the lattice is subjected to a
harmonic displacement of amplitude 0.01 (indicated by the arrow), at the Gaussian beam
frequency. In the numerical simulations, the lattice is surrounded by PML.

Additional comments on visualisation of unidi-
rectional waveforms
Figure S2a and S2b reproduce in logarithmic scale the amplitude fields of the total
normalised displacement in the lattice, shown in Fig. 4b and 5b respectively. It is
apparent that in the case when α̃1 = 0.8, α̃2 = −0.9 (Fig. S2b) the wave pattern is
more localised, as already observed in the main text when describing Fig. 5b.

The strain energy in a lattice link averaged over a period T is defined in the
time-harmonic regime as

Es = 1
T

∫ T

0

∫
V

1
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[
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T

)]2
dV dt = 1

4Eε
2Al, (S6)

where E is the Young’s modulus, A is the cross-sectional area, V = Al is the
volume and ε is the axial strain of each link. The normalised strain energy density,
given by

Ẽs = 1
4ε

2, (S7)

is plotted in Fig. S3a in linear scale and in Fig. S3b in logarithmic scale for the
case α̃1 = 0.9, α̃2 = −0.9. In Fig. S3c Ẽs is plotted in linear scale and in Fig. S3d
we present log (Ẽs) for the case α̃1 = 0.8, α̃2 = −0.9.

The kinetic energy of a lattice particle averaged over a period is expressed in
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Figure S3: Amplitude of the normalised strain energy density in the lattice links for
(a,b) α̃1 = 0.9, α̃2 = −0.9 and (c,d) α̃1 = 0.8, α̃2 = −0.9, in (a,c) linear scale and (b,d)
logarithmic scale, due to a harmonic displacement of amplitude 0.01 at the Gaussian beam
frequency.
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Figure S4: Amplitude of the normalised kinetic energy of the lattice particles for (a,b)
α̃1 = 0.9, α̃2 = −0.9 and (c,d) α̃1 = 0.8, α̃2 = −0.9, in (a,c) linear scale and (b,d)
logarithmic scale, due to a harmonic displacement of amplitude 0.01 at the Gaussian beam
frequency.

the time-harmonic regime as
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The normalised kinetic energy

Ẽk = 1
4 ω̃

2
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y
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is shown in Fig. S4a in linear scale and in Fig. S4b in logarithmic scale for the case
α̃1 = 0.9, α̃2 = −0.9. Ẽk is plotted in linear scale in Fig. S4c and in logarithmic
scale in Fig. S4d for the case α̃1 = 0.8, α̃2 = −0.9.
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For each choice of the spinner constants, the normalised kinetic energy is larger
than the normalised strain energy density, since the former depends on ω̃2 � 1.
The amplitude fields of both strain and kinetic energy are more localised in the
case α̃1 = 0.8, α̃2 = −0.9, as observed when discussing the displacement fields in
Fig. 4 and 5.
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